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KEY POINTS

� Coronary artery calcifications challenging scenarios.

� Intracoronary imaging is necessary to understand calcific lesion features.

� Accurate evaluation of lesion characteristics is crucial.

� Evaluate calcific arc, length and thickness before percutaneous coronary intervention.

� Plaque modification can be achieved with different devices before stent and optimization.
INTRODUCTION

Coronary artery calcification (CAC) is associated
with adverse cardiovascular events. It is part of 2
distinct processes: calcific atherosclerosis and
medial artery calcification, etymologically the
word atherosclerosis derives from the Greek
word for gruel (ἀqήra, atèra) and hardening
(sklήrusi2, sklèrosis).

Calcific atherosclerosis occurs in the intima and
is inflammatory-dependent. Medial artery calcifi-
cation is related primarily to age, male sex, Cauca-
sian ethnicity, diabetes mellitus and chronic
kidney disease (CKD).

Vascular calcification is remarkably accelerated
and contributes to a higher risk of cardiovascular
morbidity and mortality.1,2

Coronary calcification is localized within intimal
plaque except in patients with CKD who develop
principally medial and intimal calcific layer.3
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Constant healings and modifications of plaques
after ruptures or hemorrhages lead to develop-
ment of obstructive fibro-calcific lesions, common
in patients with chronic angina and sudden cardiac
death.4,5

Understanding plaque characteristics and distri-
bution is crucial to select a “plaque modification
strategy” before stent implantation to minimize
malapposition.6

CALCIFIC LESIONS PHONOTYPES

Calcium regulatory mechanisms that affect bone
formation influence coronary artery calcification,
made by hydroxyapatite, carbonate apatite, and
calcium-deficient apatite. “Eccentric calcium” oc-
curs involving less than 270� of lumen perimeter.
“Concentric calcium” is a cross-section involve-
ment of lumen with greater than 270� of calcium.

High-pressure ballooning can achieve calcium
fracture in the thinner areas. Atherectomy based
ario and B. Hamiti are Investigators and Study Coor-
y Shockwave Medical and have received institutional

ical and Experimental Medicine, Careggi University

ca
rd
io
lo
gy
.th

ec
li
ni
cs
.c
om

mailto:amattesini@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ccl.2020.07.007&domain=pdf
https://doi.org/10.1016/j.ccl.2020.07.007
http://cardiology.theclinics.com


Demola et al620
procedures aim to partially ablate the calcium
allowing the fracture of calcified structures and
permitting further luminal gain.
IMAGING OF CORONARY CALCIFIC LESION

Accurate evaluation of coronary lesions is crucial
to perform perfectly planned percutaneous coro-
nary intervention (PCI). Particularly rich mineral
content CAC are detected by fluoroscopic
methods; calcium creates radio-opacities noted
before contrast injection. Intravascular ultrasound
(IVUS) is more accurate than angiography for
detection of calcific lesions, with sensitivity of
90% to 100% and specificity of 99% to 100%.3,7

Clinical data demonstrate the enhanced sensitivity
of IVUS in detecting coronary calcium compared
with angiography (73% of cases vs 38%; P<.001).4

Calcium reflects ultrasound, recognized as a
bright echo with acoustic shadowing.5 Moreover
IVUS provides discrimination of deep versus su-
perficial calcium, thickness cannot be evaluated
using IVUS. The calcium arc is classified as fol-
lows: none or involving 1 quadrant (0� to 90�), 2
quadrants (91� to 180�), 3 quadrants (181� to
270�), or 4 quadrants (271� to 360�). Calcium loca-
tion is superficial if present in the intimal-luminal
interface, or deep if within the medial-adventitial
border or closer to the adventitia than the lumen,
or even both superficial and deep.6 Calcium thick-
ness cannot be determined directly with IVUS and
volume cannot be calculated with the same accu-
racy of optical coherence tomography (OCT).
For this reason, historically calcific arc circum-

ference detected by IVUS was considered a very
important parameter, an arc greater than 180�

could predict a probable risk of stent
underexpansion.8

In the PROSPECT study (Providing Regional
Observations to Study Predictors of Events in the
Coronary Tree) patients with higher dense calcium
volumes were more likely to have higher rates of
major adverse cardiovascular events (MACE) at
3 years.9–11

OCT offers high spatial resolution imaging (10–
20 mm), better than IVUS (150–200 mm). Intravas-
cular frequency domain OCT is the finest modality
for the assessment of coronary calcium
distribution.
Definition of calcific arc degree detected with

IVUS is well integrated with OCT parameters such
as calcium thickness, calcium length, and calcium
3-dimensional volume that correlate negatively
with stent expansion and correct response to
balloon dilation. Particularly, Fujino and col-
leagues12 combined calcific arch greater than
180� (2 points), calcific thickness greater than
0.5 mm (1 point), and calcific longitudinal length
greater than 5 mm (1 point) to create a scoring sys-
tem that can predict higher risk of stent underex-
pansion, more observed in calcific lesions
reaching score of 4. The interaction between cal-
cium arc and thickness is important to predict the
successof cracking thecalcific layerwith aconven-
tional balloon. As shown by Maejima and col-
leagues13 calcium cracks after balloon
angioplasty were associated with a greater arc
and a thinner minimal thickness of the calcium
component.

NEW TREATMENT ERA OF CORONARY
CALCIFIC LESIONS

Calcification makes difficult to deliver devices and
increases the risk of PCI failure.
One in 4 patients undergoing PCI presents a

calcific lesion. Heavily calcified lesions are a
particular threat for drug-eluting stents, damaging
the polymer/drug coating during tough advance-
ment and subsequently allowing only poor diffu-
sion of the drug to the subintima.14–16

Calcified lesions are associated with increased
intraprocedural complications such as underex-
pansion, asymmetrical expansion, malapposition
and postprocedural risk of in-stent restenosis
and thrombosis.17–20 Asymmetrical calcific lesions
predispose to coronary dissection or
perforation.21,22

Calcified lesions can be approached with suc-
cess and procedural good accomplishment.23

WIRE SELECTION

Frequently “workhorse” guidewires are adequate
for most CAC, but in cases with significant angula-
tion or tortuosity, hydrophilic coating guidewires
may facilitate manipulation. If this option is not
successful, “buddy” guidewire or deep coronary
intubation with a child-in-mother catheter could
be an easy solution.
In case of severe CAC also microcatheters for

lesion crossing so that the operator can exchange
finer wires required for atheroablative devices.
If microcatheter does not cross, an 0.009-inch

RotaWire (for rotational atherectomy; Boston Scien-
tific, Natick, MA) or 0.012-inch ViperWire (for orbital
atherectomy; Cardiovascular Systems, Inc., St.
Paul, MN) and directly proceed to atheroablation.

BALLOON ANGIOPLASTY FOR CORONARY
ARTERY CALCIFICATIONS: NOT JUST UNDER
PRESSURE

With common balloon for angioplasty, the forces
privilege less hard parts, preferentially not involved
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by CAC. Resistances to radial forces may bring to
several complications. Noncompliant balloon
(NCB) can tolerate high inflating pressures without
increasing too much in diameter, uniformly
expanding the coronary segment.

OPN NC balloon (SIS Medical, Frauenfeld,
Switzerland) is a rapid exchange percutaneous
transluminal coronary angioplasty device, with its
unique twin-layer technology can allow super
high pressure (to 4560 kPa) with very poor diam-
eter expansion, dedicated especially for in-stent
restenosis (ISR), it has nominal pressure at
10 atm and a rated burst pressure of 35 atm. It
available in various diameters ranging from 1.5 to
4.5 mm and 3 lengths: 10, 15, 20 mm. The limita-
tion of the OPN balloon is the high profile that un-
dermines any attempt to recross when inflated.24

OPN NC high-pressure balloon can be easily
used in case of the failure of conventional bal-
loons, providing a safe and easy alternative strat-
egy in case of failure of conventional NC balloon
dilatation.25

However, CAC may become resistant to further
high-pressure dilatation after compression.

In 1990s, medical technology brings to light a
new modified noncompliant balloon provided of
sharp microblades (w0.25 mm in height) settled
longitudinally on the surface, called Flextome Cut-
ting Balloon, as a newborn called Wolverine
balloon, with a cutting functional height of 0.005
foot, available in monorail and over-the-wire, with
3 different blade lengths: 6, 10, 15 mm. When
inflated the cutting balloon creates radial incision
on the fibrocalcific plaque, allowing expansion
with conventional balloon minimizing elastic recoil
of vessel. Cutting balloon angioplasty (CBA) is
used to treat mainly fibro-calcific plaque or in ISR.26

For dilatation of various kind of hard lesions, it
was designed the AngioSculpt scoring balloon
(AngioScore, Fremont, CA), an innovative device
consisting of a double lumen catheter with a semi-
compliant, nylon balloon surrounded by an
external nitinol-based helical scoring edge,
thought to be more flexible and manageable.
This technology decreased incidence of balloon
slippage, a more uniform balloon expansion,
reducing elastic recoil and an optimal postinflation
minimal lumen diameter.

AngioSculpt is available in 3 different lengths of
10, 15, and 20 mm and balloon diameters from 2.0
to 3.5 mm. Radiopaque markers demarcate the
proximal and distal edge of the balloon for fluoro-
scopic visualization. During balloon deflation, the
nitinol cage has an active role in the device
deflation.

The indications of scoring balloons are growing
with operators experience, but nowadays this
technique is meant for lesion preparation before
stenting: complex vessels or in select cases of
ISR and bifurcation lesions, promising are its
adapted uses in valvuloplasty and drug-covered
balloon technologies.
ATHERECTOMY TECHNIQUES
Rotational Atherectomy

In the past 3 decades rotational atherectomy (RA)
has represented the main atheroablative tech-
nique for high calcium content coronary lesions.
Few modifications to its essential mechanics
have been imported, but significant incremental
improvement in technique has been introduced.
The current RA system available is the Rotablator
System (Boston Scientific, Natick, MA). RA has
recently evolved as a unique tool for calcified cor-
onary lesions, with a new entity called RotaPro
system.

This unique device is composed of a diamond-
encrusted elliptical burr on the top that rotates at
high speeds. The burr is tracked over a 0.009-
inch guidewire, placed across the lesion, it crosses
many times the calcified lesions with rotational
speeds of 140,000 to 150,000 rpm.

Rotational atherectomy bases its functional
principle on the concept that different components
(such as for example, fibro-calcific lesion and cal-
cium deposits) have an altered elasticity.27 The
burr prefers to ablate inelastic materials, sparing
healthy part.27,28 Thus, hard and inelastic plaques
are rigid and can be pulverized preferentially. Its
main and primary use is to facilitate balloon angio-
plasty and correct stent deployment. The
STRATAS study (Study to Determine Rotablator
and Transluminal Angioplasty Strategy) compared
outcomes of an aggressive versus routine strategy
(maximum burr:artery ratio >0.70 alone or with
adjunctive balloon inflation �1 atm vs maximum
burr:artery ratio�0.70 with routine balloon inflation
�4 atm). There were no advantages for clinical
success, final minimum lumen diameter, or resid-
ual stenosis, and there were higher rates of peri-
procedural creatine kinase-myocardial band
release and target lesion revascularization (TLR)
at 6 months.29

The CARAT (Coronary Angioplasty and Rotabla-
tor Atherectomy Trial) was on the same line,
aggressive strategy does not pay back.30

RA stepped away from aggressive debulking
permitting development of smaller burrs, sheaths,
and guide catheters with muchmore safety and ef-
ficiency, moving toward a “modification approach
of CAC.”

Rotational modification of calcium and prepara-
tion of lesion is meant to enable drug-eluting stent
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delivery therefore reducing ISR, but in several trials
the beneficial effect is not well established.
ROTAXUS trial did not show a benefit of

routinely using rotational atherectomy in patients
with moderately or severely calcified obstructive
coronary artery disease: 240 patients with com-
plex calcified coronary lesions were randomly
assigned to rotational atherectomy followed by
stenting versus no rotational atherectomy stent-
ing. The atherectomy group had higher levels of
late in-stent lumen loss at 9 months. In follow-up
at 9 months postprocedure, rates of restenosis,
TLR, definite stent thrombosis, and major adverse
cardiac events were similar between the 2 groups
before paclitaxel-eluting stent implantation.16 In
current clinical practice RA use is mainly reserved
to uncrossable CAC stenosis or for bailout lesion
preparation in case of incomplete balloon
expansion.

Orbital Atherectomy

The orbital atherectomy (OA) system was first
described in 2008 and its use was meant for pe-
ripheral arteries.31 This technique was transported
in coronary field. The OA system is composed of a
diamond-encrusted eccentric crown at the distal
end of a drive shaft, powered by a pneumatic con-
sole. The operator can directly control anterograde
and retrograde movement of the crown and orbit
speed (from 80,000–120,000 rpm). The crown is
continuously infused by a lubricant solution
(ViperSlide).
Unlike the RA burr, the OA crown has diamond
chips on front and back, thus permitting antero-
grade and retrograde atheroablation, OA is capable
of treating different CAC scenarios, unlike to RA
that needs different burrs to obtain larger cross-
sectional areas, OA enlarging orbit of crown move-
ment at faster speed reaches the same target. With
single OA 1.25-mm crown through a 6-Fr guiding
catheter the operator can be effective on reference
vessels up to 3.5 mm in diameter. The movement is
slow and poking; it permits intermittent coronary
blood flow around the burr and reduces the risk
stalling/entrapment. Conversely, in OA, the motion
is uniform, gradual and continuous, pausing in inter-
est segments to enable atheroablation. In expert
operators, tactile and also audible changes could
be felt. We report in Figs. 1-3 an OCT guided PCI
of LAD treated by OA.
The treatment time should not pass 30 seconds,

in fact a sound alert can be heard after 25 seconds
of nonstop treatment; the safety is guaranteed as
shown in ORBIT I trial by rapid and continuous
infusion of ViperSlide. In the ORBIT I trial we
have 94% procedural success rate in 50 patients,
on the other hand clinical complications included 2
in hospital myocardial infarctions (4%) and cumu-
lative rates of MACE: 6 coronary dissections (12%)
and 1 perforation, with no slow-flow/no-
reflow.32,33 ORBIT II study with 443 patients pre-
senting de novo calcified plaque to treatment
with OA, OA was associated with a 97.7% rate of
successful stent delivery, a 98.8% rate of less
Fig. 1. Calcific nodule in mid LAD at
coronary angiography and IVUS
imaging.



Fig. 2. OCT before OA.
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than 50% stenosis post-PCI, and low rates of in-
hospital Q-wave myocardial infarction (0.7%).34–36

Yamamoto and colleagues37 found that in larger
luminal area, OA led to a more radical plaque
Fig. 3. OCT after OA and stent optimization.
modification compared with RA, but in lesions
with smaller lumen area, a similar degree of plaque
modification occurred. Final stent expansion was
similar, however Kini and colleagues38 show a
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better final stent apposition after OA. Orbital
versus Rotational Atherectomy Effects On Coro-
nary Microcirculation in PCI known as ORACLE
(NCT03021577) will clarify another issue: the effect
on microcirculation.
Excimer Laser Coronary Atherectomy

Laser was introduced for treatment of limbs
ischemia39 in 1980s, and was later supported for
the use in coronary circulation.40–43 Thanks to
development of modern catheter and safe lasing
techniques,44,45 ELCA reached satisfying clinical
outcomes.46 The mechanics of ELCA are based
on pulsed gas lasers, a mix of rare gas and a
halogen element to generate short wavelength ul-
traviolet light (UVL): shorter is the wavelength, less
deeper the penetration, less heat is produced and
thus less traumatic for tissues. The principles of
ELCA are 3: photochemical, photo-thermal, and
photomechanical. UVL breaks carbon–carbon
bonds, photochemical principle, elevating temper-
ature of intracellular water and lead to rupture of
cellular membrane and generating a bubble of va-
por on the catheter tip, photothermal principle. At
last, continuous formation and implosion of bub-
bles fragments the intravascular in a particulate
of less than 10 mm diameter. The CVX-300 cardio-
vascular laser Excimer system (by Spectranetics,
Colorado Springs, CO) uses Xenon chloride
(XeCl) as the active medium. Operator personal
safety devices should be carefully observed.
ELCA catheters are compatible with any stan-

dard 0.014-inch guidewire. Coronary catheters
are available in four diameters (0.9, 1.4, 1.7,
Table 1
Treatment indications of coronary lesions with high c
2.0 mm) and those most commonly used have a
concentric array of laser fibers at the tip.
Usually 0.9-mm � 80 catheter is used in fibrocal-

cific lesions thanks to its enhanced delivery and
ability to emit laser energy at high power (80 mJ/
mm2) at the highest repletion rate (80 Hz). This is
a situation where ELCA may be used, unless there
are very significant calcification.47,48 In highly fibro-
calcific lesions, even for ELCA PCI more expert op-
erators, the default choices remain RA or OA.
Efficacy of ELCA in PCI was achieved in 96.4%

in ELLEMENT registry,49 but careful case selection
is mandatory successful procedures.
Shockwave Intravascular Lithotripsy

High-pressure balloon dilation and atherectomy
may result inadequate to modify deeper calcium.
Coronary intravascular lithotripsy (IVL) with the

Shockwave device (Shockwave Medical Inc.,
Santa Clara, CA), CE marked in 2017, is an innova-
tive technique that can affect deeper calcium layer
and alters calcium structure of plaque before
stenting the lesion. Ali and colleagues50 who stud-
ied 31 patients using OCT after IVL, firstly
described this mechanism. The practice is bor-
rowed on the well-known treatment strategy for
renal calculi, used for decades to fragment kidney
stones sparing soft tissues.
The Shockwave Medical coronary catheter is

composed of a single-use catheter that contains
multiple sonic emitters in a unique balloon, pro-
ducing approximately 3 kV energy. The emitters
create sonic pressure waves that spread uniformly
and circumferentially. These waves can physically
alcium content before stenting and optimization
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fracture calcium, minimizing barotrauma attribut-
able to low inflation pressure (4 atm).

Catheters available for this technique vary from
2.5 to 4.0 mm diameter and 12 mm in length, the
generator delivers 10 pulses in sequence (1
pulse/s) till a maximum of 80 pulses per catheter.

Lithotripsy balloon is inflated to 405 kPa during,
following pulsatile energy erogation.

Feasibility of intravascular lithotripsy for modifi-
cation of severe coronary artery calcification was
demonstrated in the Disrupt CAD I study (Disrupt
Coronary Artery Disease).51 After this, Disrupt
CAD II was a prospective multicenter, single-arm
post-approval study designed to assess the safety
and performance of the Coronary IVL System to
treat calcified stenotic coronary lesions.52

Patients had silent ischemia, unstable or stable
angina with myocardial ischemia, or stabilized
acute coronary syndrome without elevation in car-
diac biomarkers, presenting a single target lesion
requiring PCI with a diameter stenosis �50% and
length �32 mm, in native coronary arteries.

The post-IVL luminal gain was 0.8� 0.5 mm and
residual stenosis was 29% � 12% with further
decrease to 12% � 5% following drug-eluting
stent implantation.

No comparison data are available between
atherectomy techniques and IVL, a retrospective
review of 54 patients treated with IVL reported a
higher incidence of isolated ventricular beats or
asynchronous cardiac pacing during shockwave,
not associated with clinical adverse events.53
WHAT’S NEXT TO HANDLE?

Lately technological advancements in PCI CAC
equipment are consistent: resistant balloons that
can reach very high pressures, sharp cutting and
scoring devices, formidable burrs in RA and OA,
modern balloon producing intense waves like in
IVL and futuristic lasers. We can see even hybrid
promising approaches to these lesions (Rota-
Tripsy).54 Particularly, IVL has a huge potential in
concentric calcifications for its 3 main characteris-
tics: safety, efficacy, and short learning curve.

We recently proposed a newer PCI algorithm
based on imaging techniques, such as OCT and
IVUS.55 Based on our experience, calcium spread
deeply but also longitudinally through the vessel
wall, thus deeper calcified lesions should corre-
spond to longer and more concentric involvement.
This rationale permits to add an adjunctive point to
the Fujino score for an arc greater than 270� and a
length greater than 5 mm, thus directing the expert
operator to the best procedure.

However, it is important to stay grounded in our
everyday practice: coronaries anatomic and
pathologic characteristics deeply impact on PCI
planning, incomplete expansion and poor stent
apposition, more frequent in calcified lesions, are
predictive of target lesion failure and late stent
thrombosis: calcium is a predictor of interventional
treatment failure.56

We summarize in Table 1 our PCI strategy in
CAC.

Concluding, we always need to evaluate the sta-
bility of other vessels, even if they are not the prin-
cipal aim of our work, evaluating completely the
coronary tree and its balance. As is well known,
each treatment should be tailored for patient and
lesion characteristics.
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