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KEY POINTS

� Many different processes within the emergency department (ED) can be modeled using
queueing equations, which can predict delays and help to identify bottlenecks to
throughput.

� Average arrival times often hide variability that can significantly increase waiting times.

� As a resource approaches a utilization ratio of 1, waiting times for the resource grow
dramatically.

� Although queueing equations can become mathematically complex, software packages
that simulate queues help to predict the effects of changing resources in the ED without
the need for tricky calculations.
INTRODUCTION

How many doctors does it take to manage the waiting room? It sounds like a simple
question, which should have a simple answer, solved with algebra. An emergency
physician (EP) can see X patients per hour. Y patients per hour arrive in the emergency
department (ED). Should not the number of EPs needed to keep the waiting room clear
be the number of patients who arrive per hour, divided by the number of patients per
hour an EP can see?
The more one thinks about the problem, however, the more complex it becomes,

and the less satisfactory the simplifying assumptions. Patients take different
amounts of time to evaluate; a healthy 20 year old with a sore throat does not take
the same amount of time as a 65 year old on dialysis presenting with fever and chest
pain. Much also depends on the resources available to the ED, and the ED’s current
level of activity. If the ED has to share a computed tomography (CT) scan with the
rest of the hospital, or if there is already a glut of samples at the laboratory, the EP
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can work flawlessly, but the number of patients in the waiting room will continue to
grow.
This problemmay have too many inputs and unknowns to be solved exactly, and var-

iations within the workflow of the ED might lead two EDs with similar resources and pa-
tient volumes to different solutions. Yet, the question is too important to simply ignore or
guess at. Staffing an ED has serious implications for its financial viability and for the
safety and quality of care it delivers to its patients. It is also a question that has profound
implications for the potential stresses and work-life balance issues that EPs and nurses
may face, because the need to provide coverage for the ED at all times of day, every day
of the year, imposes demands on their family life and circadian rhythms.
Thankfully, although we might not be able to create a perfect or exact answer to our

question, we can make some important estimations. In the process, we can find out
how to avoid several significant pitfalls that are commonly made by administrators
when allocating resources in the ED. As the statistician George Box observed, “all
models are wrong, but some are useful.”1
MODELING RESOURCE USE AND STAFFING
Averages Are Not Enough

A simpler, related question to how many EPs are needed to staff an ED is how many
nurses are needed to staff triage at a particular time. For most EDs, triage is a discrete
process that takes a fixed amount of time. That the process is discrete means that we
measure it in terms of individual patients, but for the purpose of modeling, we can also
use discrete in the sense that triaging a patient is a self-contained process. The full
patient evaluation conducted by an EP often contains many contingent stages,
such as waiting for laboratory tests or imaging. Conversely, the typical steps of triage,
such as identifying the patient, asking their chief complaint, obtaining vital signs, con-
ducting a brief examination, and assigning a priority score (eg, ESI, ATS, or CTAS), are
performed sequentially before seeing the next patient, and can be modeled as a single
time period.2–4

A commonsense approach is to compare the average number of patients who arrive
in the ED in a given period of time with the average number of patients that a nurse can
triage in the same period of time. This makes some assumptions about the human fac-
tors involved, because we might be inclined to underestimate how quickly nurses can
triage patients if some nurses can work faster under pressure for a period of time.
However, obtaining a representative average that takes into account busy and calmer
periods should help to even this out. Using this approach, an ED that averages 12 pa-
tients arriving per hour, where nurses can triage six patients per hour, would need two
nurses to staff triage at a given time.
According to this approach, the two nurses intrepidly staffing the triage station

should be ready to manage 12 patients per hour. Better yet, when the stars align
and exactly 12 patients per hour arrive, our model suggests that as each patient ar-
rives, one of the nurses will have just finished triaging the last arrival. Who would
have thought that creating the “no wait” ED could be so simple.
Anyone who has worked in an ED knows that the results of this model do not match

reality. However, it is difficult to explain exactly why this happens. It is tempting to
accuse the averages of the time to triage a patient and the number of patients per
hour of being misleading. Surely, our model hits a snag when the average underesti-
mates the number of patients arriving per hour, and the waiting time builds up because
during some hours the number of patients is higher than average, and perhaps there
are times when our nurses are going more slowly.
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Unfortunately, the averages are not really the problem; they remain an essential part
of creating a representative model of an ED. Instead, the problem is in how we use the
averages. We can make things even simpler, by imagining that in this ED, the average
number of patients is ironclad, so that there are always 12 patients arriving per hour, and
that the nurses always take 6 minutes to evaluate a patient. However, even in this imag-
inary ED, with triage staffed with two nurses, there will be times at which patients wait.
Rarely, theymaywait for a long time to be triaged. Even if our nurses become faster, or if
we add a third nurse, it is still likely that some of the patients will have to wait.

The Problem of Arrivals and Variation

Waits arise in our ED because of variations in the amount of time between when pa-
tients arrive. If patients arrive at regularly spaced intervals (Fig. 1A), then they are tri-
aged exactly as they arrive, and the arrivals perfectly match with the completion of the
last patient’s triage. However, variation in the amount of time between arrivals (Fig. 1B)
means that there are idle periods in which one or more of the nurses does not have a
new patient to triage, and unavoidable waiting periods in which a patient arrives while
multiple nurses are already busy conducting a triage assessment.
Unlike when taking the average number of arrivals over a period of time, these los-

ses of time do not even out. When a nurse is idle in triage and has no patient to see,
Fig. 1. (A) Regularly spaced arrivals; (B) Arrivals with typical variability.
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they might be able to do something useful with that time, such as taking a break, going
to the bathroom, or checking in with their colleagues. However, the only thing that they
cannot do with the time they spend waiting to see a new patient is to use it to make up
for future waits. There is no way to apply that time toward the patients who arrive when
the nurses are busy; the amount of time they spend waiting simply accumulates, and
can never be paid down.
When the variation between patient arrivals increases, the likelihood that patients

will wait grows, as does the average amount of time they will wait. Although adding
a third nurse at triage could certainly reduce these waits, doing so does not eliminate
the potential for waits; it simply reduces them, because there could always be four pa-
tients who arrive in quick succession.
We can continue this process further as we add additional nurses, but doing so

yields rapidly diminishing returns. Each additional nurse at triage is likely to spend a
larger portion of their time waiting for a patient, because they will only be needed if
a patient arrives while the preceding nurses are already busy. Using this strategy to
staff our imaginary ED, which always sees six new patients an hour, means that the
only way to ensure that patients never wait is to have six nurses at triage, one of
whom will never see a patient unless all six of this hour’s patients arrive in the same
10-minute period.
This becomes even less tenable once we start dealing with more realistic numbers

of patients. If our six patients per hour really represents the average of a range from 1
patient per hour to 13, the potential costs of overstaffing become more glaring. Hos-
pital management may want a “no wait” ED, but this is going to be a hard sell; we are
better off trying to find if we can limit the amount of waiting to a degree that is feasible
to staff and is still safe for our patients.
QUEUEING THEORY
What Is Queueing Theory?

Many of the pitfalls and tradeoffs that arise within these models are explained by
queueing theory. Queueing theory is a branch of applied mathematics that is used
to predict the behavior of lines (also known as queues), such as the length of a line
over time, and the average time one spends waiting in a line. Although much of mod-
ern queueing theory emerged from the work of the Dutch mathematician A.K. Erlang,
who used queueing models to predict the demand and use of telephone lines, it turns
out that many of these properties apply no matter what the line is for. Queueing theory
has been successfully applied across industries, streamlining services from
manufacturing to airlines to restaurant service.5–7

Within the context of the ED, the same methodology is applied to model the queues
for many different resources. Although there are slightly different assumptions that we
need to make based on the kind of resource that we are modeling, the ways that the
lines grow or shrink do not change. It does not matter whether the queues that we are
concerned with are for physical resources, such as a CT scanner or laboratory tests, or
for human resources, such as for registration clerks or for available nurses.
The mathematics involved in queueing analyses are sophisticated, but many of the

lessons gained from even simple queueing models are useful to a broad variety of ap-
plications. You do not need to know the intricate details of queueing theory to reap
many of its benefits. Furthermore, in day-to-day practice, many queueing models
are approximated through the use of computer simulations and other programs that
allow users to examine the behavior of underlying queues and the effects of changing
their parameters, but without requiring the user to do the calculations themselves.
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Little’s Law

One of the most elementary theorems of queueing theory is Little’s law.8 Little’s law
states that the average size of a queue is proportional to the average rate of arrivals
(usually referred to by the Greek letter l), and the amount of time that a person spends
in the queue.
L (average size of the queue) 5 l (effective arrival rate) �W (average length of stay)
If an ED has an average arrival rate of six patients per hour, and the average patient

has a length of stay of 3 hours, then Little’s law dictates that the average occupancy of
the ED will be 18 patients.7,9

Although Little’s law is a fairly simple and intuitive equation, it actually took many
years to prove conclusively. Little’s law is a useful starting point for a queueing anal-
ysis because the formula is agnostic to how arrivals are distributed. If the average
comes from patients being evenly distributed over time, or concentrated at any partic-
ular time interval (ie, if the patients mostly come at the end of the hour), then it still
holds. We can also use Little’s law for any portion of a larger system (we can apply
Little’s law to the ED directly, or we can apply it to any queue within the ED); it holds
equally to describe the average occupancy of the ED, the average number of patients
waiting for a CT scan, or any step of care that we choose.

Utilization

A direct result of Little’s law, which provides a helpful understanding of the demand for
a resource, is its utilization rate, commonly referred to by the Greek letter r. The utili-
zation rate is the average patient arrival rate (l) divided by the average service time (m)
for the resource. For instance, if a CT scanner receives four orders for CT scans per
hour, and it can perform five scans per hour, then r of the CT scanner.

l/m 5 r
is
4/5 5 0.8.

Although the utilization rate seems to only be a rearrangement of the terms from Lit-
tle’s law, it is useful because it provides a clear ratio of demand to capacity. If the uti-
lization rate exceeds 1 at any point in time, then a backlog is guaranteed to develop
and to continue getting worse. When accounting for increases in the variability of ar-
rivals and service times, the ratio of utilization at which waits begin to grow rapidly may
be considerably lower than one.

Kendall’s Notation and Basic Queueing Models

Individual queues, which are used to examine any process within the ED, are
frequently described using Kendall’s notation.5,10 Kendall’s notation, typically in the
form A/S/c, is a shorthand for describing the assumptions that underlie a queueing
model. The “A” describes the arrival process (the pattern in which we assume patients
arrive), “S” describes the service distribution (the pattern of how long it takes to pro-
vide a patient with a resource), and “c” refers to the number of servers (howmany units
of the resource we have). Fitting processes within the ED to these queueing models is
helpful because some of them have closed form solutions, formulas that can reliably
characterize how a process will perform over time.
A deterministic distribution, which has the notation “D,” describes a process that

occurs at a fixed rate. This is a reasonable description of some service distributions,
but is generally a poor model for an arrival process. As we saw with the task of staffing
triage, it is not particularly helpful to assume that patients arrive at a fixed rate.
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However, some resources come close to always taking the same amount of time, such
as a point-of-care blood glucose analyzer, which might be calibrated to take exactly
60 seconds for every sample. In Kendall’s notation, our initial example, in which pa-
tients arrived at a fixed rate, and were triaged by two nurses who always took the
same amount of time, would be known as a D/D/2 queue, because patients arrive
at a determined rate, are served at a determined rate, and there are two nurses
who provide the triage service.
A Markovian arrival process, which has the notation “M,” has been shown in several

studies to closely follow the arrival of the distribution of patient arrivals within EDs.11–13

The most basic version of this process, the Poisson process, describes the time until
the next patient arrives as an exponentially decreasing probability (Fig. 2). As a result,
the average time between patient arrivals is often the balance point between “bursty”
periods, where the interarrival times are short and several patients arrive in quick suc-
cession, and occasional long periods with no arrivals.
The simplest queue using this more rigorous model is the M/D/1 queue, which sig-

nifies patients arriving according to a Markovian arrival process, served by a single
resource that follows a deterministic distribution. This model gives us a direct formula
for the average time that a patient will need to wait in queue before they have access to
the resource, which is:

Waiting time 5 r / 2m (1-r)

If we imagine a single blood gas analyzer, which receives a new sample on average
every 6 minutes (average arrival time l 5 10 specimen arrivals per hour), and takes
2 minutes to perform its analysis (average service time m 5 30 specimens analyzed
per hour), with a utilization of r 5 1/3, then our formula suggests that a specimen
will sit for about 5 minutes before it is analyzed.
The M/M/1 and M/M/c queue models expand on this to reflect variation in the

amount of time it takes to deliver a service. This makes it a much more suitable model
for triage, because we can imagine that the average amount of time to perform triage
reflects some cases where the process is quick and straightforward (an ankle sprain),
virtually instantaneous (a patient with a prehospital ST-segment elevation myocardial
infarction alert who is triaged at the bedside), or potentially long (a patient requiring a
translator who cannot recall why they came to the ED). Accounting for this variation in
the service effectively doubles our estimated wait time:

Waiting time 5 r / m (1-r)
Fig. 2. The Poisson process graph.
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Returning to our initial example of triage, with patients arriving every 6 minutes
(l5 10 patient arrivals per hour), and two nurses who each take on average 5 minutes
to perform triage (m5 12 patients triaged per hour), leading to a utilization of r5 10/12,
then our formula predicts that patients will wait an average of 25 minutes before they
begin being triaged. If an extra patient comes every hour, our utilization increases to
r 5 11/12, and our average wait time before being triaged jumps to a painful
66 minutes.
As we approach a utilization of 1 in theM/M/cmodel, the average wait grows quickly

(Fig. 3), without an appreciable bound. That the point of inflection in the curve shifts as
the number of a resource increases is a direct result of the degree to which utilization
changes.14 If there are three nurses at triage rather than two, then every additional pa-
tient who arrives represents a proportionally smaller increase in utilization. Thus, when
allocating a resource based on its expected utilization, it is extremely important to pay
attention not only to the average utilization of the resource, but to how large surges in
demand can be.
The M/D/1 and M/M/c models can also be used to calculate the likelihood of a

certain number of patients being within a queue at a point in time, and the probability
that a patient in the queue will wait for more or less than a specific amount of time.

RELATING QUEUEING THEORY TO PRACTICE
Ways to Get Around Increased Utilization

Many EDs experience periods when utilization exceeds a ratio of 1, and waits begin to
spiral out of control. At those times, waits are typically reduced in a few different ways.
The most problematic one is that initiated by patients: leaving without being seen.
Although there are many factors that affect patients’ decision to leave without being
seen, the rate at which they do so is modeled using a queueing formula based on ser-
vice rates in the ED as a whole.15 Although the previously mentioned queueing for-
mulas assume no upper limit on the number of potential patients waiting, more
complex models exist that can account for the effects of limited capacity, and pa-
tients’ decreasing willingness to wait as delays mount.
Some EDs have successfully addressed burgeoning waits by allowing flexible staff-

ing patterns and care areas. In many EDs, some of these staffing policies exist on an
informal basis. If triage is swamped, and few patients are being brought into treatment
areas, more nursesmay go to triage to help relieve their colleagues. In other EDs, dedi-
cated fast track areas can be opened at periods of high demand, particularly if there
are times of day in which there are higher volumes of patients with low-acuity
presentations.4,15–17
Fig. 3. Average wait time in the M/M/c model.
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Similarly, some EDs have experimented with having lower-acuity patients schedule
appointments within fast-track areas. Although the concept of an ED “appointment”
may seem like a contradiction in terms, for urgent, but not necessarily emergent con-
ditions that are not easily handled in a primary care office (eg, lacerations), this prac-
tice has merit. From a queueing theory standpoint, having patients schedule
appointments, even if it is only an hour or two in advance, effectively turns their arrivals
into a deterministic process, which can substantially reduce the amount of time they
ultimately wait in queue.

A Successful Application of Queueing Theory in the Emergency Department

Perhaps the most successful application of queueing theory to ED operations was un-
dertaken by Green and colleagues,16 who used a series of M/M/c models to match the
number of EPs on staff in a community hospital ED to match arrival rates at different
times of day, factoring in a delay between the peak arrival rate in a given time period
and the point at which it reached peak congestion. The study found that on days on
which there was no change in the total number of physician hours, and hours were
simply redistributed to better align with demand, there were substantial decreases
in the number of patients who left without being seen, despite an increase in the overall
volume of patients seen.

Can Getting Rid of the Waiting Room Speed up the Emergency Department?

The queueing models provide a mechanistic explanation for why waiting cannot be
meaningfully eliminated in the ED, and unless an ED plans to let patients waiting to
be seen line up outside, some kind of waiting room must remain. However, to the
extent that “eliminating the waiting room,” often refers to posting a physician at triage,
it is an effective means of decreasing rates of patients leaving without being seen, and
can decrease patients’ overall length of stay.17–19 Furthermore, the time patients
spend in the waiting room before seeing a physician is often the kind of delay that
they find most intolerable, making reducing this time a priority, even if overall delays
are difficult to reduce.20–22

Posting a physician at triage is most appropriate for EDs that identify significant de-
lays between patients completing triage and are brought back to a treatment space
and evaluated by a physician. This is because of delays in patient transport, but is
most commonly caused by crowding; a patient cannot be brought back if there is no-
where to bring them. This scenario is identified quickly by comparing the utilization of
EPs relative to the utilization of triage. If the utilization of EPs is low, then moving the
physician evaluation earlier in the process is probably worthwhile. If the utilization of
EPs is already high, then moving physicians into triage may still reduce the left without
being seen rate, but may not affect or even worsen some patients’ length of stay.

Applying Queueing Theory to Everyday Emergency Department Operations

The performance of the ED itself reflects the interaction of multiple interlocking
queues. A patient’s evaluation and treatment will progress through triage and physi-
cian assessment, and can end there, or it can depend on several more queues,
such as for laboratory tests, a CT scan, and an inpatient bed. The equations for the
M/D/1 and M/M/c queues are powerful tools that can be used to analyze these pro-
cesses and locate potential bottlenecks, which can cause a decrease in the utilization
of processes elsewhere in the system. Multiple free online tools are available for
analyzing basic queue models, including average waiting times and queues’ probable
occupancy (eg, https://www.supositorio.com/rcalc/rcalclite.htm and https://www.
edqueue.org).

https://www.supositorio.com/rcalc/rcalclite.htm
https://www.edqueue.org
https://www.edqueue.org
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However, for the ED as a whole, no single set of equations can reliably predict the
effects of changing a process on the system itself. Instead, software simulations are
used to factor in the behavior of multiple queues over many trials and examine the ef-
fects of individual changes over time. Often, the process of improving the movement
of a single queue within the ED, such as laboratory testing or imaging, can have sig-
nificant downstream effects that simulation can effectively predict.23–26 Simulation
frameworks for queueing models are available as bespoke commercial applications
(eg, ARENA, ProSim),27 through packages for commercial software (eg, MATLAB),
and as libraries for open-source software (eg, for C11 and Python).28 Packages
also exist for performing queueing analyses and simulations using commonly available
spreadsheet software (eg, Microsoft Excel).
The prospect of modeling the operations of an entire EDmay seem daunting, but the

potential payoffs from applying queueing theory are immense. Occasionally a single
bottleneck is critical to increased waits throughout the ED, even for patients who do
not require its resources.23 Although there exists no single solution to streamlining
an ED, the application of queueing theory holds keys to identifying the most valuable
targets for improvement, which remain unexplored in practice, despite a growing liter-
ature of simulation frameworks.29–31 Whether these gains will ever be realized, howev-
er, remains in the hands of individual administrators.
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