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Abstract
Background: Antibody-dependent enhancement (ADE) of 
dengue virus (DENV) infection is identified as the main risk 
factor of severe dengue diseases. The underlying mecha-
nisms leading to severe dengue fever remain unclear. Meth-
ods: THP-1 cells were treated with an autophagy inducer (ra-
pamycin) or inhibitor (3-methyladenine [3-MA]) and infect-
ed with DENV and DENV-ADE. In order to investigate the 
expression profile of autophagy-related genes in DENV-ADE 
and DENV direct infection of THP-1 cells, the PCR array in-
cluding 84 autophagy-related genes was selected to detect 
the expression of related genes, and then heat map and clus-
tergram were established by analysis software to compare 
the expression differences of these genes between the 
DENV-ADE and DENV direct infection. Results: Autophagy-
inducing complex related genes ATG5 and ATG12 were up-
regulated, and autophagosomes were also observed by 
transmission electron microscopy among DENV-ADE- and 

DENV-infected THP-1 cells, which indicated that autophagy 
was involved in dengue infection. The results show that 
3-MA has a significant inhibitory effect on ATG12 in THP-1 
cells; on the contrary, the expression of ATG12 was upreg
ulated in THP-1 cells that were treated with rapamycin.  
The autophagy-related genes ESR1, INS, BNIP3, FAS, TGM2, 
ATG9B, and DAPK1 exhibited significant differences be-
tween DENV-ADE and DENV direct infection groups. Conclu-
sion: In the present study, an additional mechanism of au-
tophagy was inhibited by the autophagy inhibitor (3-MA) in 
DENV- and DENV-ADE-infected THP-1 cells. Our finding pro-
vided a clear link between autophagy and antibody-en-
hanced infection of DENV. © 2020 S. Karger AG, Basel

Introduction

Dengue viruses (DENVs) are transmitted by mosqui-
toes and cause dramatic public health issues in subtropi-
cal and tropical areas of the world, causing >50 million 
people to be infected annually, especially in Latin Amer-
ica and Southeast Asia [1]. Although the majority of these 
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infections are relatively mild febrile diseases or asymp-
tomatic, significant consequences can develop possibly 
leading to the life-threatening dengue shock syndrome 
(DSS) or dengue hemorrhagic fever (DHF) [2, 3].

There are 4 antigenically related but distinct serotypes 
termed DENV-1, DENV-2, DENV-3, and DENV-4 of 
DENVs, and each serotype comprises many distinct gen-
otypes [4]. The mechanisms of DENV pathogenesis, par-
ticularly severe dengue fever of DHF/DSS, remain un-
clear with an increasing number of controversial and 
contradictory findings [5]. The antibodies directed 
against a specific DENV serotype have lifelong protective 
effect on this specific DENV serotype; however, they do 
not cross-protect against the other serotypes [6, 7]. Fur-
thermore, data from numerous clinical and in vitro ex-
periments showed that the DSS/DHF phenomenon 
mainly comes from secondary infection of the heterolo-
gous serotype of DENVs [8–10]. Mechanistically, anti-
body-dependent enhancement (ADE) may be involved in 
the immunopathogenesis of severe dengue fever of DSS 
and DHF. In addition, the pre-existing heterotypic anti-
body via Fc-receptors triggers ADE among heterotypic 
DENV infection [8, 11, 12]. Autophagy is an evolution-
arily ancient pathway that has been conserved in almost 
all eukaryotic cells under the conditions of nutrient star-
vation, environmental stresses, and infection by a patho-
gen. Autophagosomes are formed from portions of the 
cytoplasm or small cells that were sequestered into dou-
ble-membrane vesicles and fuse with the lysosome to 
form an autolysosome [13, 14]. The autophagic process 
induced by many RNA viruses in mammalian cells pro-
motes their infection through the membrane scaffold for 
RNA replication among poliovirus, mouse hepatitis vi-
rus, DENVs, and rhino viruses [15–17]. Our previous 
study showed that increased autophagy promoted viral 
RNA replication in DENV-ADE-infected K562 cells [18].

In this study, THP-1 cells were used to establish a 
DENV-ADE and DENV direct infection model. Then, 
the QIAGEN chip was used to detect the difference of ex-
pression of autophagy-related genes. The analysis soft-
ware of heat map and clustergram was used to compare 
the expression profile of autophagy-related genes be-
tween DENV-ADE and DENV direct infection.

Materials and Methods

Cell Culture and Viruses
Human acute monocytic leukemic (THP-1) cells and Aedes al-

bopictus mosquito (C6/36) cells were kept in the Institute of Med-
ical Biology, Chinese Academy of Medical Sciences. Both cells 

were cultured in the RPMI-1640 medium (1640, BI) supplemented 
with 10% fetal bovine serum, 100 U/mL penicillin, and 100 μg/mL 
streptomycin and cultured in an incubator at 37 or 28°C in a hu-
midified atmosphere containing 5% CO2.

DENV serotype 3 (DENV-3) was isolated from a severe dengue 
fever patient in Xishuangbanna Dai Autonomous Prefecture Peo-
ple’s Hospital in 2013, and it was propagated in C6/36 cells. DENV-
3 was confirmed by genome sequencing (gb: KR296743). Written 
consent was obtained from dengue fever patients. The study pro-
tocol was approved by the Institutional Ethics Committee (Insti-
tute of Medical Biology, Chinese Academy of Medical Sciences, 
and Peking Union Medical College) in accordance with the Dec-
laration of Helsinki for Human Research of 1974 (last modified in 
2000).

DENV-3 Direct and DENV-3-ADE Infection of THP-1 cells
For the experimental group of DENV, THP-1 cells were incu-

bated with DENV-3 at a multiplicity of infection of 5 (MOI 5) and 
then incubated in a CO2 incubator for 24 h. For the experimental 
group of DENV-ADE, it was performed as described previously 
[18]. DENV-2 anti-prM glycoprotein monoclonal antibody 
(AB41473; Abcam) was selected to establish the DENV-3-ADE 
model. In brief, 5 MOI of DENV-3 was mixed with the antibody 
dilutions (1:64) and placed at 37°C for 1 h with 5% CO2 to allow 
the formation of an immune complex. The DENV-antibody im-
mune complex was then added into 2 × 105 THP-1 cells in 24-well 
plates and incubated for 24 h at 37°C with 5% CO2. Then, the cells 
were washed 3 times with PBS to remove the remaining DENV-
antibody complex followed by suspending in 1.5 mL of the main-
tenance medium per well for an additional time. THP-1 cells cul-
tured in the RPMI-1640 medium (1640, BI) supplemented with 
10% fetal bovine serum, 100 U/mL penicillin, and 100 μg/mL 
streptomycin served as the mock group. For treatment of cells, 
THP-1 cells were incubated with 9-mM autophagy inhibitor 
3-methyladenine (3-MA; Sigma-Aldrich) and 150-nM autophagy 
inducer rapamycin (Sangon) for 24 h.

RNA Extraction and Autophagy Genes Detection
Protected RNA present in the THP-1 supernatant was extract-

ed according to the manufacturer’s protocol of the QIAGEN RNA 
kit (Qiagen, Hilden, Germany #330231). Contaminating genomic 
DNA was removed by treatment with RNase-free DNase I (QIA-
GEN). The extracted RNA was used for ATG12 quantification and 
QIAGEN chip detection through quantitative PCR analysis. Real-
time PCR of the sample and standard was conducted using SYBR 
Green I Mastermix (Applied Biosystems) on a Bio-Rad CFX96 
thermocycler. Amplification conditions were 95°C for 30 s and 40 
cycles of 95°C for 5 s, 55°C for 20 s, and 72°C for 30 s.

Observation of Autophagy by TEM
THP-1 cells were observed by TEM at 24 h after infection or 

treatment by DENV or DENV-ADE and 3-MA or rapamycin, re-
spectively. The sample was placed in 2.5% glutaraldehyde (0.2 
mol/L sodium cacodylate buffer preparation) for 2 h, and then ul-
trathin slices were observed through the Hitachi transmission elec-
tron microscope H-7650. The magnification rate was 500 times.

Autophagy PCR Arrays and Data Analysis
The expression profile of autophagy-related genes was detected 

using the RT2 profilerTM PCR array (human autophagy, QIAGEN) 
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Table 1. Detailed information of QIAGEN chip autophagy genes and functions

Po Ref seq Symbol Description

A01 NM_005163 AKT1 V-akt murine thymoma viral oncogene homolog 1
A02 NM_017749 AMBRA1 Autophagy/beclin-1 regulator 1
A03 NM_000484 APP Amyloid beta (A4) precursor protein
A04 NM_031482 ATG10 ATG10 autophagy related 10 homolog (S. cerevisiae)
A05 NM_004707 ATG12 ATG12 autophagy related 12 homolog (S. cerevisiae)
A06 NM_017974 ATG16L1 ATG16 autophagy related 16-like 1 (S. cerevisiae)
A07 NM_033388 ATG16L2 ATG16 autophagy related 16-like 2 (S. cerevisiae)
A08 NM_022488 ATG3 ATG3 autophagy related 3 homolog (S. cerevisiae)
A09 NM_052936 ATG4A ATG4 autophagy related 4 homolog A (S. cerevisiae)
A10 NM_178326 ATG4B ATG4 autophagy related 4 homolog B (S. cerevisiae)
A11 NM_178221 ATG4C ATG4 autophagy related 4 homolog C (S. cerevisiae)
A12 NM_032885 ATG4D ATG4 autophagy related 4 homolog D (S. cerevisiae)
B01 NM_004849 ATG5 ATG5 autophagy related 5 homolog (S. cerevisiae)
B02 NM_006395 ATG7 ATG7 autophagy related 7 homolog (S. cerevisiae)
B03 NM_024085 ATG9A ATG9 autophagy related 9 homolog A (S. cerevisiae)
B04 NM_173681 ATG9B ATG9 autophagy related 9 homolog B (S. cerevisiae)
B05 NM_004322 BAD BCL2-associated agonist of cell death
B06 NM_001188 BAK1 BCL2-antagonist/killer 1
B07 NM_004324 BAX BCL2-associated X protein
B08 NM_000633 BCL2 B-cell CLL/lymphoma 2
B09 NM_138578 BCL2L1 BCL2-like 1
B10 NM_003766 BECN1 Beclin 1, autophagy related
B11 NM_001196 BID BH3 interacting domain death agonist
B12 NM_004052 BNIP3 BCL2/adenovirus E1B 19-kDa interacting protein 3
C01 NM_004346 CASP3 Caspase 3, apoptosis-related cysteine peptidase
C02 NM_001228 CASP8 Caspase 8, apoptosis-related cysteine peptidase
C03 NM_004064 CDKN1B Cyclin-dependent kinase inhibitor 1B (p27, Kip1)
C04 NM_000077 CDKN2A Cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)
C05 NM_000086 CLN3 Ceroid lipofuscinosis, neuronal 3
C06 NM_001908 CTSB Cathepsin B
C07 NM_001909 CTSD Cathepsin D
C08 NM_004079 CTSS Cathepsin S
C09 NM_003467 CXCR4 Chemokine (C-X-C motif) receptor 4
C10 NM_004938 DAPK1 Death-associated protein kinase 1
C11 NM_018370 DRAM1 DNA-damage regulated autophagy modulator 1
C12 NM_178454 DRAM2 DNA-damage regulated autophagy modulator 2
D01 NM_004836 EIF2AK3 Eukaryotic translation initiation factor 2-alpha kinase 3
D02 NM_182917 EIF4G1 Eukaryotic translation initiation factor 4 gamma, 1
D03 NM_000125 ESR1 Estrogen receptor 1
D04 NM_003824 FADD Fas (TNFRSF6)-associated via death domain
D05 NM_000043 FAS Fas (TNF receptor superfamily, member 6)
D06 NM_000152 GAA Glucosidase, alpha; acid
D07 NM_007278 GABARAP GABA(A) receptor-associated protein
D08 NM_031412 GABARAPL1 GABA(A) receptor-associated protein-like 1
D09 NM_007285 GABARAPL2 GABA(A) receptor-associated protein-like 2
D10 NM_004964 HDAC1 Histone deacetylase 1
D11 NM_006044 HDAC6 Histone deacetylase 6
D12 NM_004712 HGS Hepatocyte growth factor-regulated tyrosine kinase substrate
E01 NM_001017963 HSP90AA1 Heat shock protein 90-kDa alpha (cytosolic), class A member 1
E02 NM_006597 HSPA8 Heat shock 70-kDa protein 8
E03 NM_002111 HTT Huntingtin
E04 NM_000619 IFNG Interferon, gamma
E05 NM_000618 IGF1 Insulin-like growth factor 1 (somatomedin C)
E06 NM_000207 INS Insulin
E07 NM_001145805 IRGM Immunity-related GTPase family, M
E08 NM_005561 LAMP1 Lysosomal-associated membrane protein 1
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at 24 h. In brief, the following components were mixed in a 5-mL 
tube or a multichannel reservoir: 550 μL of 2 × SuperArray PCR 
master mix, 102 μL of the diluted first-strand cDNA synthesis re-
action, and 448 μL of ddH2O. The cocktails were added to the PCR 
array. Real-time PCR detection was performed under the follow-
ing thermal cycling conditions: 95°C for 10 min; 40 cycles of 95°C 
for 15 s and 60°C for 1 min. The results were analyzed by the ΔΔCt 
method. The included autophagy genes and their function infor-
mation are listed in Table 1.

Results

The Enhancement of DENV-ADE Infection Was 
Dependent on the Final Concentration of Anti-DENV 
prM Antibody
The direct infection model was established in THP-1 

cells through incubating with DENV-3 at an MOI of 5. 
Meanwhile, DENV-3 and anti-prM antibody (AB41473; 
Abcam) were selected to establish the DENV-3-ADE 
model. The enhancement of DENV-ADE infection was 

Table 1 (continued)

Po Ref seq Symbol Description

E09 NM_181509 MAP1LC3A Microtubule-associated protein 1 light chain 3 alpha
E10 NM_022818 MAP1LC3B Microtubule-associated protein 1 light chain 3 beta
E11 NM_001315 MAPK14 Mitogen-activated protein kinase 14
E12 NM_002750 MAPK8 Mitogen-activated protein kinase 8
F01 NM_004958 MTOR Mechanistic target of rapamycin (serine/threonine kinase)
F02 NM_003998 NFKB1 Nuclear factor of kappa light polypeptide gene enhancer in B cells 1
F03 NM_000271 NPC1 Niemann-Pick disease, type C1
F04 NM_002647 PIK3C3 Phosphoinositide-3-kinase, class 3
F05 NM_002649 PIK3CG Phosphoinositide-3-kinase, catalytic, gamma polypeptide
F06 NM_014602 PIK3R4 Phosphoinositide-3-kinase, regulatory subunit 4
F07 NM_006251 PRKAA1 Protein kinase, AMP-activated, alpha 1 catalytic subunit
F08 NM_000314 PTEN Phosphatase and tensin homolog
F09 NM_130781 RAB24 RAB24, member RAS oncogene family
F10 NM_000321 RB1 Retinoblastoma 1
F11 NM_005873 RGS19 Regulator of G-protein signaling 19
F12 NM_003161 RPS6KB1 Ribosomal protein S6 kinase, 70 kDa, polypeptide 1
G01 NM_000345 SNCA Synuclein, alpha (non-A4 component of amyloid precursor)
G02 NM_003900 SQSTM1 Sequestosome 1
G03 NM_000660 TGFB1 Transforming growth factor, beta 1
G04 NM_004613 TGM2 Transglutaminase 2 (C polypeptide, protein-glutamine-gamma-

glutamyltransferase)
G05 NM_153015 TMEM74 Transmembrane protein 74
G06 NM_000594 TNF Tumor necrosis factor
G07 NM_003810 TNFSF10 Tumor necrosis factor (ligand) superfamily, member 10
G08 NM_000546 TP53 Tumor protein p53
G09 NM_003565 ULK1 Unc-51-like kinase 1 (C. elegans)
G10 NM_014683 ULK2 Unc-51-like kinase 2 (C. elegans)
G11 NM_003369 UVRAG UV radiation resistance-associated gene
G12 NM_017983 WIPI1 WD repeat domain, phosphoinositide interacting 1
H01 NM_001101 ACTB Actin, beta
H02 NM_004048 B2M Beta-2-microglobulin
H03 NM_002046 GAPDH Glyceraldehyde-3-phosphate dehydrogenase
H04 NM_000194 HPRT1 Hypoxanthine phosphoribosyltransferase 1
H05 NM_001002 RPLP0 Ribosomal protein, large, P0
H06 SA_00105 HGDC Human genomic DNA contamination
H07 SA_00104 RTC Reverse transcription control
H08 SA_00104 RTC Reverse transcription control
H09 SA_00104 RTC Reverse transcription control
H10 SA_00103 PPC Positive PCR control
H11 SA_00103 PPC Positive PCR control
H12 SA_00103 PPC Positive PCR control
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dependent on the final antibody concentration. Anti-
DENV-2 prM antibody exhibited an enhancement peak 
at an antibody dilution of 1/64, and this was concordant 
with the results found in Fcγ R-expressing K562 cells 
[18].

Autophagy Complex-Related Gene ATG12 in THP-1 
Cells
The expression of the autophagy-related gene ATG12 

of THP-1 cells was increased in the DENV, DENV-ADE, 
and rapamycin treatment groups 24 h after infection or 
treatment. On the contrary, it was downregulated in the 
3-MA group 24 h after treatment. The expression of 
ATG12 in THP-1 cells was detected by RT-PCR. The re-
sults showed that 3-MA had a significant inhibitory effect 
on ATG12 expression in THP-1 cells (Fig. 1).

Autophagosome Was Detected in THP-1 Cells
To further confirm that autophagy could be induced 

by DENV infection, double-membrane autophagosome-
like vesicles were observed through TEM in the THP-1 

cells. The double-membrane vesicle defined as an au-
tophagosome vesicle was found in autophagic effected 
THP-1 cells. A similar double-membrane vesicle (au-
tophagosome vesicle) was promoted and easily observed 
in DENV-anti-prM, DENV direct infection, and rapamy-
cin-treated THP-1 cells (Fig. 2); the autophagy process 
was blocked by the autophagy inhibitor 3-MA in THP-1 
cells (Fig. 2).

Global Analysis of Autophagy Gene Expression 
Patterns
To explore the expression patterns of autophagy rele-

vant genes in THP-1 cells during the DENV direct infec-
tion and DENV-ADE infection, global cellular autophagy 
relevant gene expression patterns were compared with 
those of the control group by applying the PCR Array Ex-
cel data analysis template (located at: www.SABiosciences.
com/pcrarraydataanalysis.php). Subsequently, 3 groups 
of differentially expressed autophagy genes were summa-
rized. Then, we used QIAGEN online software to draw the 
autophagy-related gene cluster analysis chart (Fig. 3), and 
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this figure can intuitively show the expression patterns of 
84 genes. The expression profile of autophagy genes was 
changed after DENV-3 direct and DENV-3-ADE infec-
tion of THP-1 cells (Fig. 3).

The hierarchical cluster of the differentially expressed 
autophagy genes was generated by the QIAGEN online 
analysis site in THP-1 cells infected with DENV and 
DENV-ADE. The hierarchical cluster provided the ex-
pression differences between the selected groups of each 
gene in the array layout. The results showed that the au-
tophagy genes were significantly increased among the 
DENV-ADE group compared with DENV directly in-
fected THP-1 cells, and there were obvious differences in 
the autophagy gene expression pattern between DENV- 
and DENV-ADE-infected THP-1 cells. Besides, the up-
regulation and downregulation of autophagy gene ex-
pression were significantly different in the THP-1 cells 
after 24-h culture (Fig. 3).

3D Display of the Results of Autophagy PCR Array
Through the online analysis template, located at www.

ABiosciences.com/pcrarraydataanalysis.php, the results 
of 3D display of the autophagy chip were generated by the 
PCR Array Data analysis tool. 3D map of autophagy-re-
lated genes showed the different expression profiles in 
DENV-ADE- and DENV-infected THP-1 cells, and 

THP-1 cells of the basic culture medium were set as the 
control group (Fig. 4).

The Gene Expression of DENV- and  
DENV-ADE-Infected THP-1 Cells
Only the ESR1 gene was downregulated in the group 

of DENV directly infected THP-1 cells; nevertheless, 6 
genes including INS, BNIP3, FAS, TGM2, ATG9B, and 
DAPK1 were upregulated among the group of DENV-
ADE. It is worth noting that the expression of INS had 
a distinct differential expression in the DENV-ADE 
group. These results suggested that autophagy-regulat-
ed gene expression was facilitated by DENV and DENV-
ADE infection of THP-1 cells, and autophagy enhance-
ment promoted the replication of DENV in THP-1 cells 
(Fig. 4).

Discussion

THP-1 cell line was widely used for the research of the 
infection mechanism of DENV-ADE and DENV. The au-
tophagy was initiated under the condition of starvation 
or pathogen infection [14]. The regulation mechanism 
between autophagy and viral infection is different be-
tween different viruses [9, 15, 18–24].
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It has been reported that DENV infection can mediate 
autophagy [25, 26]. Previous studies suggested that 
DENV uses autophagy for DENV replication in the 
AG129 mouse model and the THP-1 cell line, but not in 
the U937 cell line [27–31]. The degradation of lipid drop-
lets was also increased during DENV-2 infection [32, 33].

For the function of autophagy in DENV-ADE infec-
tion, DAK and ATG5-ATG12 were activated and inhib-
ited the production of IFN and then induced the expres-
sion of IL-10, thus inhibiting the IFN-mediated antiviral 
pathway [34, 35]. In this study, we demonstrated another 
possible mechanism of autophagy induced by rapamycin, 
DENV, and DENV-ADE. Our finding provided a clear 
link between autophagy and DENV-ADE infection. Giv-
en the importance of DENV-ADE for life-threatening 
DSS or DHF, the results of this study increased our knowl-
edge about the complex relationship between severe den-
gue fever and autophagy and provided useful information 
for development of vaccine and therapeutic drugs.
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