Big data in dermatology: Publicly available health care databases for population health research Raghav Tripathi, MPH, a,b Rishabh S. Mazmudar, BS, b Konrad D. Knusel, MS, b Jeremy S. Bordeaux, MD, MPH, a,b and Jeffrey F. Scott, MD Cleveland, Obio, and Baltimore, Maryland ealth care databases are used in population health research to gain insights into diseases, treatments, outcomes, and disparities. Using them to answer hypothesis-driven research questions can be difficult. We aimed to describe best practices for navigating publicly available health care databases in dermatology. We considered "publicly available" to include databases that any credentialed researcher can access with or without an associated fee. We focused on national databases in the United States. State-specific databases and databases available only to institutional members or by special permission were not included. We also included a few examples of the most prominent international databases for context. Characteristics of publicly available databases commonly used in dermatology and representative studies published in the Journal of the American Academy of Dermatology are provided in Table I. ## **STUDY DESIGN** The first step when embarking on a population health research project using a publicly available health care database is to select the most appropriate database to answer a hypothesis-driven research question. A number of factors influence the choice of database, including the study population, exposure and predictor variables, primary outcomes, and analytic strategy (Table II). A statistician should be involved throughout all stages of research to avoid misrepresentation or inappropriate analysis of data. A thorough statistical plan is critical to avoid "fishing" for statistically significant results. Second, the specific population represented by a data set should be carefully noted to define the scope of the research question, develop appropriate conclusions, and identify avenues for future research. For example, many data sets incorporate weighting and stratification schema to account for the complex sampling procedures required to represent a broader population. The analytic strategy should also consider the effect of changes in sampling methods over time on the representation of the data set. #### DATA ANALYSIS When data analysis is approached, systematic data loss caused by the sampling procedures used should be evaluated. Although missing and miscoded data do not necessarily invalidate analyses, researchers should consider the extent of data completeness and pattern of data skew when interpreting results. It is common to use a proxy variable when the desired data points do not exist (eg, receipt of different treatments as a proxy for disease severity). When possible, proxy variables for particular diagnoses should be validated to help establish the proxy's accuracy in representing the intended outcome. Similarly, outcomes and exposures should be validated when possible to precisely interpret data and draw appropriate conclusions. Moreover, understanding the performance metrics and accuracy of variable definitions is important in ensuring that conclusions are accurate and justified. When applicable, the sensitivity, specificity, positive predictive value, and negative predictive value of codes and algorithms should be determined in lieu of manual review of health records (which is not possible with publicly available health care databases).³² In particular, database studies often present incomplete information on confounding From Case Western Reserve University School of Medicine, Department of Dermatology, Cleveland^a; University Hospitals Cleveland Medical Center, Department of Dermatology^b; and Johns Hopkins University School of Medicine, Department of Dermatology, Baltimore.^c Funding sources: None. Conflicts of interest: None disclosed. Reprints not available from the author(s). Correspondence to: Raghav Tripathi, MPH, Department of Dermatology, University Hospitals Cleveland Medical Center, Lakeside 3500, 11100 Euclid Ave, Cleveland, OH 44106. E-mail: raghav.tripathi@case.edu. J Am Acad Dermatol 2020;83:1546-56. 0190-9622/\$36.00 © 2020 by the American Academy of Dermatology, Inc. https://doi.org/10.1016/j.jaad.2020.04.145 **Table I.** Characteristics of publicly available health care databases commonly used in dermatology¹⁻⁵ | Database
curator* | Data set | Available
years | Sampling
method | Population represented | Structure
of data [†] | Prerequisites
for access [‡] | Cost [§] | Approximate
size | Study
examples
in JAAD | |---|---|---|---|---|--|--|--|---|---| | Healthcare
Cost
and
Utilization
Project | NIS,
KID | 1988—present
(NIS),
1997—present
(KID;
every 3 y) | Stratified sample
of national
discharge data | Adult and pediatric inpatients | Identity variable: discharge code Sample outcomes: length of stay, cost of care | Purchase,
online
training | \$160 to \$1,000/y
(student
discount
available) | 7 million hospital
stays each
year;
weighted,
>20% of all
inpatients | The national
burden of
inpatient
dermatology
in adults ² | | | National
Emergency
Department
Sample | 2006—present | Stratified sample
of national ED
discharge data | ED discharges | Identity variable: discharge code Sample outcomes: cost of care, disposition | Purchase,
online
training | \$500 to \$1,000/y
(student
discount
available) | >30 million ED
visits annually;
weighted, >20%
of all ED visits | Financial burden
of emergency
department
visits for atopic
dermatitis
in the
United States ³ | | | National
Readmissions
Database | 2010—present | Stratified sample
of national
discharge
data for
hospital
readmissions | Hospital
readmissions | Identity variable: discharge code Sample outcomes: readmission rates and costs | Purchase,
online
training | \$500 to \$1,000/y
(student
discount
available) | 18 million
discharges
annually;
>58.2% of
hospital stays | Dermatology-
specific and
all-cause
30-day and
calendar-year
readmissions
and costs for
dermatologic
diseases from
2010 to 2014 ⁴ | | National
Cancer
Institute | SEER | 1973—present | Demographic and cancer data from national cancer registries (eg, tumor morphology, primary site, treatment) | Population -based cancer registries covering 34.6% of the US population | Identity variable:
individual
patient code
Sample outcomes:
survival,
treatment
modality | Online
training | None | >10 million
malignant
and in situ
cases | Incidence and
survival of
sebaceous
carcinoma
in the
United States ⁵ | | | Health
Information
National
Trends
Survey | 2003—present;
interrupted | Telephone
survey of
adults among
the general
population | Nationally
representative | Identity variable: individual survey respondent code Sample outcomes: health behaviors, health literacy | None | None | ≈ 3,000 to 6,000 participants annually | Rural-urban differences in behaviors to prevent skin cancer: an analysis of the Health Information National Trends Survey ⁶ | Table I. Cont'd | | | | | | | | | | Study | |----------|---|----------------|--|---|---|---|--|--|---| | Database | | Available | Sampling | Population | Structure | Prerequisites | | Approximate | examples | | curator* | Data set | years | method | represented | of data [†] | for access [‡] | Cost | size | in JAAD | | CMSII | Medicare
Provider
Utilization
and Payment
Data Part D
(Prescriber) | 2012—present | Physician-level
prescriber
billing data | Physicians
serving patients
with Medicare
and Medicaid | Identity variable: NPI/name Sample outcomes: prescription rates and expenditure | None | None | All individual
providers
paid under
Medicare
programs | Trends in Medicare spending on topical immunomodulators and chemotherapies ⁷ | | | Medicare Provider Utilization and Payment Data Part A (Inpatient) | 2004—present | Medicare
inpatient
claims data | Inpatient Medicare
claims | Identity variable:
claims
Sample outcomes:
expenditures,
procedures | None | None | All Medicare
Part A claims | Biologic therapy
adherence,
discontinuation,
switching, and
restarting among
patients with
psoriasis in the
US Medicare
population ⁸ | | | Medicare Provider Utilization and Payment Data Part B (Outpatient) | 2012—present | Medicare
outpatient
claims data | Outpatient
Medicare claims | Identity variable:
claims
Sample outcomes:
expenditures,
procedures | None | None | All Medicare
Part B claims | Trends in phototherapy utilization among Medicare beneficiaries in the United States, 2000 to 2015 ⁹ | | | SEER-Medicare | 1991 – present | Linked SEER and Medicare claims data of clinical, demographic, and death information for cancer patients | Population-based
cancer registries
covering 34.6%
of the US
population | Identity variable:
individual
patient code
Sample outcomes:
survival, stage,
and diagnosis | Approved research
proposal,
purchase,
online
training | \$60 to \$260/
y for each
data file
(entire
database
cannot be
acquired) | >10 million
malignant
and in situ
cases | Differences in
melanoma
outcomes
among Hispanic
Medicare
enrollees ¹⁰ | | | Open
Payments | 2013—present | Payments and
transfers of value
between
manufacturers
(drug/medical
device companies)
and physicians and
teaching hospitals | All payments
directly or
indirectly to
physicians and
teaching
hospitals | Identity variable:
NPI/name
Sample outcomes:
fees/honoraria | None | None | All payments
made to
physicians
and teaching
hospitals
(>11 million
records, \$9
billion total) | Analysis of conflicts of interest in pharmaceutical payments made to Food and Drug Administration physician advisers after dermatologic drug approval ¹¹ | | | Medicaid Pharmacy
Pricing Database | 2012—present | Surveys of invoice
prices for
prescription | Nationally representative | ldentity variable:
individual
drug | None | None | 2,000—2,500
pharmacies | Pharmacy costs
of specialty
medications | | | | | medications from
retail community
pharmacies | | Sample outcomes:
cost, accounting
for manufacturer-
pharmacy
price reduction | | | sampled
monthly | for plaque
psoriasis in
the
United States ¹² | |---|--|--|--|----------------------------------|--|---|------|--|---| | Health and
Human
Services | Medical
Expenditure
Panel Survey | 1996—present | Large-scale surveys
for health care
use habits | Nationally
representative | Identity variable:
individual
patient
Sample outcomes:
health care use,
expenditure | None | None | 30,000 patients
annually | Impact of the Patient Protection and Affordable Care Act on dermatologic health care use ¹³ | | American
College of
Surgeons | NSQIP,
NCDB | 2005—present
(NSQIP),
2004—present
(NCDB) | Submitted cases
from participating
academic centers | Cases from specific
hospitals | Identity variable:
individual
patient
Sample outcomes:
treatment
modality,
outcomes | Institutional
subscription
(NSQIP),
approved
research
proposal
(NCDB) | None | 500,000 to 1 million cases annually (NSQIP), >70% of all newly diagnosed cancer cases (NCDB) | Pathologic nodal
evaluation
improves
prognostic
accuracy in
Merkel cell
carcinoma ¹⁴ | | Centers for Disease
Control and
Prevention,
National Center for
Health Statistics | National Health
and Nutrition
Examination
Survey | 1999—present | Survey-weighted
individual
questionnaires | Nationally
representative | Identity variable: individual survey respondent code Sample outcomes: health behavior, diagnoses | None | None | 5,000
interviews/y | The prevalence
of acne on
the basis of
physical
examination ¹⁵ | | | National Health
Interview
Survey | 1957—present | Cross-sectional
clustered
household
interview
survey | Nationally
representative | Identity variable: individual or household survey respondent code Sample outcomes: insurance coverage, health care use | None | None | 35,000 households
(≈87,500 unique
participants) | Sunburn prevalence among US adults, National Health Interview Survey 2005, 2010, and 2015 ¹⁶ | | | National Hospital
Discharge Survey,
National Hospital
Care Survey | 1965—2010 | Combination of purchased electronic data files from hospitals and independent organizations and manual entry from hospital records | Nationally
representative | Identity variable:
discharge
code
Sample outcomes:
admission
rates, length
of stay,
mortality | None | None | Discharges from
239 hospitals
annually
(>270,000
inpatient stays) | Inpatient hospital
care for
psoriasis: a
vanishing
practice in
the
United States ¹⁷ | Table I. Cont'd | Database
curator* | Data set | Available
years | Sampling
method | Population represented | Structure
of data [†] | Prerequisites
for access [‡] | Cost [§] | Approximate
size | Study
examples
in JAAD | |---|---|--------------------------------------|--|---|--|--|--------------------------|--|--| | | National Ambulatory
Medical Care
Survey | 1973–1981,
1985, 1989
—present | Survey of
physicians
regarding 30
patient visits
during a 1-wk
period | Representative of the nation, 4 census regions, and 34 states | Identity variable:
individual
patient visit
Sample
outcomes:
visit duration,
diagnoses | None | None | >3,000 physicians
at >104 sites
annually | Increasing utilization of dermatologists by managed care: an analysis of the National Ambulatory Medical Care Survey, 1990—1994 ¹⁸ | | | National Hospital
Ambulatory
Medical Care
Survey | 1992—present | 4-wk interviews
at facilities
selected by
systematic
random
sampling | Regionally
representative | Identity variable:
individual
hospital stay
Sample outcomes:
hospitalization
rates,
treatments | None | None | ≈ 550 hospitals
annually | The burden of skin
diseases: 2004 ¹⁹ | | | Youth Risk
Behavior
Survey | 1990—present | Surveys
conducted
at individual
schools every
2 y | Representative
of all public/
private school
students in
grades 9—12 | Identity variable:
individual
survey
respondent
code
Sample outcomes:
health beliefs
and behavior | None | None | >4.4 million
high
school
students
in >1900
surveys | Prevalence of sunburn, sun protection, and indoor tanning behaviors among Americans: review from national surveys and case studies of 3 states ²⁰ | | | Behavioral Risk
Factor
Surveillance
System | 1984—present | Telephone surveys
obtained
monthly through
random-digit
dialing | Poststratification weighting scheme (originally designed to be representative of individual states) | Identity variable:
individual
survey
respondent
code
Sample outcomes:
health behavior,
diagnoses | None | None | ≈ 400,000
adult
interviews
annually | Alcohol
consumption
and self-reported
sunburn: a
cross-sectional,
population-
based survey ²¹ | | Food and Drug
Administration | FDA Adverse
Event
Reporting
System | 1968—present | All adverse events
and medication
error reports
submitted to
the FDA | Representative
of only
reported
adverse
events | Identity variable:
individual
adverse
event report
Sample outcomes:
report rates,
event details | None | None | >18 million
total adverse
event reports | An analysis of reports of depression and suicide in patients treated with isotretinoin ²² | | National Heart,
Lung, and
Blood Institute | Women's
Health
Initiative | 1993—2005 | Women 50—79 y enrolled in randomized controlled trials for hormone | Nonrepresentative | Identity variable:
individual
patient code
Sample outcomes:
diagnoses, | Approved
research
proposal | None | >93,000 women (observational component), 68,132 women (randomized controlled | Melanoma risk prediction using a multi-locus genetic risk score in the | | | | | therapy,
dietary
modification, or
supplementation,
or to an
observational
study | | health
behaviors | | | trial
component) | Women's
Health
Initiative
cohort ²³ | |-------|--|--------------------------|---|--|---|---|----------|---|---| | IBM | Explorys
Claims—
EMR Data | 1998—present | Multihealth system data/analytics of electronic medical records, claims systems, practice management systems, and laboratories | Representative
of patients
within a
health care
organization | Identity variable:
individual
patient code
Sample outcomes:
diagnoses,
treatment
modalities | By consultation wi | th IBM | >300,000 health care providers, >315 billion data records from 63 million patients | Prevalence estimates for chronic urticaria in the United States: a sex- and age- adjusted population analysis ²⁴ | | | MarketScan
Research
Database
(formerly
Truven) | 1995—present | Administrative claims for commercially insured adults and those with Medicare supplemental insurance from employers and patients with Medicaid in 11 states | Representative
of the
privately
insured
population | Identity variable:
individual
patient code
Sample outcomes:
diagnoses,
expenditures | By consultation wi | th IBM | 300 contributing employers, 40 contributing health plans, >25 billion service records from 225 million patients | Real-world
burden of
comorbidities
in US patients
with psoriasis ²⁵ | | Optum | Optum
Clinformatics
DataMart | 2000—present | Administrative claims and laboratory data (ie, laboratory results) for privately insured patients and Medicare beneficiaries | Representative
of privately
insured
population | Identity variable:
individual
patient code
Sample outcomes:
treatments,
laboratory
results | By consultation wi | th Optum | >13 million unique
individuals
annually | The clinical utility of laboratory monitoring during isotretinoin therapy for acne and changes to monitoring practices over time ²⁶ | | DVA | Veterans
Hospital
Patient
Database | 2014—present
(varies) | Registry of
veterans
in the
United States | Representative
of veterans
receiving
health care
at Veterans
Affairs
hospitals | Identity variable: individual veteran/ visit code (varies) Sample outcomes: visit diagnoses, treatment modality | Guidelines
specific to
individual
database | None | Varies
substantially
by DVA
database | Racial disparities
in the impact
of chronic
pruritus: a
cross-sectional
study on
quality of life
and resource
utilization in
United States
veterans ²⁷ | Table I. Cont'd | Database
curator* | Data set | Available
years | Sampling
method | Population represented | Structure
of data [†] | Prerequisites
for access [‡] | Cost [§] | Approximate
size | Study
examples
in JAAD | |---|---|--------------------|---|---|---|---|--|--|--| | IMS | IMS LifeLink
Health Plan
Claims Database
and Pharmetrics
Plus | 2006—present | Commercial database of longitudinal inpatient and outpatient medical and pharmaceutical claims data and enrollment information | Varying
representation
based on
specific
data set | Identity variable:
individual
patient code
Sample outcomes:
prescription
details,
diagnoses | Online training
specific to
data set | By consultation
with IMS | Longitudinal data for fully adjudicated medical and pharmaceutical claims of >77 million patients with 75 health plans | The risk of malignancy among biologic-naïve pediatric psoriasis patients: a retrospective cohort study in a US claims database ²⁸ | | Examples of
publicly
available
international
data sources | THIN | 1994—present | Longitudinal medical record data set in the UK with information from general practitioners regarding demographics, encounters, diagnoses, and prescriptions | Representative
of England
and Wales | Identity variable:
individual
patient code
Sample outcomes:
treatment
details, visit
diagnoses | Approved protocol,
online training | By consultation
with THIN | 587 health care practices, >12 million patients (>3.6 million active patients) across the UK | Duration of oral tetracycline-class antibiotic therapy and use of topical retinoids for the treatment of acne among general practitioners (GP): a retrospective cohort study ²⁹ | | | Clinical Practice
Research DataLink
(eg, cancer data,
admitted patient
care data) | 1987—present | Medical records from the National Health Service and private hospitals in the UK (diagnoses, symptoms, and prescription codes) | Representative
of the UK
population | Identity variable:
individual
patient code
Sample outcomes:
diagnoses,
laboratory
results | Approved research
proposal,
online training | £15,000 to £330,000,
depending on
study components
(additional costs
for data linkage) | >45 million patients
(>13 million
active patients)
across the UK | Epidemiology of
hyperhidrosis
in 2 population-
based health
care databases ³⁰ | | | National Health
Insurance
Research
Database | 2000—present | Patient
registration
files and
original
claims data | Representative
of Taiwan's
population | Identity variable:
individual
patient code
Sample
outcomes:
diagnoses,
procedures,
prescription
details | Approved
research
proposal | \$15 per disc, \$6 per
gigabyte of data | 99.9% of
Taiwan's
population | Association between antidiabetic drugs and psoriasis risk in diabetic patients: results from a nationwide nested case- control study in Taiwan ³¹ | CMS, Centers for Medicare & Medicaid Services; DVA, Department of Veterans Affairs; ED, emergency department; FDA, Food and Drug Administration; KID, Kid's Inpatient Database; JAAD, Journal of the American Academy of Dermatology; NCDB, National Cancer Database; NIS, National Inpatient Sample; NPI, National Provider Identifier; NSQIP, National Surgical Quality Improvement Program; SEER, Surveillance, Epidemiology, and End Results Program; THIN, The Health Improvement Network: UK, United Kingdom. *All information is current as of December 1, 2019. †Structure of data includes the specific identity variable that can be used to combine relational databases, as well as sample outcome variables for each database. This can help researchers evaluate whether these data sets can be linked and whether they contain outcomes relevant to one's study. For detailed information regarding which variables and data elements are included in each data set, visit the database website (see "Database Websites" footnote). [‡]Prerequisites for access: most databases require a data use agreement. As such, data use agreement requirement was not listed in this column. Scost: Costs for databases can vary significantly over time, differ by accessing organization (eg., different prices for commercial and academic researchers, student discounts), and be dependent on the amount or type of data needed for the study. It is important to identify the specific costs relevant to one's study through the database curator. CMS: There are several data sets produced by CMS that are amalgamations/linked files of Medicare Parts A, B, and D data, all of which can be downloaded separately (eg, Health Care Information System, Healthcare Cost Report Information System, Medicare Enrollment Data, National Health Expenditure Data, Medicare Current Beneficiary Survey, Opioid Prescriber Data, Chronic Conditions Warehouse, containing Part A, B, and D). We have included only the core data files in this table to summarize which data are available from CMS. There is also an option to purchase Medicare claims data outright, which can be found on the CMS website. Visit the CMS website (see "Database Websites" footnote) for data downloads and additional information regarding how individual and compiled or linked data sets were produced. Database websites, listed in order of presentation: National Inpatient Sample: https://www.hcup-us.ahrq.gov/nisoverview.jsp Kid's Inpatient Dataset: https://www.hcup-us.ahrg.gov/kidoverview.jsp National Emergency Department Sample: https://www.hcup-us.ahrg.gov/nedsoverview.jsp National Readmissions Database: https://www.hcup-us.ahrg.gov/nrdoverview.isp Surveillance, Epidemiology, and End Results: https://seer.cancer.gov/ Health Information National Trends Survey: https://hints.cancer.gov/ Medicare Provider Utilization and Payment Data Part A (Inpatient), B (Outpatient), and D (Provider): https://www.cms.gov/Research-Statistics-Data-and-Systems/Research-Statistics-Data-and-Systems SEER-Medicare: https://healthcaredelivery.cancer.gov/seermedicare/ Open Payments: https://openpaymentsdata.cms.gov/ Medicaid Pharmacy Pricing Database: https://www.medicaid.gov/medicaid/prescription-drugs/pharmacy-pricing/index.html Medical Expenditure Panel Survey: https://www.meps.ahrg.gov/mepsweb/ National Surgical Quality Improvement Program: https://www.facs.org/guality-programs/acs-nsgip National Cancer Database: https://www.facs.org/quality-programs/cancer/ncdb National Health and Nutrition Examination Survey: https://www.cdc.gov/nchs/nhanes/index.htm National Health Interview Survey: https://www.cdc.gov/nchs/nhis/index.htm National Hospital Discharge Survey: https://www.cdc.gov/nchs/nhds/index.htm National [Hospital] Ambulatory Medical Care Survey: https://www.cdc.gov/nchs/ahcd/index.htm Youth Risk Behavior Survey: https://www.cdc.gov/healthyvouth/data/vrbs/index.htm Behavioral Risk Factor Surveillance System: https://www.cdc.gov/brfss/index.html FDA Adverse Event Reporting System: https://open.fda.gov/data/faers/ Women's Health Initiative: https://www.whi.org/ IBM Explorys: https://www.ibm.com/watson-health/about/explorys Truven: https://marketscan.truvenhealth.com/marketscanportal/ Optum: https://www.optum.com/solutions/life-sciences.html Department of Veterans Affairs Databases: https://www.ea.oit.va.gov/eaoit/va_ea/opendata.asp Integrated Medical Systems Health: https://www.iqvia.com/ The Health Improvement Network: https://www.the-health-improvement-network.com/ Clinical Practice Research Datalink: https://www.cprd.com/ National Health Insurance Research Database: https://nhird.nhri.org.tw/en/ Table II. Choosing an appropriate publicly available health care database for population health research | Tasks | Factors to consider | Database examples | |---|---|---| | Establish your study budget | Although many publicly available data sets are free, some require a fee | Free (SEER) Subscription-based payment (SEER-Medicare) 1-time payment (HCUP data sets) | | Determine your study population | Consider population-specific data sets and registries | Medicare patients (SEER-Medicare and other CMS data) Children (KID) Emergency department visits (NEDS) | | Determine the inclusion criteria | Consider disease-specific data sets and registries | Cancer (SEER, NCDB) | | | If not patient-based, consider a data set that specifically evaluates the inclusion criteria of interest | Conflicts of interest (open payments) Drug pricing (Medicaid Pharmacy Pricing Database) | | List the exposure and predictor variables for your question | Ensure the data set contains the exposure and predictor variables relevant to your question | Sociodemographic data
(most data sets)
Stage of disease (SEER)
Treatment information
(SEER-Medicare) | | | If the data set does not include all exposure and predictor variables, determine whether an acceptable proxy variable exists | income of residents in the patient's zip
code in lieu of income
(HCUP data sets) | | Determine whether the study is cross-sectional | Cross-sectional
Longitudinal | HCUP data sets MEPS | | or longitudinal | If the study is longitudinal but an appropriate data set does not exist, consider combining several years of a cross-sectional data set | Trends during several years of NIS data (eg, 2002–2012) | | List the primary outcomes | Consider a data set that contains the most granular details regarding the specific outcomes of interest | Cost of care (HCUP data sets) Length of hospital stay (NIS) Survival/mortality (SEER) Prescribing habits or procedure breakdown for health care providers (Medicare Part D) Healthcare use (MEPS) | CMS, Centers for Medicare & Medicaid Services; HCUP, Healthcare Cost and Utilization Project; KID, Kid's Inpatient Dataset; MEPS, Medical Expenditure Panel Survey; NCDB, National Cancer Database; NEDS, National Emergency Department Sample; NIS, National Inpatient Sample; SEER, Surveillance, Epidemiology, and End Results. variables and qualitatively discuss the potential for confounding without a quantitative evaluation of the extent of bias. Assessing systematic bias through sensitivity analyses helps to quantify the residual confounding and clarify the implications for associations identified through statistical analyses. Finally, consider linking multiple data sets when addressing complex research questions. For example, the relationship between regional sociodemographic data and various health outcomes can be analyzed by linking census data, area resource files, or geographic information system files with deidentified health care data.³³ Identifying a systematically collected, precise, and accurate variable in each data set (eg, zip code, National Provider Identifier) is required to link multiple data sets. ### RESULT REPORTING Use of judicious language in reporting results (eg, correlation versus causation) is essential to ensure that conclusions are appropriately interpreted for clinical use and further prospective studies. Additionally, researchers should differentiate between statistical and clinical significance because analyzing large data sets commonly yields narrow confidence intervals and small *P* values. Carefully interpreting the clinical relevance of statistically significant odds ratios approaching 1.0 helps limit overemphasis of clinically insignificant findings. Transparency is a critical component of publicly available health care database research. Collaborative research initiatives for observational studies, including Strengthening the Reporting of Observational Studies in Epidemiology and Reporting of Studies Conducted Using Observational Routinely-Collected Data, are endorsed by several biomedical journals and provide checklists for use when reporting observational data.^{34,35} Adhering to these guidelines helps promote the reliability and reproducibility of research using publicly available databases. ## **CONCLUSION** With the increasing availability, size, and use of publicly available health care databases in dermatology, maintaining methodologic rigor throughout study design, data analysis, and result reporting is paramount. Implementing best practices ensures that researchers can take full advantage of the breadth and depth of these databases, report thorough and accurate results, and develop valid conclusions that will ultimately guide clinical practice, health care policy, and future research. #### REFERENCES - 1. Takeshita J, Gelfand JM, Li P, et al. Psoriasis in the US Medicare population: prevalence, treatment, and factors associated with biologic use. J Invest Dermatol. 2015;135(12):2955-2963. - 2. Arnold JD, Yoon SJ, Kirkorian AY, The national burden of inpatient dermatology in adults. J Am Acad Dermatol. 2019; - 3. Kwa L, Silverberg Jl. Financial burden of emergency department visits for atopic dermatitis in the United States. J Am Acad Dermatol. 2018;79(3):443-447. - 4. Zhang M, Markova A, Harp J, Dusza S, Rosenbach M, Kaffenberger BH. Dermatology-specific and all-cause 30-day and calendar-year readmissions and costs for dermatologic diseases from 2010 to 2014. J Am Acad Dermatol. 2019;81(3):740-748. - 5. Tripathi R, Chen Z, Li L, Bordeaux JS. Incidence and survival of sebaceous carcinoma in the United States. J Am Acad Dermatol. 2016;75(6):1210-1215. - 6. Zahnd WE, Goldfarb J, Scaife SL, Francis ML. Rural-urban differences in behaviors to prevent skin cancer: an analysis of the Health Information National Trends Survey. J Am Acad Dermatol. 2010;62(6):950-956. - 7. Song H, Adamson AS, Mostaghimi A. Trends in Medicare spending on topical immunomodulators and chemotherapies. J Am Acad Dermatol. 2018;78(1):173-175. - 8. Doshi JA, Takeshita J, Pinto L, et al. Biologic therapy adherence, discontinuation, switching, and restarting among patients with psoriasis in the US Medicare population. J Am Acad Dermatol. 2016;74(6):1057-1065.e4. - 9. Tan SY, Buzney E, Mostaghimi A. Trends in phototherapy utilization among Medicare beneficiaries in the United States, 2000 to 2015. J Am Acad Dermatol. 2018;79(4): 672-679. - 10. Rouhani P, Arheart KL, Kirsner RS. Differences in melanoma outcomes among Hispanic Medicare enrollees. J Am Acad Dermatol. 2010;62(5):768-776. - 11. Kuschel SL, Ricotti CM, Dunnick CA, Hugh J, Dellavalle RP. Analysis of conflicts of interest in pharmaceutical payments made to Food and Drug Administration physician advisers after dermatologic drug approval. J Am Acad Dermatol. 2019; 81(6):1419-1420. - 12. Yang EJ, Beck KM, Sekhon S, Bhutani T. Pharmacy costs of specialty medications for plaque psoriasis in the United States. J Am Acad Dermatol. 2019;80(1):274-275. - 13. Tripathi R, Knusel KD, Ezaldein HH, Bordeaux JS, Scott JF. Impact of the Patient Protection and Affordable Care Act on dermatologic health care utilization. J Am Acad Dermatol. 2019;81(2):631-634. - 14. Lemos BD, Storer BE, Iyer JG, et al. Pathologic nodal evaluation improves prognostic accuracy in Merkel cell carcinoma: analysis of 5823 cases as the basis of the first consensus staging system. J Am Acad Dermatol. 2010;63(5): 751-761. - 15. Stern RS. The prevalence of acne on the basis of physical examination. J Am Acad Dermatol. 1992;26(6):931-935. - 16. Holman DM, Ding H, Berkowitz Z, Hartman AM, Perna FM. Sunburn prevalence among US adults, National Health Interview Survey 2005, 2010, and 2015. J Am Acad Dermatol. 2019; 80(3):817-820. - 17. Stern RS, Bauer E, Epstein JH, et al. Inpatient hospital care for psoriasis: a vanishing practice in the United States. J Am Acad Dermatol. 2003;49(3):445-450. - 18. Feldman SR, Fleischer J, Williford PM, White R, Byington R. Increasing utilization of dermatologists by managed care: an analysis of the National Ambulatory Medical Care Survey, 1990-1994. J Am Acad Dermatol. 1997;37(5 I):784-788. - 19. Bickers DR, Lim HW, Margolis D, et al. The burden of skin diseases: 2004. A joint project of the American Academy of Dermatology Association and the Society for Investigative Dermatology. J Am Acad Dermatol. 2006; 55(3):490-500. - 20. Buller DB, Cokkinides V, Hall HI, et al. Prevalence of sunburn, sun protection, and indoor tanning behaviors among Americans: review from national surveys and case studies of 3 states. J Am Acad Dermatol. 2011;65(5 suppl. 1):S114.e1-S114.e11. - 21. Mukamal KJ. Alcohol consumption and self-reported sunburn: a cross-sectional, population-based survey. J Am Acad Dermatol. 2006;55(4):584-589. - 22. Wysowski DK, Pitts M, Beitz J. An analysis of reports of depression and suicide in patients treated with isotretinoin. J Am Acad Dermatol. 2001;45(4):515-519. - 23. Cho HG, Ransohoff KJ, Yang L, et al. Melanoma risk prediction using a multilocus genetic risk score in the Women's Health Initiative cohort. J Am Acad Dermatol. 2018;79(1):36-41.e10. - 24. Wertenteil S, Strunk A, Garg A. Prevalence estimates for chronic urticaria in the United States: a sex- and ageadjusted population analysis. J Am Acad Dermatol. 2019; 81(1):152-156. - 25. Shah K, Mellars L, Changolkar A, Feldman SR. Real-world burden of comorbidities in US patients with psoriasis. J Am Acad Dermatol. 2017;77(2):287-292.e4. - 26. Barbieri JS, Shin DB, Wang S, Margolis DJ, Takeshita J. The clinical utility of laboratory monitoring during isotretinoin therapy for acne and changes to monitoring practices over time. J Am Acad Dermatol. 2020;82(1):72-79. - 27. Shaw FM, Luk KMH, Chen KH, Wrenn G, Chen SC. Racial disparities in the impact of chronic pruritus: a cross-sectional study on quality of life and resource utilization in United States veterans. J Am Acad Dermatol. 2017;77(1):63-69. - 28. Gu Y, Nordstrom BL. The risk of malignancy among biologicnaïve pediatric psoriasis patients: a retrospective cohort study in a US claims database. J Am Acad Dermatol. 2017;77(2):293-301.e1. - 29. Barbieri JS, Hoffstad O, Margolis DJ. Duration of oral tetracycline-class antibiotic therapy and use of topical retinoids for the treatment of acne among general practitioners - (GP): a retrospective cohort study. *J Am Acad Dermatol.* 2016; 75(6):1142-1150.e1. - **30.** Ricchetti-Masterson K, Symons JM, Aldridge M, et al. Epidemiology of hyperhidrosis in 2 population-based health care databases. *J Am Acad Dermatol.* 2018;78(2):358-362. - 31. Wu CY, Shieh JJ, Shen JL, Liu YY, Chang YT, Chen YJ. Association between antidiabetic drugs and psoriasis risk in diabetic patients: results from a nationwide nested casecontrol study in Taiwan. *J Am Acad Dermatol.* 2015;72(1): 123-130. - **32.** Hsu DY, Dalal P, Sable KA, et al. Validation of *International Classification of Disease Ninth Revision* codes for atopic dermatitis. *Allergy*. 2017;72(7):1091-1095. - Tripathi R, Knusel KD, Ezaldein HH, Scott JF, Bordeaux JS. Association of demographic and socioeconomic characteristics with differences in use of outpatient dermatology services in the United States. *JAMA Dermatol.* 2018;154(11): 1286-1291. - Vandenbroucke JP, Von Elm E, Altman DG, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. *PLoS Med.* 2007;4(10): 1628-1654 - Benchimol El, Smeeth L, Guttmann A, et al. The Reporting of Studies Conducted Using Observational Routinely-Collected Health Data (RECORD) statement. *PLoS Med.* 2015;12(10): e1001885.