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a b s t r a c t 

Despite ongoing effort s, patient s with locally advanced pancreatic cancer (LAPC) continue to have a dismal 

prognosis. Such tumors are unresectable, and optimal treatment with chemotherapy and/or radiation ther- 

apy is still not established. While chemotherapy is conventionally aimed at preventing metastatic spread of 

disease, radiation therapy acts locally, improving local control which can potentially improve overall sur- 

vival and most importantly quality of life. Here, we aim to review the primary literature assessing the role 

of diverse radiation therapy strategies for patients with LAPC. 

Many radiation regimens can be considered, and no standard treatment has demonstrated a clear improve- 

ment in clinical outcomes. We advise that the modality of choice be dependent on the availability of equip- 

ment, the dose and fractionation of treatment, as well as the dose received by normal tissue. Moreover, a 

candid discussion with the patient concerning treatment goals is equally as essential. Three notable strate- 

gies for LAPC are intensity-modulated radiation therapy, volumetric modulated arc therapy, and proton. 

These radiation modalities tend to have improved dose distribution to the target volumes, while mini- 

mizing the radiation dose to surrounding normal tissues. Stereotactic body radiation therapy can also be 

considered in LAPC patients in cases where the tumor does not invade the duodenum or other neighboring 

structures. Because of the high doses delivered by stereotactic body radiation therapy, proper respiratory 

and tumor motion management should be implemented to reduce collateral radiation dosing. Despite im- 
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proved clinical outcomes with modern radiation modalities, evolving techniques, and more accurate plan- 

ning, future studies remain essential to elucidate the optimal role for radiation therapy among patients 

with LAPC. 

© 2020 Elsevier Inc. All rights reserved. 

a r t i c l e i n f o 

Keywords: Radiation therapy; SBRT; IMRT; MR Linac; Particle therapy; Carbon ion therapy; Locally advanced pancreatic 

cancer; Unresectable pancreatic cancer 

I

 

m  

s  

c  

c  

a  

i  

s  

i  

o  

a  

m  

s  

o  

c  

t  

l  

w  

m  

w  

f  

b  

R

C

 

t  

q  

a  

t  

A  

r  

c  

e  

w  

t  

e  
ntroduction 

Pancreatic cancer is known to be one of the most aggressive forms of cancers, with an esti-

ated 5-year overall survival of around 9%. 1 Recent statistics from the American Cancer Society

how that the incidences of pancreatic cancer, along with pancreatic cancer mortality are in-

reasing. 1 Moreover, around one third of patients with pancreatic cancer are diagnosed with lo-

ally advanced disease at presentation. 2 Locally advanced pancreatic cancer (LAPC) is defined as

ny pancreatic cancer that is neither surgically resectable nor metastatic. LAPC carries a strik-

ngly poor prognosis, with a median overall survival of 9-11 months 3 , 4 . In addition to poor

urvival, patients with LAPC often suffer from severe disease- and treatment-related morbid-

ty that further impairs quality of life. Ongoing debate regarding treatment strategy, sequencing

f chemotherapy and radiation therapy, and even choice of radiation therapy modality, dosage,

nd fractionation has resulted gap in standard of care for LAPC patients. The main goals of treat-

ent are to improve local and distant progression of disease, in the hopes of improving overall

urvival while preserving quality of life. Since surgical resection is not an option, the prognosis

f these patients remains poor, and depends highly on optimal chemotherapy and radiotherapy

ombinations. In that regard, while chemotherapy addresses the issue of distant spread, radia-

ion therapy focuses mainly on controlling local or locoregional disease. Local control is particu-

arly important in LAPC as around 30% of patients with pancreatic cancer die from local disease

ithout developing distant metastases. 5 In this article, we aim to review the literature for the

ain studies addressing different radiation therapy options in patients with LAPC. In particular,

e expand on the potential effectiveness of chemoradiotherapy before expounding upon 4 dif-

erent treatment strategies: chemoradiation, intensity-modulated radiation therapy, stereotactic

ody radiation therapy, magnetic resonance linear accelerators (MR Linac), and particle therapy.

adiation therapy treatment strategies 

hemoradiation 

Patients with LAPC are commonly treated with a combination of chemotherapy and radiation

herapy. However, clinical outcomes remain suboptimal, and improved combinations are still re-

uired. The 2 most common chemotherapy regimens adopted are FOLFIRINOX or gemcitabine

nd/or nab-paclitaxel. There is no consensus on which regimen is superior, but FOLFIRINOX is

ypically the first choice for patients with good performance status and no contraindications.

fter sufficient stabilization of the tumor size and CA19-9 with chemotherapy, definitive concur-

ent chemoradiation is often considered. A commonly used approach is the use of concurrent

hemotherapy and hypofractionated intensity-modulated radiation therapy (IMRT). 6 One of the

arly studies on chemoradiation was published by Shinchi et al in 2002. The study conducted

as a prospective randomized trial that showed better overall survival and quality of life in pa-

ients who received chemoradiotherapy when compared to best supportive care alone. 7 Some

vidence also shows that the use of concurrent chemoradiotherapy might be superior to the use
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of radiotherapy alone. A study by the Gastrointestinal Tumor Study Group in the 1980s evalu-

ated patients with LAPC who received concurrent chemoradiotherapy with 5-FU at either low

(40 0 0 rads) or high (60 0 0 rads) dose radiation therapy and patients that received only high

dose radiation therapy (60 0 0 rads). 8 Radiation therapy was delivered using supervoltage equip-

ment with anterior-posterior, and posterior-anterior fields. The study showed improved overall

survival in the group that received concurrent chemoradiotherapy (60 Gy + 5-FU 1-year overall

survival: 46%) vs those who received high dose radiotherapy alone (60 Gy 1-year overall sur-

vival: 10%). 8 Similarly, a more recent phase III trial conducted by the Eastern Cooperative Oncol-

ogy Group in 2005 compared patients receiving high dose external beam radiotherapy (59.4 Gy

over 33 fractions) alone to patients receiving radiation therapy with additional 5-FU and mito-

mycin chemotherapy. Surprisingly, they observed an astonishingly different result. Their patients

exhibited increased toxicity in the chemoradiation arm and did not show any improvement in

overall and disease-free survival. 9 

Furthermore, comparing concurrent chemoradiotherapy to chemotherapy alone still presents 

mixed results. While data from the Gastrointestinal Tumor Study Group offers some survival

benefit with the addition of radiation therapy to 5-FU chemotherapy, other studies report no

significant changes in outcome between these groups. 10-12 The 20 0 0-01 FFCC and/or SFRO (FFCC,

Federation Francophone de Cancerologie Digestive; SFRO, Societe Francophone de Radiotherapie

Oncologique) study randomized patients to either receive initial chemoradiotherapy in conjunc-

tion with 5-FU and cisplatin or the induction of gemcitabine alone. 13 Radiation therapy was

given with conformational radiotherapy (60 Gy over 30 fractions). Both treatment arms were

subsequently treated with gemcitabine maintenance chemotherapy until disease progression or 

severe toxicity. Results from this study actually showed better outcomes in the gemcitabine

alone arm with improved survival rates and reduced toxicities. 13 On the other hand, the East-

ern Cooperative Oncology Group compared the use of gemcitabine alone or in combination with

3D-conformal radiotherapy to a dose of 50.4 Gy over 28 fractions. The study showed that the

use of chemoradiotherapy was associated with better survival rates (Chemoradiotherapy: me-

dian survival of 11.1 months vs Chemotherapy: median survival of 9.2 months). 14 The LAP 07

trial, another recent study, compared chemoradiotherapy (3D-conformal radiotherapy, 54Gy/30 

fractions + Capecitabine) vs chemotherapy alone (gemcitabine or gemcitabine and erlotinib) in

patients that already received prior chemotherapy (either gemcitabine or gemcitabine and er-

lotinib). 15 The results show improved local control in the chemoradiotherapy arm, but no sur-

vival benefit after addition of radiation therapy. Nevertheless, this study used gemcitabine-based

chemotherapy, rather than FOLFIRINOX which might limit the applicability of the results to the

current FOLFIRINOX-based regimens. 15 

The conflicting findings of these clinical trials has made it difficult to establish an ideal

chemoradiation protocol for patients with LAPC. It is important to note that the results of these

trials should be interpreted with caution as the limited sample sizes and recent advances in ra-

diation delivery and chemotherapeutics do not recapitulate the critical role of radiotherapy in

LAPC. 

Intensity-modulated radiation therapy 

IMRT is an advanced radiation therapy modality that utilizes photon energy, and allows for

radiation delivery using multiple radiation beams at varying intensities and varying angles. 16 

IMRT is particularly useful when treating targets with complex concave shapes, which makes it

well suited for pancreatic tumors. 17 Table 1 presents the major studies addressing the role of

IMRT in LAPC. A retrospective analysis by Wang et al in 2015 included 63 patients with pancre-

atic cancer, of which 31 had LAPC. 18 All patients were treated with IMRT to a median dose of

46 Gy. The subgroup of patients with LAPC had a median overall survival (OS) of 15.7 months,

and 1-year OS rate of 62.4%. Treatment was well tolerated, with around 14.0% of grade 3 hemato-

logical toxicities, and no severe non-hematological toxicities. 18 Furthermore, a prospective study

by Nakamura et al in 2018 showed excellent clinical outcomes with IMRT. 19 The study showed a
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Table 1 

Summary of the literature on the use of IMRT in LAPC. 

Study ID Study design Number of 

patients 

Overall survival Progression free survival 

Wang, 

2015 18 

Retrospective LAPC = 31 

Metastatic = 32 

Median OS LAPC = 15.7 months 

1-year OS LAPC = 62.4% 

2-year OS LAPC = 32.2% 

N/A 

Huguet, 

2017 55 

Retrospective 134 OS = 23 months after 20-month 

follow-up 

1-year OS: 85% 

2-year OS: 47% 

N/A 

Goto, 

2018 56 

Prospective 11 Median follow-up of 22.9 

months 

OS = 100% at 23.6 months 

1-year LRPFSl = 90.9% 

DMFS = 70.7% 

Goto, 

2018 57 

Retrospective 107 Overall OS = 17.5 months, 

1-year OS = 74.3% 

3DCRT: 1-year OS = 68.2% 

IMRT: 1-year OS = 92.3% 

3DCRT: 1-year LRPFS = 63.2%, 

1-year DMFS = 48.4% 

IMRT: 1-year LRPFS = 73.1%, 

1-year DMFS = 49.3% 

Nakamura, 

2018 19 

Prospective 10 1-year OS: 100% 

2-year OS: 50% 

Median OS: 25.9 months 

2-year: 30% 

Median: 14.6 months 

Oh, 2018 58 Prospective 47 OS = 14.2 months LRPFS = 18.1 months 

DMFS = 10.3 months 

Felice, 

2019 20 

Prospective 10 1-year OS = 83.3% DMFS = 68.6% 

3DCRT, 3D conformal radiation therapy; DMFS, distant metastasis free survival; IMRT, intensity-modulated radiation 

therapy; LAPC, locally advanced pancreatic cancer; LRPFS, locoregional progression free survival; OS, overall survival; 

PFS, progression free survival. 
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-year OS of 100%, a 2-year OS of 50%, and a median OS of 25.9 months. Those outcomes were

robably the result of an excellent local disease control in this study, as the 2-year local-disease

ree survival was around 74.0%. While the results of this study seem promising, the study is

ainly limited by its small sample size of 10 patients, which might speculate the validity of the

esults. 19 A recent prospective pilot study by Felice et al enrolled 10 patients with unresectable

APC that were subsequently treated with IMRT. 20 The study shows a 1-year OS of 83.3%, and

 1-year DFS of 68.3%. No severe toxicity was noted in this cohort. 20 In light of decreased toxi-

ities from IMRT treatment, the concept of dose escalation evolves. Despite some success from

revious studies, pancreatic cancer still led to modest local control and survival rates, and thus

ncreased radiation doses might offer improved local control. Escalated dose radiation - defined

s a biological equivalent dose of 70 Gy or higher - with IMRT planning shows improved locore-

ional control and overall survival when compared to standard dose radiation with concurrent

hemotherapy. 21 , 22 Moreover, hypofractionated IMRT allows for the delivery of similar radiation

oses over a shorter number of fractions. Minimizing radiation treatment duration is particu-

arly important in patients with LAPC, where prolonged radiation treatments might negatively

mpact quality of life furthermore. 20 Hypofractionated IMRT is well tolerated by patients, with

inimal gastrointestinal and overall toxicities. 21 Another promising regimen is the use of IMRT

o a total dose of 75 Gy in 25 fractions, along with concurrent capecitabine, in cases where

urgery cannot be guaranteed. 23 The use of higher radiation doses might be able to achieve lo-

al control rates that are comparable to those achieved with resection. Additionally, volumetric

odulated arc therapy (VMAT), has also shown good clinical outcomes in patients with LAPC.

MAT radiotherapy also utilizes photon energy, and focuses on the delivery of a high number

f radiation beams in a relatively short period. A dosimetric study comparing VMAT, IMRT and

D conformal radiation therapy, showed that VMAT planning could be achieved with less radia-

ion dose to organs at risk, mainly the duodenum when compared to the 2 other modalities. 24

urthermore, VMAT treatment was associated with less severe gastrointestinal toxicities when

ompared to IMRT or 3D conformal radiation therapy 24 As such, limited data on VMAT shows

romising clinical results, and future studies should be encouraged to focus more on the role of

MAT in patients with LAPC. 
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Table 2 

Summary of the literature on the use of SBRT in LAPC. 

Study ID Study design Number of 

patients 

Overall survival Progression free 

survival 

Koong, 2004 25 Prospective 15 

15 Gy = 3 

20 Gy = 5 

25 Gy = 7 

Median OS = 11 months Median PFS = 2 months 

Hoyer, 2005 59 Prospective 22 Median OS = 5.4 months 

1-year OS = 5% 

Median PFS = 4.8 

months 

1-year PFS = 9% 

Mahdevan, 2011 27 Retrospective 47 Median OS = 20 months Median PFS = 15 

months 

Shellenberg, 

2011 26 

Prospective 20 Median OS = 11.8 months 

1-year OS = 50% 

2-year OS = 20% 

Median PFS = 9.2 

months 

Chuong, 2013 60 Retrospective 73 OS = 22.5 months Median PFS = 14.9 

months 

Herman, 2014 29 Prospective 49 Median OS = 13.9 months 

1-year OS = 59% 

2-year OS = 18% 

Median PFS = 7.8 

months 

1-year PFS = 32% 

2-year PFS = 10% 

Lin, 2015 61 Retrospective 41 

SBRT = 20 

IMRT = 21 

OS = 22.5 months 

SBRT = 20 months 

IMRT = 13.5 months 

N/A 

Pollom, 2014 28 Retrospective 167 Median OS = 13.6 months N/A 

Mellon, 2015 62 Retrospective 159 Median OS = 18.1 months Median PFS = 12.7 

months 

Comito, 2016 30 Prospective 45 Median OS = 13 months 

1-year OS = 59% 

2-year OS = 18% 

Median PFS = 8 months 

1-year PFS = 39% 

2-year PFS = 15% 

Gurka, 2017 63 Retrospective 15 

15 Gy = 31 

25 Gy = 13 

30 Gy = 24 

Median OS = 14.3 months Median PFS = 9.2 

months 

IMRT, intensity-modulated radiation therapy; OS, overall survival; PDAC, pancreatic ductal adenocarcinoma; PFS, pro- 

gression free survival; SBRT, stereotactic body radiation therapy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stereotactic body radiation therapy (SBRT) 

SBRT is an advanced modality in radiation therapy that delivers highly conformal radiation.

SBRT treatment allows for the delivery of higher doses per fraction, and thus is typically de-

livered in fewer fractions when compared to conventional radiotherapy (typically 1-5 fractions).

This is crucial for limiting exposure of organs at risk that are found in close proximity to the

radiation site in pancreatic cancer. 

Table 2 presents the major studies addressing the role of SBRT in LAPC. SBRT was initially

studied in a phase I dose escalation trial by Koong et al using CyberKnife technology. 25 The

trial included 15 patients with LAPC who were treated with a single fraction of 15 Gy, 20 Gy,

or 25 Gy. Single fraction SBRT treatment was well tolerated, and no patients developed severe

gastrointestinal toxicities. 25 A subsequent Phase II study from the same group at Stanford in-

cluded patients treated with single 25Gy-fraction SBRT and gemcitabine. 26 Results showed an

overall mean survival of 11.8 months, a 1-year overall survival of 50%, a 2-year overall survival

of 20% and a 94% local progression-free disease at 1 year. Similar to the original phase I trial by

Koong et al, no patients developed acute grade 3 or more toxicity, and only 1 patient developed

long term grade 4 duodenal perforation. 25 , 26 These results were replicated by Mahadevan et al,

who reported on 39 patients with LAPC who received 3 fractions of SBRT. These patients exhib-

ited excellent local control at 21 months (85%), with a median OS of 20 months, and a median
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isease-free survival of 15 months. 27 Late grade 3 toxicities were observed in less than 10% of

atients. 27 Moreover, Pollom et al performed a single-center retrospective analysis comparing

he clinical outcomes of patients with unresectable pancreatic adenocarcinoma receiving either

ingle or 5 fractions SBRT. 28 Results showed that multi-fraction SBRT was associated with less

oxicity, and did not compromise local control and survival rates. 28 

More recently, Herman et al performed a multi-center phase II trial investigating fraction-

ted SBRT (33 Gy/5 fractions) with gemcitabine. The study showed a 1-year OS of 59% and a

-year local progression-free survival of 78%. 29 SBRT was again well tolerated by patients (acute

rade 2 or more GI toxicities: 2%; Late grade 2 or more GI toxicities: 11%). 29 Another phase II

rial published by Comito et al in 2017 showed that SBRT with 45Gy in 6 fractions achieved

xcellent local control in patients with LAPC (90% local-progression free at 2 years) and had a

edian OS of approximately 19 months. 30 No patient developed any severe toxicity. 30 In light of

mproved clinical outcomes with SBRT treatment, current trials are investigating the incorpora-

ion of concurrent intestinal radioprotection. Radioprotective agents could potentially allow for

urther dose escalation, with the hope of better local control, overall survival, and toxicity rates

NCT03340974). 31 

agnetic resonance linac-based treatment 

Proper tumor visualization and respiratory motion monitoring is essential while delivering

adiation therapy in order to ensure proper tumor targeting, and decrease collateral radiation

oses. Some of the most commonly used techniques are fiducial markers, or CT-on-rails, which

oth allow proper tumor visualization during treatment, and help guide radiation therapy. MR

INAC use MR imaging to properly visualize and target the tumor during treatment. 32 The MR-

INAC is a hybrid linear accelerator combined with a magnetic resonance imaging scanner. 33

his set-up enables real-time tumor visualization, and better tumor targeting despite the mul-

iple organ shifts due to respiratory motions. As such, comparing four-dimensional computed

omography (4DCT) and MR-guided radiation therapy shows favorable outcomes with MR real-

ime monitoring, especially when dealing with tumors susceptible to respiratory motion. 34 

The pancreas has a particularly complex anatomical environment, with many surrounding

ritical organs at risk, and an extensive tumor motion with respiration. Furthermore, pancreatic

adiation therapy treatment typically utilizes high doses of radiation to ensure proper response.

or the following reasons, pancreatic cancer is considered an ideal candidate for MR-LINAC treat-

ent. 35 Retrospective data from 44 patients with inoperable pancreatic cancer treated with MR-

uided radiation therapy showed a 2-year OS of 49%. 36 Despite high radiation dosing (biological

ffect dose > 70 Gy), no grade 3 + GI toxicity was noted. 36 Currently, more trials are evaluating

he role of MR-guided radiation therapy in LAPC (NCT03621644). 37 

article therapy: Proton and carbon ion therapy 

Proton therapy is based on the use of proton beam radiation to deliver high doses of radia-

ion to the tumor. Protons are charged particles that deliver higher relative biological effective-

ess when compared to proton therapy, even under the same dosage and fractionation. 38 Hence,

roton therapy allows for the delivery of the radiation dose in the beam path with minimal or

o exit dose. 39 This feature of proton therapy enables proper therapeutic dosing to the tumors,

hile minimizing radiation side effects to normal tissue beyond the target. By minimizing tox-

city to normal tissues, proton therapy allows dose escalation to the target tumor, which may

rovide stronger local control. 

Terashima et al performed a phase I/II trial to assess the efficacy and safety of proton ther-

py in LAPC. 40 Patients were treated with 50 Gy in 25 fractions, 67.5 Gy in 25 fractions, or 70.2

y in 26 fractions. All patients received concurrent gemcitabine. The results of this trial show
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comparable 1-year local-progression, progression-free and overall survival rates to historical data

(81.7%, 64.3%, and 76.8%, respectively). Additionally, proton therapy treatment was well tolerated

by the patients, with less than 10% grade 3 toxicities. 40 Patients were subsequently assessed by

endoscopy, and around half of the patients had radiation-induced gastric or duodenal ulcers, but

only 3% exhibited grade 3 or higher ulceration, and no patients developed GI hemorrhage or per-

forations. 41 Another prospective study of 11 patients was published by Sachsman et al in 2014,

and showed that proton therapy with concomitant capecitabine was well tolerated by patients,

with no grade 2 or higher gastrointestinal toxicities. 42 The results also showed a median overall

survival of 18.4 months, with a 69% local-progression free rate at 2 years. 42 

Carbon ion therapy is based on a novel radiotherapy technique that utilizes heavy and

charged particles. 43 The use of carbon ions has a few advantages over protons. 44 First, car-

bon ions tend to have a higher relative biological effectiveness, with less lateral scattering, and

hence may provide a better radiation delivery. Furthermore, carbon ion therapy has a lower oxy-

gen enhancement ratio than proton beam therapy. 45 The decreased oxygen enhancement ratio,

which suggests that the tumor-killing effect of carbon ions is increasingly independent of tumor

oxygenation, is particularly desirable for the eradication of hypoxic radioresistant tumor envi-

ronments (such as those in LAPC). 46 As such, carbon therapy brings a new treatment potential

for cancers that have been historically resistant to conventional X-Ray-based radiation 

43 . The 1

major limitation to the introduction of carbon therapy its limited availability in cancer centers

around the world, with no operational carbon ion therapy centers in the Americas. 

Despite the limited availability of carbon ion therapy, we do have some clinical data evalu-

ating its effectiveness. A lar ge study by a group in Japan presents novel information on the use

of carbon therapy. 47 The study included 353 patients with pancreatic cancer treated with car-

bon therapy. Patients with LAPC were treated in 2 phases. The first phase consisted of radiation

therapy with 43.2 Gy in 12 fractions and concurrent gemcitabine. Then, the gemcitabine and

radiation doses were increased by constant increments. This regimen resulted in a 2-year local

control rate of 58% and a 2-year overall survival of 54%. 47 Additionally, retrospective data from

the Japan Carbon-Ion Radiation Oncology Study Group analyzed 72 patients with LAPC treated

with carbon ion therapy. 48 The study showed a 1-year overall survival of 73%, along with a me-

dian overall survival of 21.5 months. Moreover, the study showed excellent local control rates at

1 and 2 years (84% and 76%, respectively). These remarkable clinical outcomes should be taken

with some caution, as most patients included in the Japan Carbon-Ion Radiation Oncology Study

Group series had tumors in either the body or tail of the pancreas (58%). The heterogeneity in

tumor location could result in a selection bias as those tumors might have a different innate

biology. 49 , 50 Lastly, despite these promising clinical outcomes, around a quarter of the patients

experienced severe grade 3 or 4 hematological toxicities, which might potentially lead to further

increased morbidity in those patients. 48 With the potential promising outcomes of carbon ther-

apy, the CIPHER phase III trial is currently comparing the use of IMRT to carbon ion therapy in

patients with LAPC (NCT03536182). 51 

Recommendations and conclusions 

In light of these studies and other data regarding systemic therapy for pancreatic cancer, our

approach relies on a multimodality treatment for most LAPC patients. We first treat patients

with LAPC with neoadjuvant chemotherapy for around 2 to 6 months. Chemotherapy is contin-

ued as long as the patient is responding by CA19-9 decrement or radiologic evidence. In cases

where the tumor stops responding to treatment, the chemotherapy regimen is often switched. 52 

Although pancreatic tumors do not commonly downstage with chemotherapy alone, there are

a few cases reported in the literature of excellent responders, whose tumor became resectable

after chemotherapy alone. 53 , 54 

This approach would address the high risk of micrometastatic disease and subsequent devel-

opment of distant metastases. The following would also reduce over-treatment of patients who

will eventually develop distant progression, as those patients would only derive minimal clini-
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al benefits from chemoradiation. Nevertheless, no gold standard for radiation therapy in LAPC

as been established despite overwhelming recent evidence that points to its beneficial role in

ontrol local disease. It is imperative that future studies be done to not only compare differ-

nt treatment modalities but to also institute treatment plans that address quality of care in

nresectable pancreatic cancer patients. 

In conclusion, different radiation regimens can be considered for patients with LAPC. IMRT,

MAT, and proton therapy can be used in LAPC, and tend to have improved dose distribution

o the target volumes while minimizing radiation dosing to collateral normal tissues. Carbon

on therapy might also provide improved clinical outcomes, but is still not widely available in

ancer centers around the world. Furthermore, carbon therapy prospective trials are required to

etter assess its role in the management of LAPC. Lastly, SBRT can be considered in patients

ith LAPC that does not invade the duodenum. Because of the high doses delivered by SBRT,

roper respiratory and tumor motion management should be implemented to reduce collateral

adiation dosing. 
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