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Abstract: The role of body composition in patients with
heart failure (HF) has been receiving much attention in
the last few years. Particularly, reduced lean mass
(LM), the best surrogate for skeletal muscle mass, is
independently associated with abnormal cardiorespira-
tory fitness (CRF) and muscle strength, ultimately lead-
ing to reduced quality of life and worse prognosis.
While in the past, reduced CRF in patients with HF was
thought to result exclusively from cardiac dysfunction
leading to reduced cardiac output at peak exercise, cur-
rent evidence supports the concept that abnormalities
in LM may also play a critical role. Abnormalities in
the LM body composition compartment are associated
with the development of sarcopenia, sarcopenic obesity,
and cachexia. Such conditions have been implicated in
the pathophysiology and progression of HF. However,
identification of such conditions remains challenging, as
universal definitions for sarcopenia, sarcopenic obesity,
and cachexia are lacking. In this review article, we
describe the most common body composition abnormal-
ities related to the LM compartment, including skeletal
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and respiratory muscle mass abnormalities, and the
consequences of such anomalies on CRF and muscle
strength in patients with HF. Finally, we discuss the
potential nonpharmacologic therapeutic strategies such
as exercise training (ie, aerobic exercise and resistance
exercise) and dietary interventions (ie, dietary supple-
mentation and dietary patterns) that have been imple-
mented to target body composition, with a focus on HF.
(Curr Probl Cardiol 2020;45:100417.)
Introduction

I
ndividuals with heart failure (HF) have increased by near half

million in the last 4 years, currently affecting 6.2 million

Americans, with more than 8 million estimated to be diag-

nosed with HF by 2030.1 The dramatic increase in the prevalence of

the diseases has occurred despite improvements in the understanding

of its pathophysiology and the development of pharmacologic and

nonpharmacologic therapeutic strategies.2 This would suggest that

advancements in the pathophysiology of the diseases is highly

needed to identify potential novel therapeutic strategies.

The role of body composition in the development and progression of

HF has recently received intense scrutiny.3,4 In fact, in addition to cardiac

dysfunction, which is clearly required for defining HF and a determinant

of reduced cardiorespiratory fitness (CRF), patients with HF also present

abnormalities in body composition, namely fat mass (FM) and fat-free

mass (FFM),5 the latter being a surrogate for lean mass (LM), which is in

turn the best surrogate for skeletal muscle mass.6 The most common con-

ditions associated with abnormalities in LM and skeletal muscle mass are

sarcopenia,7 sarcopenia obesity,8 and cachexia,9 (Fig 1)10 which highly

affect CRF, muscle strength, and quality of life (QoL).11-13

In this critical review article, we describe the definitions for sarcope-

nia, sarcopenic obesity and cachexia and how those body composition

phenotypes affect CRF, QoL, and overall prognosis in patients with HF.

Although other body composition phenotypes exist in relation to LM

abnormalities (eg, dynapenia, myopenia, sarco-osteopenia, and sarco-

osteoporosis),14 here we focus on sarcopenia, sarcopenic obesity, and

cachexia, as such conditions have been recently investigated in HF. We

also discuss potential interventions targeting body composition abnormal-

ities, particularly LM, with the goal of improving CRF and muscle

strength and, ultimately, clinical outcomes in HF.
Curr Probl Cardiol, November 2020



FIG 1. Body composition phenotypes. Individuals with a similar body mass index (BMI) can
present with different body composition compartments resulting in different body composition
phenotypes. On the left-side, nonsarcopenic individuals, including those with cachexia, are iden-
tified. On the right-side, individuals with sarcopenia alone and with sarcopenic obesity. (Modi-
fied with permission from Prado CM et al10) (Color version of figure is available online.)
Sarcopenia and Sarcopenic Obesity
Sarcopenia is defined as the reduction in skeletal muscle mass associ-

ated with a reduction in its strength and functionality, paralleled by a

preservation of FM.7 When sarcopenia is associated with increased adi-

posity (ie, obesity), it is defined as sarcopenic obesity.8 Due to the lack of

clear criteria in defining sarcopenia and sarcopenic obesity, as well as the

tools used to assess body composition, the prevalence for both conditions

in the general population ranges from 5%-20% in adults over 60 years of

age and can reach up to 50% in those aged 80 years and older.15-17

While in the past sarcopenia was exclusively thought to be the progres-

sive loss of LM due to aging (ie, primary sarcopenia), it has now been
Curr Probl Cardiol, November 2020 3



Table 1. Criteria for the definition of sarcopenia.

Probable

Sarcopenia

Confirmed

Sarcopenia

Confirmed

Sarcopenia

Severe

Sarcopenia

1) Low muscle strength ✔ ✔ ✔ ✔

2) Low muscle quantity ✔ ✔

3) Low physical performance ✔ ✔

Modified with permission from Cruz-Jentoft et al.7
largely recognized that sarcopenia can also affect younger individuals, as

many more factors other than aging seem to contribute to its development

(ie, secondary sarcopenia).7 In both primary and secondary sarcopenia, 3

major criteria are required for its identification (Table 1). Early defini-

tions used in identifying the presence of sarcopenia had suggested that a

primary criterion was a reduction in the amount of appendicular LM,18 as

opposed to the most recent definition, which emphasizes a reduction in

muscle strength as the most important criteria for identifying sarcopenia.7

The cut-offs for the 3 above-listed criteria can vary depending on the dif-

ferent definitions utilized and proposed by several associations and sarco-

penia-related working groups. The European Working Group on

Sarcopenia in Older People (EWGSOP) recently provided guidance on

what they consider the most appropriate cut-offs to define (1) reduced

muscle strength; (2) reduced amount or quality of muscle mass; and (3)

reduced physical performance,7 as summarized in Table 2. When crite-

rion 1 is met (ie, reduced muscle strength), sarcopenia is likely present,

but not confirmed. When an additional criterion between reduced muscle
Table 2. Cut-offs for sarcopenia criteria.

Test Utilized Cut-off for Men Cut-off for Women

Low Muscle Strength

Handgrip strength <27 kg <16 kg
Chair stand >15 s for 5 rises

Low muscle quantity

ALM <20 kg <15 kg
ALM index <7.0 kg/m2

<6.0 kg/m2

Low physical performance

Gait speed �0.8 m/s
SPPB �8 points �8 points
TUG �20 s �20 s
400 m walk test Noncompletion

OR � 6 min
Noncompletion
OR � 6 min

kg, kilograms; s, seconds; ALM, appendicular lean mass; SPPB, short physical performance bat-
tery; TUG, timed-up and go test; min, minutes.
Modified with permission from Cruz-Jentoft et al.7
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mass and reduced physical performance is present, the diagnosis of sarcope-

nia is confirmed, which becomes severe when all 3 criteria are met (Table 1).
Of note, race-specific cut-offs have also been proposed in the literature, par-

ticularly for Caucasians7 and Asians,19 in which the most research on sarcope-

nia and sarcopenic obesity has been conducted. The EWGSOP has recently

proposed an algorithm for the identification of sarcopenia and its related

severity, which can be implemented in both clinical and research practice

(Fig 2).7 The tests included in Figure 2 are further described in the subse-

quent paragraphs of this review. However, it is also important to indicate that

there are other cut-offs to define sarcopenia and for sarcopenia classification

proposed by other sarcopenia research communities.20

In addition to sarcopenia, the definition of sarcopenic obesity requires

the presence of excess adiposity. Several different cut-offs for FM have

been also proposed in the literature to define obesity. The most commonly
FIG 2. EWGSOP algorithm for identification, diagnosis and severity characterization of sarco-
penia. DXA, dual-energy X-ray absorptiometry; BIA, bioelectrical impedance analysis; CT, com-
puted tomography; MRI, magnetic resonance imaging; SPPB, short physical performance
battery; TUG, timed-up and go test;*: consider other potential reasons for low muscle strength.
(Used with permission from Cruz-Jentoft et al7) (Color version of figure is available online.)
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used tool to diagnose obesity, however, remains the body mass index

(BMI) � 30 kg/m2.21 While an increase in BMI predicts an increase in

total FM and/or FFM in healthy individuals22,23 maintaining its strong

prognostic role in predicting the risk to develop cardiovascular diseases,24

in those with cardiometabolic diseases the mere use of BMI without an

assessment of FM or FM distribution (ie, waist circumference, waist-hip

ratio) may lead to nutritional status misclassification.25-27 For such rea-

sons, when available, an assessment of FM may help identifying those

individuals with excess adiposity that may impair health. A FM�25% in

men and �35% in women has been suggested to be used for defining obe-

sity,28,29 however, sex, age, and race/ethnicity-specific cut-off have been

proposed in the literature.30 Importantly, sarcopenic obesity may develop

following 2 different scenarios: 1 associated with weight gain, with a dis-

proportional increase in FM compared to LM, and 1 associated with

weight loss in individuals with obesity and severe obesity in which

weight loss and FM loss may be paralleled with a significant amount of

LM loss (Fig 3).8,31
Cachexia
The terms cachexia and sarcopenia are often used interchangeably in

the literature, however, they describe different body composition pheno-

types, although they are both characterized by a reduction in LM.

Cachexia is a multiorgan syndrome associated with several diseases, par-

ticularly cancer, chronic infection, and HF, and is generally defined as

unintentional weight loss in the 6-12 months prior its assessment.5,32,33

Similar to the limitations in developing a consensus definition for sarco-

penia and sarcopenic obesity, a universal characterization of cachexia is

lacking. However, the most commonly used definition is a nonoedema-

tous (ie, corrected for fluid retention) unintentional weight loss �5%-6%

of body weight in the prior 12 months.33,34 Contrary to sarcopenia and

sarcopenic obesity in which LM loss occurs concurrently with either a

preservation of FM or increased FM, respectively, in cachexia it is typical

to observe a reduction of FM. Cachexia is often associated with anorexia

as well as the progressive worsening of functional capacity. Importantly,

while in sarcopenia or sarcopenic obesity, energy expenditure is typically

not increased or even reduced, in cachexia, energy expenditure resulting

from an accelerated hypermetabolic state is, in fact, increased.35,36 Sys-

temic inflammation is also increased, to a much greater degree, in

cachexia as compared to sarcopenia and sarcopenic obesity.5,35,36
6 Curr Probl Cardiol, November 2020



FIG 3. Development of sarcopenic obesity. (A) It proposes 2 theoretical trajectories resulting in sarcopenic obesity: (1) disproportional increase in FM com-
pared to FFM that occurs in an individual with normal BMI (blue arrow) and (2) significant weight loss occurring in individuals with severe or morbid obesity,
which may result in a disproportional loss of FFM compared to FM (red arrow). (B) Illustrates 2 proposed and 2 additional metabolic trajectories of sarcopenic
obesity: (1) long-term physical inactivity and chronic positive energy balance may lead to excess FM without a concomitant increase or even a reduction in
FFM index (FFMI) in normal BMI individuals (blue arrows); and (2) individuals with obesity may present weight loss induced by chronic diseases that contributes
to muscle loss and muscle dysfunction and ultimately sarcopenic obesity (red arrows). Fat mass is preserved or only minimally reduced to the maintenance of a
neutral energy balance. FM, fat mass; FFM, fat-free mass; BMI, body mass index; FFMI, fat-free mass index. (Modified with permission from Prado CM et al.8

and Biolo G et al.31) (Color version of figure is available online.)

C
u
rr
P
ro
b
lC

a
rd
io
l,
N
o
ve
m
b
e
r
2
0
2
0

7



Sarcopenia, Sarcopenic Obesity and Cachexia, and
CRF in HF

In addition to obesity, which is a known independent risk factor for HF

as well as one of its most common comorbid condition, muscle wasting

(ie, sarcopenia, sarcopenic obesity, and cachexia), is also highly prevalent

in HF.5,11-13 The clinical syndrome of HF can be divided based on left

ventricular ejection fraction (LVEF) in 2 major forms: HF with reduced

LVEF (HFrEF, LVEF <50% or <40%, depending on the definition used)

and HF with preserved LVEF (HFpEF, LVEF>50%). The 2 conditions

differ not only on LVEF, but also on their pathophysiology and related

therapeutic strategies. The distinction of HFrEF versus HFpEF is impor-

tant considering that several pharmacologic strategies proven to be bene-

ficial for CRF and clinical outcomes in HFrEF have failed to result in

positive outcomes in HFpEF. While both forms of HF require the pres-

ence of cardiac dysfunction (systolic dysfunction for HFrEF, also known

as systolic HF, and diastolic dysfunction for HFpEF, also known as dia-

stolic HF), are both characterized by abnormal body composition com-

partments. This is particularly true in HFpEF, in which abnormalities in

body composition have been recently suggested to play an even more pro-

nounced role than cardiac diastolic dysfunction,37,38 at least in regard to

reduced CRF.39 The significant contribution that abnormal body compo-

sition compartments present in HFpEF may, at least in part, explain the

numerous therapeutic failures of the last decades in this population, which

have primarily targeted cardiac dysfunction alone.39

The body composition abnormalities described above are associated

with impaired CRF and muscle strength in HF, likely contributing to poor

prognosis. Due to its strong ability in predicting health outcomes, the

American Heart Association has defined CRF a vital sign.40 The gold

standard assessment of CRF is a maximal cardiopulmonary exercise test-

ing (CPX) that utilizes gas-exchange analysis that allows to measure peak

oxygen consumption (VO2).
41 However, in absence of gas-exchange

analysis, CRF can be estimated using metabolic equivalents (METs).40

The consumption of oxygen in both healthy individuals and in patients

with HF relies on different contributors, often described as determinants

of CRF.41-43 Apart from the reduced cardiac reserve, reduced CRF in HF

can result from 1 or a combination of multiple factors such as reduced

pulmonary reserve, vascular dysfunctions, skeletal muscle abnormalities,

but also obesity, anemia, and iron deficiency, unhealthy diet and many

others, as presented in Figure 4 and described at length in a recent state-

of-the-art review.41 In regard to sarcopenia, sarcopenic obesity, and
8 Curr Probl Cardiol, November 2020



FIG 4. Determinants of exercise intolerance in heart failure. The Figure shows the multiple deter-
minants for reduced CRF in patients with heart failure, which includes abnormalities in respira-
tory and skeletal muscle amount, quality, composition, and functionality. CRF, cardiorespiratory
fitness. (Used with permission from Del Buono MG et al.41) (Color version of figure is available
online.)
cachexia in the setting of HF, such conditions can further contribute to the

impairment in CRF,4,44 which has been suggested to be, at least in part,

independent of cardiac function. The amount of appendicular LM is a

major determinant of CRF in both HFrEF45 and HFpEF,12 but also of

handgrip strength (HGS) and quadriceps strength.

In an analysis of the SICA-HF (Studies Investigating Comorbidities

Aggravating Heart Failure) evaluating 200 individuals with HF (68.8%

HFrEF and 31.2% HFpEF), 19.5% of the patients presented muscle wast-

ing,13 defined as having an appendicular LM 2 standard deviations below

the mean value of a healthy young reference group (18-40 years of age).

Muscle wasting was associated with a significantly lower HGS, quadri-

ceps strength and 6-minute walk test (6MWT) distance.13 In addition,

individuals with muscle wasting presented a lower absolute peak VO2

and exercise time. Importantly, the abnormalities in exercise capacities

(ie, absolute peak VO2) persisted after adjustments for comorbidities,
Curr Probl Cardiol, November 2020 9



age, sex, New York Heart Association (NYHA) class, hemoglobin,

LVEF, and the distance of the 6MWT.13 This study, however, did not dif-

ferentiate the effects of sarcopenia versus cachexia, as the definition of

muscle wasting only required the presence of reduced LM, which is as

mentioned above, characteristic of both conditions.

In a separate analysis of the SICA-HF, the investigators compared the

effects of sarcopenia with cachexia in male patients with HF.11 While the

definition of sarcopenia remained the same as the previously described

analysis,13 in this study cachexia was defined as unintentional weight loss

of �6% in the prior 12 months. Importantly, cachexia and/or sarcopenia

were present in about 32% of the individuals (N = 69).11 Of these, 30 indi-

viduals presented sarcopenia alone, 25 cachexia alone, and 14 sarcopenic

cachexia, which combined both reduced LM and unintentional weight

loss. Interestingly, while both peak VO2 and quadriceps strength were

significantly reduced in sarcopenia and cachexia, the 6MWT, HGS, and

QoL questionnaires were only reduced in patients with sarcopenia, as

compared to those with cachexia, suggesting that at least in the setting of

HF, sarcopenia may be responsible for a more severe impairment of CRF

and muscle strength compared to cachexia. As expected, when sarcopenia

and cachexia coexisted (ie, sarcopenic cachexia), CRF, muscle strength,

and QoL were impaired more so than either condition alone.

It is important to note that the role of sarcopenic obesity was not inves-

tigated in these studies. Nevertheless, measures of adiposity such as FM

index, have been associated with reduced CRF in HF, particularly in

HFpEF,46,47 which would suggest that in presence of both sarcopenia and

obesity (ie, sarcopenic obesity), CRF may be further reduced (Fig 5).48

Further studies to confirm this hypothesis are urgently needed. Taken

together, these data suggest the therapies targeting changes in body com-

position (ie, increased LM, reduced FM) can exert beneficial effects on

CRF in patients with HF and concomitant sarcopenia, sarcopenic obesity,

and cachexia. Of note, the BMI of the individuals enrolled in the SICA-

HF was significantly lower than the typical BMI reported in studies per-

formed in the United States, clearly requiring confirmatory studies com-

paring the effects of sarcopenia with cachexia in different populations.
Skeletal Muscle Abnormalities and Endothelial
Dysfunction in HF

In instances where skeletal muscle oxygen demand is increased, the

HF profile is associated with a greater reliance on glycolytic,49,50 as

opposed to oxidative,51-54 pathways to produce energy (ie, ATP). This is
10 Curr Probl Cardiol, November 2020
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evident with increase lactate production at submaximal workloads in HF

patients when compared to age matched controls.55 This increased glyco-

lytic state during periods of augmented oxygen demand may be driven by

numerous factors such as skeletal muscle fiber type shifts or reduced oxy-

gen delivery. The examination of slow, oxidative type I muscle fibers and

fast, glycolytic type II muscle fibers in HF patients has revealed substantial

reduction in the ratio of type I to type II fibers. It has been revealed that

this may result from a decline in type I fibers,56-60 an increase in type II

fibers,56 and/or a shift from type I to type II fibers.59,61,62 The reported

downregulation of mitochondrial transcription factor proliferator-activated

receptor g coactivator 1-a53,63 may be a contributor to these substantial

shifts in fiber type and subsequent reliance on glycolytic pathways. In addi-

tion, considerable reductions in oxygen delivery to the skeletal muscle may

modulate this change in fiber type ratio due to the resulting limited oxygen

availability. In HFrEF patients, central limitations (ie, reduced cardiac out-

put)64 coupled with endothelial dysfunction,65-67 augmented sympathetic

vasoconstriction, enhanced heterogeneity of blood flow,68,69 and lower cap-

illary density56,70 effectively prevent adequate oxygen delivery during

instances of increased oxygen demand. In HFpEF patients, oxygen delivery

to the skeletal muscle is limited by observed reductions in microvascular

vasodilatory capacity71,72 and blunted capillary blood flow due to reduced

capillary density and diameter, decreases in red blood cell flux into existing

capillaries,73-75 and inadequate perfusion pressure gradient secondary to

increased central venous pressures.

Another major issue regarding altered muscle metabolism during

instances of increased skeletal muscle oxygen demand is the blunted oxy-

gen kinetics at the onset of activity. Oxygen supply and demand is tightly

coupled, and the onset of exercise/activity presents a great challenge to

this coupling. Indeed, the speed to which metabolic demand can be met is

crucial for reducing skeletal muscle fatigue. Greater fatigue is present

when oxygen and thus, blood flow kinetics,76 are slowed, as reported in

HF patients, and this is thought to be due to greater depletion of high-

energy phosphagen stores (ATP/phosphocreatine) and a greater reliance

on glycolytic pathways to produce energy. Taken together, the depletion

of glycogen and phosphagen stores,50 coupled with slower resynthesis of

ATP and phosphocreatine stores77 and negative changes in pH, can lead

to early-onset skeletal muscle fatigue and reduced CRF in HF patients.

Potential contributors to the aforementioned alterations in skeletal

muscle function in HF patients are plentiful. Inflammation, oxidative

stress, and neurohormonal factors such as angiotensin-II, epinephrine,

and norepinephrine can all act individually or in concert when affecting
12 Curr Probl Cardiol, November 2020



skeletal muscle function in HF. In addition to the above listed contribu-

tors to skeletal muscle maladaptation in HF patients, other factors have

also been implicated such as myofilament dysfunction secondary to

reduced calcium cycling in skeletal muscle myocytes,78,79 capillary rare-

faction,80 skeletal muscle fibrosis,81 and greater protein catabolism79,82-88

modulated by a disruption in the balance between protein synthe-

sis79,82,89-94 and degradation.79,83-85,95,96 Therefore, the skeletal muscle

maladaptation reported in HF patients results in significant barriers to

adequately meeting the oxygen demand of the skeletal muscle resulting

in greater fatigability and reduced CRF.
Mitochondrial Dysfunction
Mitochondria dysfunction is central to the dysregulation of myocyte

function and viability and is therefore sentinel in the pathogenesis of sar-

copenia.97 The pathophysiological pathways linking mitochondrial dys-

function and chronic muscle atrophy are highly complex, but ultimately

involve an imbalance between fission and fusion that alters cellular sig-

naling, accelerated mitochondrial mediated apoptosis, and impaired

autophagy.97 Reductions in skeletal muscle mitochondrial density and

impairments in mitochondrial morphology, function, and oxidative

capacity are consistently reported in HF.98-101 Chronic adrenergic stimu-

lation that is characteristic of HF is a likely contributor to this aberrant

mitochondrial function.86,98,99 In this respect, patients treated with beta-

blockers or angiotensin-converting enzyme inhibitors appear to confer

some degree of skeletal muscle mitochondrial protection.54,102,103 Sus-

tained sympathetic activity is linked with excessive mitochondrial,

NADPH oxidase, and xanthine oxidase derived reactive oxygen species

production that outpaces the endogenous antioxidant capacity,90,98,99 fur-

ther contributing to mitochondrial damage, muscular protein dysfunction,

and degradation.104,105

As changes in mitochondrial function occur in parallel with changes in

muscle function throughout the spectrum of sarcopenia,106 it would be

expected that mitochondrial dysfunction is implicated in the reduced

CRF that is characteristic of HF. Indeed, alterations in mitochondrial

morphology, biogenesis, and fission regulation are correlated with maxi-

mal and submaximal exercise capacity in both HFrEF and HFpEF.59,107

In contrast, other studies suggest that although mitochondrial enzyme

activity and oxidative capacity is diminished in HF, the limitations to

CRF in this population lie upstream of the mitochondria.54,108 Therefore,

the role that sarcopenia-related skeletal muscle mitochondrial dysfunction
Curr Probl Cardiol, November 2020 13



and bioenergetic failure plays in HF-related exercise intolerance remains

equivocal and warrants further investigation.

Independent of muscle function, aberrant skeletal mitochondrial bioen-

ergetics may also contribute to muscle quality in terms of intermuscular

fat content. In the presence of increased circulating free fatty acids and

triglycerides, incomplete fatty acid oxidation and insulin resistance, an

impairment in mitochondrial oxidative capacity could result in substrate

overload with subsequent accumulation of lipid intermediates in the mus-

cle.109 An increased intermuscular fat/skeletal muscle mass ratio, particu-

larly of the thigh, has previously been associated with reduced CRF.110 In

support to this association, a reduced intermuscular fat/skeletal muscle

mass ratio has been associated with favorable changes in CRF in HFpEF

patients.111 The mechanisms through which increased intermuscular fat/

skeletal muscle mass ratio may impair CRF requires further investigation.

It has been suggested that intramuscular fat may shunt blood blow away

from the muscle, ultimately reducing skeletal muscle perfusive oxygen

delivery.
Respiratory Muscle Abnormalities
Muscle fatigue and dyspnea are 2 major symptoms commonly reported

by patients with HF, limiting their normal daily activities.112 Interest-

ingly, the pathophysiology behind these phenotypes is not just limited to

peripheral muscular and cardiac dysfunction. Preclinical animal studies

and human HF studies have described numerous anomalies in the respira-

tory muscles that contribute to the observed exacerbated fatigue.59,112-116

Histological, structural, biochemical, and functional changes in the dia-

phragm contribute to reduced respiratory strength and endurance in

HF.117,118 Notably, the consequences of diaphragm myopathy in this pop-

ulation are not limited to fatigue and dyspnea. Associations between the

degree of respiratory muscle weakness and the severity of cardiac dys-

function have been previously described.119 Furthermore, reduced respi-

ratory muscle strength and endurance exacerbate dyspnea and directly

contributes to reduced CRF in HF.115

Patients with HF typically experience higher minute ventilation and an

increased workload of the respiratory muscles after light exertion result-

ing in congestion, edema, and lung stiffness.112 Specifically, during exer-

tion, there is an increase in lactic acid from the skeletal muscle that is

buffered by bicarbonate, resulting in the synthesis of carbon dioxide and

thus, stimulating the brain stem respiratory center.112,120,121 In addition,
14 Curr Probl Cardiol, November 2020



during physical activity, the pulmonary dead space of patients with HF

almost doubles when compared with healthy individuals, increasing the

ratio between dead space and tidal volume. This detrimental characteris-

tic is neutralized through an increased workload of the respiratory

muscles aggravating the rapid and shallow breathing.122

Multiple studies have shown that, apart from changes in peripheral

muscles, patients with HF also exhibit structural changes in respiratory

muscles that contribute to exertional fatigue and dyspnea.59,113-116 Stud-

ies completed in the diaphragm of different animal models with HF have

revealed overall atrophy of type I, type IIa, and IIb fibers as well as an

increase in the proportion of type I fibers.123,124 Similar alterations have

been found in diaphragm samples of patients with HF with increases in

the proportion of type I fibers and decreased type IIb fibers.124 This shift

in respiratory muscle fiber type also contributes to a change in metabo-

lism losing more fatigable fibers toward a slower, less fatigue profile with

greater oxidative capacity.124,125 Although this shift may seem initially

an advantage, type I fibers generate lower cross-sectional tension than

type IIb fibers compromising the strength ability of the diaphragm.125,126

This situation exerts an overwhelming demand to enhance respiratory

muscle endurance compromising respiratory muscle load127 and predis-

posing the patient to lung hyperinflation.116,128

In conclusion, respiratory muscles in HF exhibit a different histologi-

cal phenotype that affects their structure and function and therefore, con-

tributes to their generalized weakness.114,116 Importantly, dysfunctions in

the inspiratory muscles play a critical role in the response to exertion

with an exacerbate fatigue and dyspnea response that directly contributes

to exercise intolerance in HF.

Screening and Evaluation of Body Composition
Phenotypes
Body Composition Assessment
Magnetic resonance imaging (MRI) and computed tomography (CT) are

currently considered the gold standard methods to measure muscle mass

and muscle quality.129-131 The high resolution and contrast of MRI makes

it particularly useful in separation of fat and muscle tissue and provides

reproducible and reliable images.129 However along with CT, these clinical

techniques of assessment are expensive, immobile, require highly trained

personnel, and importantly, protocols for analysis are not standardized and

cut-offs for low muscle mass are not universally defined.129-131 Dual
Curr Probl Cardiol, November 2020 15



Energy X-Ray Absorptiometry (DXA) is relatively quick with a minimal

exposure of radiation, it is commonly utilized in research, and presents a

lower cost than MRI or CT. Importantly body composition assessment

with DXA highly correlates with those of MRI and CT.

Current cut-offs for low muscle mass such as those defined by the

EWGSOP and the Asian Working Group for Sarcopenia (AWGS) are

DXA-based.130,132 However, limitations of utilizing DXA exist such as

the inability to assess intermuscular fat, which can only be estimated.129

Additionally, though DXA is widely available there are inconsistent

results among different brands of machinery and it is not easily mobi-

lized.129-131 Other methods aimed at assessing muscle mass include bio-

electrical impedance analysis (BIA) and ultrasound.130 These options are

quick, portable, affordable, and easier to operate than MRI, CT, and

DXA. BIA is an accepted technique by major consensus statements such

as AWGS and EWGSOP and provides an estimate of total or appendicu-

lar skeletal muscle mass based on equations, which should be validated in

the specific population of use.130,133 Estimates from BIA may vary

between machines and type of BIA (single-frequency, multifrequency,

bioelectrical impedance spectroscopy)134 and are affected by subject’s

hydration.130,133 Lastly, ultrasound correlates well with reference meth-

ods such as MRI, however, the technique for assessment is not completely

standardized and cut-offs for low muscle mass are not well established.135
Functional Testing
Performance-based testing provides a functional, as opposed to struc-

tural, assessment of skeletal muscle function. These tests can focus on

strength development from only 1 muscle group (ie, HGS) or multiple

muscle groups employing strength/force development to complete certain

tasks similar to what is expected with activities of daily living (short

physical performance battery [SPPB]) or tolerance of exercise (ie, CPX),

or physical activity (ie, 6MWT).

HGS is often employed alone or in combination with other tests136-138

to determine global reduction in muscle function. Indeed, HGS highly

correlates with strength measures obtained from the arm, leg, and

trunk.139 The HGS method is simple to administer and involves a maxi-

mal isometric contraction of the forearms performed multiple times. The

ease of the test is also coupled with its appropriateness for patients who

are bed-ridden or have severe physical impairment and cannot participate

in the SBBP, a peak oxygen uptake test, or the 6MWT. In HF and non-

HF populations, HGS has been reported to predict various health
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outcomes and mortality.137,138,140 Specific to HF patients, HGS is associ-

ated with reductions in muscle mass that can substantially lower other

functional outcomes (peak VO2, exercise time, 6MWT, or 4-meter walk

test).13 In absence of HGS assessment, the chair stand test or the chair

rise test can be implemented for an estimate of skeletal leg muscle

strength.141-143 The chair stand test measures the time needed for an indi-

vidual to rise 5 times from a seated position, while the chair rise test

counts the number of times an individual can rise and sit completely in

30 seconds.141-143

The SPPB provides additional functional assessments that are scored

together and involve the evaluation of standing balance, gait speed, and a

5-repetition sit and stand test.144 In HF patients, the SPPB correlates with

peak oxygen uptake values, total and limb-specific LM,145 as well as with

mortality risk.146 When comparing across HF phenotypes, utilization of

the SPPB revealed similar outcomes for both HFrEF and HFpEF

patients.147 The Timed-Up and Go Test (TUG) can also be used to assess

physical function.148 To perform the TUG, individuals are asked to stand

up from a chair, walk for 3 meters, turn around, walk back to the chair

and sit again.

Cardiopulmonary testing, such as a ramped exercise protocol or

6MWT, are commonly employed in HF patients with reductions in peak

oxygen uptake or distance covered, which are considered hallmarks of

the HF etiology.37,149,150 Although poor performance in these functional

tests can be correlated back to skeletal muscle maladaptation in HF

patients,145,151 these types of tests are reliant on adequate oxygen delivery

and therefore can be altered by the numerous factors other than skeletal

muscle dysfunction (ie, reduced cardiac output, endothelial dysfunction)

associated with HF.
Biomarkers
Currently, there exist no easily identifiable biomarkers for sarcopenia

and cachexia due to the complex and multifactorial pathophysiology of

these syndromes.152 Many biomarkers have been suggested in the litera-

ture, but ongoing work focuses on identifying biomarkers, which may be

the most useful in providing value to clinical assessment of the

patient.152,153 Current suggestions include biomarkers of systemic inflam-

mation, nutritional status, oxidative stress, endocrine activity, muscle pro-

tein turnover, and neuromuscular function.153,154

The BIOmarkers associated with Sarcopenia and PHysical frailty in

EldeRly pErsons (BIOSPHERE) study is an ongoing case-control,
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cross-sectional study, which seeks to address the lack of distinct bio-

markers to detect and track clinical progress of sarcopenia and frailty.152

Approximately half of the 200 subjects currently enrolled meet the crite-

ria for physical frailty and sarcopenia (PF&S) as defined under the Foun-

dation for the National Institute of Health’s Sarcopenia and Physical

fRality IN older people: multi-compartmenT Treatment strategies proj-

ect155 and the other half serve as age-matched healthy controls.152 The

first released results from the project show a distinct amino acid profile

associated with PF&S: higher levels of asparagine, aspartic acid, citrul-

line, ethanolamine, glutamic acid, sarcosine, and taurine while patients

without PF&S had higher levels of a-aminobutyric acid and methio-

nine.156 Twelve other candidate biomarkers are being analyzed in BIO-

SPHERE of which 10 are markers of inflammation (ie, C-reactive

protein, tumor necrosis factor-a, and interleukin-6), and the remaining

biomarkers are C-Terminal Agrin Fragment (CAF, a marker of neuro-

muscular junction dysfunction) and Procollagen III N-terminal peptide

(P3NP, a marker of muscle remodeling).152 Importantly, a major barrier

to identifying a sarcopenia biomarker remains its specificity as many

inflammation markers are not specific to muscle tissue.153,157

An important feature of a candidate biomarker for sarcopenia would be the

ability to demonstrate response to treatment. A small randomized controlled

exercise training study examined the effects of 6 weeks of resistance training

on hypothesized sarcopenia biomarkers CAF and P3NP.158 At the end of the

intervention, individuals in the exercise group showed nonsignificant

increases in both P3NP and CAF, along with an increase in muscle strength

and quality without an increase in LM. However, only the increase in CAF

was deemed to be clinically meaningful.158 Notably, this increase is paradoxi-

cal, as higher CAF is associated with the presence of sarcopenia, including in

HF.159 Nevertheless, in the case of this resistance training intervention, it may

reflect positive remodeling to the exercise training stimulus.158
Questionnaires
A number of scoring tools and questionnaires have been developed for

the quick clinical assessment of sarcopenia and cachexia. The SARC-F is

one such tool that is composed of 5 questions aimed at muscle strength

and functionality and can be easily and quickly used in the clinical set-

ting.160 However, when compared to sarcopenia criteria provided by the

International Working Group on Sarcopenia, EWGSOP, and AWGS, the

SARC-F was found to have high specificity, but poor sensitivity.160 Nota-

bly, no questions regarding muscle mass are included within this tool as
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muscle mass is not easily assessed in the extremely short time that the

SARC-F was designed to be implemented.160 To address this gap, calf

circumference has been added as a surrogate of muscle mass.161 This

tool, termed the SARC-calF, is able to greatly improve the sensitivity of

the original test with EWGSOP, International Working Group on Sarco-

penia, AWGS, and FINH criteria.162

Another quick clinical assessment, the Mini Sarcopenia Risk Assess-

ment (MSRA), asks 7 questions related to dietary intake, age, weight his-

tory, physical, and hospitalization based on existing literature regarding

sarcopenia risk factors.163 In a recent study comparing the MSRA and

SARC-F using AWGS criteria, the SARC-F was found to have superior

specificity for sarcopenia while the MSRA had superior sensitivity.164

Currently, neither the MSRA nor the SARC-F has been validated in the

HF population.

Alternatively, the Mini Nutritional Assessment Short Form (MNA-SF)

is a 6-question tool developed for a rapid clinical assessment of nutrition

status in elderly populations.165 Though not developed specifically for

cachexia or sarcopenia, an analysis of the SICA-HF examined the use of

the MNA-SF in a cohort of 130 HFrEF subjects.166 This analysis defined

muscle wasting as an appendicular skeletal muscle mass 2 standard devia-

tions below the mean of a healthy reference group 18-40 years old and

found that a MNA-SF cutoff value of 12.5 demonstrated good sensitivity,

but lacked specificity.166 Lastly, the Sar-QoL is a 22-question QoL ques-

tionnaire specific to individuals with sarcopenia, recently validated also

in English.167 It also has not yet been evaluated in a HF population.168
Current Treatments and Future Directions
Aerobic Exercise Training
Exercise has proven to be a highly beneficial adjunct therapy for

improving skeletal muscle function and exercise capacity in HF patients.

As aerobic exercise is a powerful stimulus for cardiovascular adaptations,

it is the more frequently prescribed modality of exercise in this patient

population. Although aerobic activity is not deemed the most effective

mode of exercise to elicit an anabolic response, it may still infer benefits

for sarcopenia via mechanisms that prevent skeletal muscle catabolism.

In human subject trials of HF, favorable structural, metabolic, hormonal,

antioxidant, and anti-inflammatory adaptations that are local to skeletal

muscle have been observed following chronic aerobic exercise interven-

tions.169 Specifically, high intensity aerobic interventions have been
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shown to increase types I and II fiber cross-sectional area, in addition to a

predominant shift from glycolytic to oxidative fiber types.170,171 These

exercise-related structural changes in cross-sectional area and fiber type

have been accompanied by increased capillary densities and capillary/

fiber ratios, thus augmenting oxygen and nutrient delivery.171,172 With

regards to sarcopenia-related pathways, aerobic exercise has been shown

to block ubiquitin protease system activation by attenuating the expres-

sion of the E3-ligase muscle ring factor-1, thus preventing down-stream

protein degradation.173 Additionally, in patients with HF, aerobic exer-

cise induces an increase in expression and sensitivity of the hypertrophic

regulator, insulin-like growth factor-1.174

In respect to the inflammatory and oxidative stress contributors to sar-

copenia, local decreases in cytokine and inducible nitric oxide synthase

expression have been observed following training, thus providing evi-

dence for an enhanced anti-inflammatory environment within the mus-

cle.175 Evidence of the antioxidant effects of aerobic training appear to be

predominantly mediated by increases in enzymatic antioxidants superox-

ide dismutase, catalase, and glutathione peroxidase.176,177 Finally, while

exercise related improvements in skeletal mitochondrial structure,170 den-

sity,171 and oxidative capacity178 have previously been reported the

effects of aerobic exercise on mitochondrial bioenergetics and apoptosis

are relatively unexplored in the HF population.

Despite these positive effects on markers of skeletal muscle hypertro-

phy, the effect of aerobic exercise on muscle quantity and quality assessed

via recommended endpoints of nutritional status179 in sarcopenic HF are

yet to be fully elucidated and warrant investigation in future studies.
Resistance Exercise Training
The main principles of exercise programs specifically designed for

patients with HF rely on training peripheral muscles effectively without

producing great cardiovascular stress. Traditionally, aerobic training has

been the modality of choice given its ability to increase exercise capac-

ity.180-182 Although endurance training is able to partially counteract the

histochemical and metabolic abnormalities observed in skeletal mus-

cle,170,178 improvements in muscle strength and endurance can mostly be

achieved after specific resistant training.183 Remarkably, muscle mass is

directly associated with exercise capacity,45,184 emphasizing the role that

resistance exercise may contribute to improving CRF in HF.185

Similar to any other chronic condition, prescribing physical activity to

a patient with HF should involve extra caution in order to minimize any
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potential harmful event. Despite multiple positive evidences,186-192 resis-

tance exercise and especially isometric or static exercise have not been

routinely prescribed to patients with HF due to the potential detrimental

effect on cardiovascular response.193-195 Increasing evidences indicate

that this modality of physical activity is safe and well-tolerated in this

population without major complications.186,189,190,196-198 Indeed, the

aforementioned studies have evaluated the preexisting concerns with left

ventricular remodeling,182,199 discarding any safety concern from a car-

diovascular perspective.189,197

A scientific statement from the American Heart Association endorses

resistance training as part of the health and fitness suggestions for people

with cardiovascular disease.200 However, the majority of these recom-

mendations are not specifically derived from patients with HF. As a

result, most of specific HF recommendations are based on different sys-

tematic reviews and meta-analysis that have evaluated the role of resis-

tance training on patients with HF.183,201,202 Accordingly, there is a

general consensus that resistance training is safe for patients with HF

classified as NYHA classes I-III with a clinically stable presentation for

at least 2 months.187,190,203 Although specific contraindications have not

been reported, a debate still exists surrounding the prescription of resis-

tance exercise for patients classified as NYHA IV.183

Positive results have been observed in multiple trials using resistance train-

ing designed with different length (8-12 weeks), frequency (1-3 days per

week), and intensity (40%-80% of 1 repetition maximum).186,187,190,203-208

Improvements in maximal strength are the most characteristic benefit

described in most of the trials with improvements ranging from 15%207 to

43%190 of maximal strength. Such changes are frequently accompanied by

greater muscle endurance ranging from 18%203 to even 299%.190 Notably,

these studies have also described improvements in exercise capacity up to

19% of peak VO2 in just 8 weeks of training.
208 Resistance training programs

in HF can also improve skeletal muscle metabolism,209 muscle fiber composi-

tion190 and can enhance blood flow and vascular function.186,206,210 Taken

together, resistance exercise represents an important tool to improve exercise

tolerance and overall, health status in patients with HF.

Current recommendations to design an appropriate exercise program

for HF primarily depend on the overall health status of the participant. As

in any other chronic disease, a training session for the patient with a good

overall condition is significantly different from any physical activity plan

for those individuals awaiting heart transplantation with very low cardiac

reserve. Although several studies have completed resistance exercise pro-

grams in patients with a fragile health state,196,211,212 emerging evidence
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suggests to exclude them from engaging in resistance training pro-

grams.183 For the rest of the patients with HF (NYHA classes I-III), a

resistance training session should require strength exercises using

dynamic movements with machines, small free weights, or elastic

bands.201

Patients with an overall good health condition (NYHA class I) can

engage in whole body resistance exercises186,190,206,207,210 while those with

greater limitations (NYHA classes II-III) should complete unilateral mus-

cular training.187,192,203 In addition, current recommendations suggest

dividing the session into short phases, including a small number of repeti-

tions183,213,214 and short duration (20-30 minutes per session). Designing a

program that applies the principles of interval training will allow patients

with HF to train at a higher power output with lower left ventricular stress

and reduced hemodynamic requirements.215 In terms of intensity, recom-

mendations range from 40% to 60% of an individual’s 1-repetition maxi-

mum and a perceived exertion from “fairly light” (rating of 11 Borg scale)

to “somewhat hard” (rating of 13 Borg scale).198,203,207,210,212,216 However,

it is important to note that multiple studies have used higher intensities that

have been well-tolerated among the participants.186-188,190,203,207 Finally,

current recommendations suggest completing resistance training 2 times

per week if combined with aerobic exercise or 3 times per week if it is the

sole exercise modality utilized.183

Increasing evidence indicates that resistance training in combination

with aerobic exercise represents a beneficial approach to counteract the

negative peripheral side effects commonly observed in patients with

HF.203-205,208,211 Certainly, the combination of strength and endurance

programs results in greater improvements in exercise capacity than either

modality alone.203,205,206,210 Considering the critical clinical value that

VO2 has in predicting QoL within this population, combining both

modalities of exercise may represent an important tool to enhance prog-

nosis and survival in HF.217
Dietary Supplementation
Among suggested dietary supplementation therapies for sarcopenia

and cachexia, protein, amino acids and their metabolites remain the key

nutrients of interest. It is commonly accepted that older adults have

higher dietary protein requirements to help counteract a reduced response

to anabolic stimuli, which often leads to a loss of muscle mass and func-

tion over time.218 Additionally, a recent scientific statement from the

Heart Failure Society of America (HFSA) recommended a goal protein
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intake of at least 1.1 grams of protein per kilogram of body weight per

day for HF patients with identified cachexia or malnutrition.219 However,

while most trials include older adults with reduced muscle mass or

strength, criteria for entry is highly variable as are the dosing of protein

or amino acids assigned.

Some of the earlier protein and amino acid supplementation strategies

were specifically evaluated in HF populations. One study examined the

effect of 8 grams of essential amino acids (EAA) for 2 months in 38 sta-

ble HFrEF patients with adequate protein-energy intake.220 Subjects were

enrolled based on the severe depletion of muscle mass defined by arm

muscle area measured by triceps skinfold thickness and mid-arm muscle

circumference.220 Following the randomization to either the EAA supple-

ment or no supplement, a 7-day food records and a nitrogen balance test

was used to assess dietary intake. Subjects also performed a 6MWT and

cycle-ergometer-based CPX to assess CRF.220 After 2 months, individu-

als in the EAA group showed a better CRF by improvements in both their

peak VO2 and peak work during CPX, as well as distance covered during

the 6MWT.220 No improvements were observed in the control group.

Another study examined the effects of a 6-week high calorie, high pro-

tein oral nutrition supplement in subjects with HFrEF versus a low-calo-

rie, protein-free placebo supplement.221 The intervention supplement

supplied 600 calories and 20 grams of protein daily, while the texture and

taste matched placebo supplied only 12 calories.221 Enrolled subjects

were screened for cardiac cachexia defined as edema-free weight loss

>7.5% over a period of at least 6 months.221 Subjects underwent body

composition measured by DXA, a 6MWT as well as a treadmill CPX to

assess peak VO2 at baseline, 6 weeks and 18 weeks.221 Of note, dietary

intake was not measured.221 After 6 weeks of daily supplementation, indi-

viduals significantly increased their total mass (ie, body weight), FM, and

LM. Interestingly, at 18 weeks, weight was maintained and only FM

remained significantly elevated.221 Distance covered during the 6MWT

was significantly greater at 6 weeks and trended toward an increase at 18

weeks, however, peak VO2 was not increased at either timepoint.221

More recently, a study of 66 subjects with HF were randomly assigned

to either resistance exercise or resistance exercise with 10 grams of

BCAA for 3 months.222 Resistance exercise was performed for 1 hour

twice per week in a supervised setting.222 Subjects underwent body com-

position with BIA, treadmill stress tests, HGS with dynamometer and

anthropometric measurement of waist, hip, and arm at both baseline and

12 weeks.222 Subjects also underwent standardized nutritional counseling

and evaluation with 24-hour dietary recall at baseline and 12 weeks with
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a research dietitian.222 After 3 months, between group differences were

not observed, with the exception of a lower hip circumference in the

BCAA group.222 Both groups of subjects increased HGS, but neither had

changes in CRF nor FM and LM.222 Notably, there were no criteria of

reduced muscle mass, strength, or weight loss to be enrolled in this

trial.222 It is plausible that the participants were not in a depleted state at

baseline and therefore, would not have benefitted from additional

BCAAs. Additionally, in the aging population, maintaining an adequate

protein intake alone may not be sufficient to protect against a loss of mus-

cle mass. Recently, an analysis of a longitudinal cohort of 1561 individu-

als aged 70-79 followed over a 6-year span, showed that higher protein

intake was not associated with protection against thigh muscle loss mea-

sured by CT scan at baseline and 6-year timepoints. This was the case

even for those consuming above 1.2 grams per kilogram body weight of

protein per day, which is greater than the HFSA’s recent recommendation

for protein intake.219,223 Overall, more evidence is needed to identify the

ideal dosing of protein supplementation in HF patients with both sarcope-

nia or cachexia. There is perhaps a greater protein need in sarcopenic

patients who have a reduced HGS and peak VO2 compared to cachectic

patients.224 Further work is also warranted on protein supplementation in

HFpEF patients as the presented work has mostly focused on HFrEF.

Recently, trials have utilized other supplements with theorized effects

on muscle within protein supplements. Beta-hydroxy-beta-methylbuty-

rate (HMB), a metabolite of the amino acid leucine, has been shown to

increase muscle mass gain in older adults.225 Vitamin D has also been

shown to have effects to skeletal muscle, most notably muscle strength

and higher serum levels may enhance ability to gain muscle mass.226,227

A double-blind, placebo controlled, randomized trial looked at the effects

of supplementing a high protein oral nutrition supplement with both

HMB and Vitamin D twice daily during admission and for 90 days post

discharge in 652 elderly (>65) HF patients.228 The patients were classi-

fied as malnourished by the Subjective Global Assessment (SGA) upon

admission, but were not screened for sarcopenia or cachexia and body

composition was not performed.228 Though the primary endpoint was not

met (a composite of readmission and mortality at 90 days), a significantly

reduced risk of mortality and improved odds of better nutrition status as

measured by the SGA were observed at 90 days compared to placebo.228

Notably, a multicenter, double-blind, randomized placebo controlled

trial with an interventional nutrition supplement containing both vitamin

D and HMB was supplemented for 24 weeks in free living individuals.229

The 330 elderly subjects enrolled were classified as sarcopenic based on
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EWGSOP guidelines and malnourished by SGA, but did not have HF.229

The interventional and placebo supplements were isocaloric, each provid-

ing 330 calories.229 The interventional oral nutritional supplements con-

tained 20 grams protein, HMB and 499 international units vitamin D

while placebo had 14 grams of protein, no HMB and 147 IU

vitamin D.229 Peak torque leg strength, HGS by dynamometer, gait speed,

body composition by DXA and 3-day food diaries were performed at

baseline, 12 and 24 weeks.229 At 24 weeks, subjects in both groups dem-

onstrated improved leg and HGS, gait speed as well as improved muscle

quality with no statistical difference between groups.229 Sarcopenia was

staged and those with mild-moderate sarcopenia had a greater improve-

ment on the interventional oral nutritional supplements in respect to HGS

and leg strength than those with severe sarcopenia, possibly due to better

blood flow and nutrient delivery to the muscle.229 Subjects in both groups

demonstrated increases from baseline in body weight and FM with no

observed differences between groups.229 Another double-blind, placebo

controlled randomized trial examined the effect of a once daily oral nutri-

tion supplement with 112 calories, 22 grams of protein, and 100 IU Vita-

min D versus an isocaloric maltodextrin supplement in 130 sarcopenic

elderly subjects admitted to a physical rehabilitation center.230 As the

patients were admitted, they consumed a standardized diet and their die-

tary intake was measured for 3 days at the beginning and end of the study

period.230 At the end of the 12 week period, subjects receiving the inter-

vention supplement increased their FFM, skeletal muscle mass, MNA-SF

score, HGS, insulin-like growth factor-1 and decreased their C-reactive

protein in comparison to those receiving the isocaloric maltodextrin sup-

plement.230 Importantly, the effects of vitamin D and HMB individually

versus protein are not clearly elucidated in the aforementioned trials, as

the placebo supplements either provide a different amount of these sup-

plemental nutrients (Vitamin D and HMB) than the interventional supple-

ments(229) or does not include them at all.228,230 Furthermore, when both

interventional and placebo supplements contained significant amounts of

protein, differences between groups were reduced, suggesting that protein

quantity may have been the major driving factor for the observed

improvements within the trials.229 Of note, while vitamin D supplementa-

tion has been considered an appealing strategy in HF, in a randomized-

controlled trial of 400 patients with advanced HF, 3 years of daily supple-

mentation with 400 IU, did not result in reduced mortality.231 Moreover,

vitamin D supplementation was associated with a greater need for

mechanical circulatory support implants, questioning the safety of vita-

min D in this population.231
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Other supplements of interest in the treatment of cachexia and sarcope-

nia in HF include the use of creatine, nitrates, and omega-3 polyunsatu-

rated fatty acids (N-3 PUFA). HF subjects demonstrate reduced skeletal

muscle creatine and thus supplementation has been studied for its effects

on CRF and muscle strength.232 In a randomized, double-blind, placebo-

controlled, crossover trial of 20 subjects with HFrEF, supplementation of

4£ 5 grams of creatine daily for 6 weeks increased body weight and mus-

cle strength versus placebo.232 Post intervention however, the patients

reverted to baseline and weight gain was postulated to be an effect of fluid

retention secondary to creatine use, an important consideration in HF

patients.232 There were no effects on CRF measured by peak VO2 or dis-

tance covered in the 6MWT.232 This was reflected by a later trial that

showed no effect of 5 grams creatine per day for 6 months in an HFrEF

cohort on 6MWT or peak VO2.
233 Notably, neither trial screened for sar-

copenia or cachexia at baseline nor assessed body composition and there-

fore effect on these specific individuals is not known.232,233

Inorganic nitrates are converted to nitric oxide, a potent vasodilator,

which has been hypothesized to improve CRF in HF. While initial finding

suggested that inorganic nitrates would be beneficial on CRF in HFpEF

patients,234 in a larger randomized controlled trial of 105 individuals with

HFpEF, inorganic nitrate administered by inhaler 3 times daily versus

placebo did not improve peak VO2.
235 Similarly, inorganic nitrates failed

to improve CRF in HFrEF patients.236 N-3 PUFA can increase FM and

decrease inflammatory markers such as tumor-necrosis factor a and Inter-

leukin-1 in advanced HF population.237 In a small randomized controlled

trial in 31 patients with HFrEF, a 3-month intervention with a supplement

combining N-3 PUFA and dipeptide L-alanyl-L-glutamine was associated

with increased LM measured with DXA, and a favorable trend toward an

increase in peak VO2 compared to placebo.238 No differences between

groups were observed in 6MWT distance, HGS, isolated arm, and leg

muscle function and echocardiography measures at follow-up.238 Further

work is clearly warranted in creatine, N-3 PUFA, and nitrates to establish

their effects on muscle mass and strength in HF patients with confirmed

sarcopenia or cachexia.
Dietary Patterns
Currently, no evidence exists to show that a change in dietary pattern

can reverse loss of muscle mass and strength. The HFSA supports the

adoption of a Mediterranean dietary pattern (MedDiet) or Dietary

Approaches to Stop Hypertension diet as reasonable for those with HF or
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at risk of developing HF, but also underlined a need for greater evi-

dence.219 For the prevention of sarcopenia, the MedDiet has accrued

more evidence than any other dietary pattern.239-243 The MedDiet is rec-

ognized as the traditional dietary pattern of countries surrounding the

Mediterranean Sea, rich in fruit, vegetables, whole grains, nuts, fish, and

extra-virgin olive oil (EVOO), with moderate intake of poultry, dairy,

and red wine and low intake of refined sugar and red meat.244 The Med-

Diet was first recognized as being protective against the development of

cardiovascular disease,245 which accruing evidence such as the landmark

Prevenci�on con Dieta Mediterr�anea (PREDIMED) trial has continued to

support.246,247 Mixed results currently exist on the ability of the MedDiet

to reduce risk of developing HF,248-250 but recent work has shown that

higher adherence to the MedDiet reduces hospital readmissions for

HF.251,252 The preventative benefits of the MedDiet are likely synergistic

as it is a nutrient-rich dietary pattern, but a particularly important role

may be played by its enrichment in unsaturated fatty acids (UFA) origi-

nating from dietary sources, such as EVOO, nuts, and fatty fish.253

Inflammation is a shared characteristic of HF and sarcopenia254 and an

early analysis of the PREDIMED trial demonstrated that supplementation

of nuts and EVOO in the context of a MedDiet resulted in a reduction in

inflammatory markers over the control low-fat diet.255 In a cross-sectional

analysis of subjects with HFpEF, a greater consumption with UFA was

associated with an enhanced peak VO2, while sugars consumption was

inversely correlated.256 Additionally, in this analysis, greater consumption

of UFA was correlated with more favorable body composition including

greater FFM/FM ratio and overall FFM.256 Of note, we have recently com-

pleted the UFA-Preserved pilot study aimed at increasing UFA intake in a

population with obesity and HFpEF, showing that dietary UFA supplemen-

tation in feasible and has the potential to improve CRF in this

population.261

In contrast to the MedDiet, the Western dietary pattern is characterized

by high saturated fatty acid and refined sugar content and increased

markers of systemic inflammation.257 In an analysis of 757 British sub-

jects over 85 years of age, those who consumed adequate protein in the

context of a traditional British diet (defined as being rich in potatoes, but-

ter, gravy and red meat) demonstrated increased risk for sarcopenia (as

defined by EWGSOP criteria) at both baseline and after 3 years of follow

up compared to those consuming adequate protein with a low butter con-

sumption.258 In an additional cross-sectional analysis of 300 subjects

over 55 years of age, those who adhered to a more MedDiet pattern had a

reduced risk of sarcopenia, defined by EWGSOP criteria, while contrary
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to the previously discussed study,258 following a Western dietary pattern

was not associated with an increased risk for sarcopenia.239

Further work is needed to define the role of the pro-inflammatory Western

diet in the development and progression of sarcopenia as well as the preventa-

tive mechanisms behind the MedDiet and whether a dietary pattern interven-

tion can improve strength and quantity of muscle mass. There is also a need

for evaluation of other healthy dietary patterns such as the Dietary

Approaches to Stop Hypertension, which has been recently associated with a

favorable trend in reducing hospitalizations in patients with an event of acute

decompensated HF,259 and nutrient quality scoring systems such as the Alter-

nate Healthy Eating Index on risk reduction for sarcopenia and cachexia.
Combination of Dietary Intervention and Exercise Training
The role of a combined intervention with both exercise training and die-

tary intervention has been rarely investigated in HF. To date, the available

data related to combined exercise and dietary interventions rely on a single

randomized controlled trial in patients with obesity and HFpEF.111 In this

study, 100 patients were randomized to either 20 weeks of exercise (ie, aero-

bic exercise), diet (ie, caloric restriction), exercise and diet, or to a control,

with 92 individuals completing the trial. The exercise training regimen

included a 3 times per week 1-hour supervised aerobic exercise session, at a

walking intensity which varied based on the individual CRF measured at

baseline and progressively increased based on tolerability and heart rate

reserve. The dietary intervention included a caloric restriction of about

400 kcal/day in the caloric restriction alone, and 350 kcal/day in the com-

bined caloric restriction and exercise, with 1.2 g of protein per kg of ideal

body weight, 25%-30% of total daily calories from fat, and the remaining

kcal from carbohydrates. A daily calcium supplement (600 mg) was pro-

vided and a food diary monitored weekly to verify adherence to the dietary

intervention. Importantly, the meals were prepared under supervision of a

dietitian and provided to the participants by the investigators.111

At the end of the study, both caloric restriction and exercise resulted in

improved peak VO2, which was further improved with the combined

intervention compared to the control group. The coprimary endpoint mea-

sured with the Minnesota Living with HF Questionnaire to assess changes

in QoL was not improved in any of the interventional groups. For explor-

atory purposes, other assessments of QoL such as the Kansas City Cardio-

myopathy Questionnaire, were shown to improve with the dietary

intervention, but not with the exercise intervention.111 Importantly, nei-

ther exercise or caloric restriction were associated with major clinically
28 Curr Probl Cardiol, November 2020



relevant improvements in cardiac function, aside from a small, although

statistically significant reduction in LV mass (¡4 g) by MRI, reduction in

LV relative wall thickness assessed by echocardiography and an increase

in E/A velocity ratio (+0.10) with caloric restriction. In fact, changes in

peak VO2 were for the most part associated with changes in body compo-

sition compartments and markers of systemic inflammation. However,

after multiple regression analysis, only sex and total body mass remained

as independent predictors for the changes in CRF (ie, peak VO2).
111

The study has shown that caloric restriction and/or aerobic exercise

training are efficacious strategies to improve CRF in obesity and HFpEF,

however, caloric restriction is typically associated with a reduction of FM

and concomitant LM,260 which in the long-term could result in an

increased risk for sarcopenia and sarcopenic obesity, especially when

such intervention are implemented in older adults. For such reasons, the

investigators of the trial described above are currently testing the hypoth-

esis that adding resistance training to caloric restriction and aerobic exer-

cise may result in a further improvement in CRF by preserving and

perhaps even increasing LM (NCT02636439).

Conclusion
Abnormalities in body composition compartments, particularly of LM,

leading to the development of sarcopenia, sarcopenic obesity and

cachexia, are highly prevalent in patients with HF. However, universal

definitions for such conditions are desperately needed to identify the

exact prevalence in the general population and particularly in patients

with HF, in which such conditions are associated with impaired CRF and

reduced muscle strength, further contributing to the poor prognosis of the

disease.

Nonpharmacologic therapeutic strategies targeting changes in body

composition (ie, exercise and nutritional strategies), with and without

improvements in cardiac function may, therefore, exert beneficial effects.

Such interventions have the potential to improve CRF in HF, particularly

in HFpEF. Larger randomized controlled trials testing the effects of these

interventions individually or combined on clinical outcomes in patients

with sarcopenia, sarcopenic obesity and cachexia are required.
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The role of body composition in patients with heart failure has been the focus
of attention in the past few years

Salvatore Carbone et al et al performed a very extensive and clinically oriented
review of several aspects body composition and implementation of therapies in
patients with heart failure

Several inferences can be delineated from this excellent review

First, abnormalities in body composition compartments, specially of LM, lead-
ing to the development of sarcopenia, sarcopenic obesity and cachexia, are
highly prevalent in patients with heart failure

Second, definition of this abnormalities in body composition are needed to
identify, first the exact prevalence in the general population and particularly in
patients with heart failure

Third, clearly these abnormalities of lean mass are associated with abnormal
cardiorespiratory fitness and muscle strength contributing to the poor progno-
sis of patients with heart failure.

Nutritional strategies as well as exercise programs may exert clinical benefits,
specially in patients with heart failure and preserved systolic function.

Radomized controlled trials testing the effects of these interventions on clinical
outcomes in patients with sarcopenia, sarcopenic obesity and cachexia in
patients are needed.

I want to congratulate the authors for a very nice review of the clinically impor-
tant subject.
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