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KEY POINTS

� Recent studies show that urologic tumors are infiltrated by natural killer (NK) cells and that these NK
cells are often dysfunctional.

� Strategies interfering with inhibitory axes have significant potential to alleviate this dysfunction.

� Preclinical studies show that NK-cell antitumor functions can be enhanced.

� Diverse, NK cell–centric clinical trials are ongoing for patients with genitourinary cancers.
BACKGROUND by putative targets. Binding of the KIR to its
Natural killer (NK cells) are cytotoxic lymphocytes
that are members of the innate immune system.
As such, they lack the antigen specificity of T
and B cells but recognize cells that have downre-
gulated human leukocyte antigen (HLA) class I
and upregulated markers of cell stress, such as
MICA, MICB, ULBP-1, and the polio virus recep-
tor. Because loss of class I and expression of
these stress ligands often occurs during viral infec-
tion and cancer, NK cells are important compo-
nents of both antiviral defense and tumor
immunosurveillance. NK-cell recognition of poten-
tial target cells relies on the ability to detect
missing self, as initially proposed by Klause Kärre.1

During surveillance in the peripheral blood, sec-
ondary lymphoid organs, and tissue, killer immu-
noglobulinlike receptors (KIRs) on NK cells
recognize HLA-A, HLA-B, and HLA-C expressed
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cognate class I HLAmolecule delivers an inhibitory
signal to the NK cell via phosphorylation of ITIM
(immunoreceptor tyrosine-based inhibitory motif)
motifs in the KIR’s cytosolic domain (Fig. 1, top).
Subsequent recruitment of the SHP-1 tyrosine
phosphatase results in suppression of NK-cell
effector function and prevents the NK cell from
killing the target. However, when an NK cell en-
counters a virally infected cell or tumor cell that
has downregulated class I HLA, the inhibitory
KIR-HLA signal is not delivered. If there is a con-
current, activating signal delivered through inter-
action of a cell stress ligand with its cognate,
activating receptor on the NK cell, then NK effector
functions can proceed (see Fig. 1, bottom).

NK cells perform 4 major effector functions after
successful recognition of target cells (see Fig. 1,
bottom). The first is direct cytolytic activity result-
ing in specific killing of the target through the
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Fig. 1. Target recognition and effector functions of NK cells. (Top) In the absence of viral infection and cancer, NK
cells receive inhibitory signals through class I HLA-KIR interactions. (Bottom) Cells that have lost class I HLA expres-
sion and upregulated molecules associated with cell stress deliver stimulatory signals to NK cells, resulting in the
execution of effector function. The major antitumor functions of NK cells include production of tumoricidal cy-
tokines, direct cytolytic activity, recruitment of dendritic cells (DCs), and antibody-dependent cellular cytotoxicity
(ADCC). Ag, antigen; CD, cluster of differentiation; fxn, function; IFN, interferon; Ig, immunoglobulin; MHC, ma-
jor histocompatibility complex; TCR, time to castration resistance.
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induction of apoptosis. NK cells, unlike naive
CD81 T cell, contain preformed, cytolytic granules
that are released into the synapse between the NK
cell and target cell as the NK cell degranulates.
These granules contain perforin, a protein that cre-
ates holes in the target cell membrane, and various
granzymes: serine proteases that cleave caspases
in the target cell, thus initiating an apoptotic
cascade. The second NK-cell effector function is
the release of cytokines with both tumoricidal
and chemoattractant properties. Two of the best-
characterized NK-cell cytokines are interferon
(IFN-g) and tumor necrosis factor (TNF-a) IFN-g
promotes upregulation of class I HLA by target
cells. Although this generally renders the targets
less susceptible to NK cell–mediated killing, it is
important for the concurrent or subsequent
CD81 T cell response by facilitating presentation
of peptides loaded on class I HLA to specific
CD81 T cell clones. TNF-a has direct tumoricidal
effects on binding TNF receptor 1 (TNFR1), and
also plays important roles in monocyte/macro-
phage function, and destabilization of regulatory
T cells.2 More recently, a third NK-cell effector
function has been identified pertaining to the
recruitment of dendritic cells (DCs). NK cells
have been shown to produce the DC chemoattrac-
tant cytokines XCL1, XCL2, and CCL5, as well as
the DC growth factor FLT3 ligand.3 These cyto-
kines can recruit DC to tumor-draining lymph
nodes and tumor tissue itself, thereby improving
antigen presentation to tumor-reactive T cells. In
addition, a fourth NK-cell effector function is
antibody-dependent cellular cytotoxicity (ADCC).
During ADCC, CD16, a receptor that binds the
Fc region of immunoglobulin G1, is cross-linked
by antibodies bound to extracellular proteins on
tumor cells. This cross-linking induces a confor-
mational change in the signaling domains of
CD16 leading to phosphorylation of its associated
ITAM (immunoreceptor tyrosine-based activating
motif), and a subsequent signaling cascade that
results in NK-cell degranulation, and lysis of the
antibody-coated target cell.4

Two major subpopulations of NK cells have
been identified in humans: CD56bright and
CD56dimCD161. CD56bright NK cells are consid-
ered developmentally less mature but secrete



Harnessing Natural Killer Cell Function 435
most of the cytokines discussed earlier.
CD56dimCD161 NK cells represent more mature
NK cells, and possess more potent cytolytic capa-
bility compared with the CD56bright subset.
Approximately 10% of healthy peripheral blood
mononuclear cells (PBMCs) are NK cells, and, of
thesew5% to 10% are CD56bright with the remain-
ing cells belonging to the CD56dimCD161 subpop-
ulation. However, patients with prostate cancer,
and non–muscle-invasive (NMI) bladder cancer
(BlCa), have increased frequencies of circulating
NK cells,5,6 suggesting that genitourinary tumors
can elicit an immune response in the periphery.
Furthermore, infiltration of CD56bright NK cells
has been associated with improved survival in
both BlCa and renal cell carcinoma (RCC).7–9

As mentioned earlier, unlike T cells, NK cells do
not recognize specific peptide antigens, and
instead detect the presence or absence of class I
HLA. However, loss of HLA in the presence of addi-
tional inhibitory signals elicits a suboptimal effector
response, whereas HLA expression in the context
of strong activating signals can elicit a strong
response.10 Themagnitude of NK-cell functional re-
sponses is calibrated by integrating stimulatory and
inhibitory signals delivered through a diverse array
of accessory receptors. Three such inhibitory re-
ceptors, NKG2A, Tim-3, and TIGIT (T-cell immunor-
eceptor with immunoglobulin and ITIM domains),
are expressed by NK cells in solid tumors (Fig. 2),
with Tim-3 expression reported as anticorrelated
with survival in patients with BlCa.11–14 When
NKG2A binds its ligand, the noncanonical class I
molecule HLA-E expressed on tumor cells, phos-
phorylation of its cytosolic ITIM occurs, followed
by recruitment of the SHP-1 phosphatase. SHP-1
can then prevent phosphorylation of the stimulatory
motifs associated with neighboring activating
receptors.15 This process ultimately results in sup-
pression of NK-cell effector functions. Tim-3 binds
multiple ligands expressed on both tumor cells
and immune cells, including soluble galectin-9
and HMGB1, phosphatidylserine on apoptotic
cells, and CEACAM-1.16 Unlike many other inhibi-
tory receptors, Tim-3 does not contain an ITIM
motif but uses the adaptor protein Bat3 to mediate
suppression of NK-cell function. In addition, TIGIT
mediates NK-cell inhibition via canonical ITIM
signaling like NKG2A; however, it shares the ligands
CD112 and CD155 with the activating receptor
DNAM-1 (CD226). This competition to bind shared
ligands provides another layer of control in tuning
the NK-cell response. The inhibitory receptor pro-
grammed cell death protein 1 (PD-1), although
highly relevant in the context of immune checkpoint
blockade (ICB) therapy, is predominantly
expressed by tumor-resident T cells, with minimal
expression by NK cells.
NATURAL KILLER CELLS IN BLADDER CANCER
Natural Killer Cells Infiltrate Bladder Tumors

Most studies of tumor-infiltrating lymphocytes
(TILs) in BlCa have focused on T cells, with much
recent attention appropriately focused on the
role of the PD-1–programmed death-ligand 1
inhibitory axis, and ICB approaches to ameliorate
it.17–19 However, a recent study profiling 50 NMI
and muscle-invasive (MI) bladder tumors suggests
that w25% of the immune infiltrate is made up of
NK cells, making them the most frequent lineage
examined.7 In addition, despite this small cohort,
a statistically significant correlation was found be-
tween the frequency of CD56bright NK cells and
overall survival (OS).7 Importantly, in healthy
bladder,20,21 and in noninvolved bladder tissue
Fig. 2. Inhibitory receptors tune the
magnitude of NK cell effector func-
tion. Expression of inhibitory recep-
tors expressed by NK cells in solid
tumors. The ligands for each receptor
are shown on the right, and the effect
on NK cell effector function shown on
the left. ITAM, immunoreceptor
tyrosine-based activating motif.
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from cystectomy specimens (Farkas, 2020; un-
published observations), NK cells represent a
much smaller component of the resident immune
cells. This finding suggests that NK cells can spe-
cifically infiltrate and conduct immunosurveillance
of bladder tumors, making them rational targets for
immunotherapeutic modulation.

Natural Killer Cell Function in the Tumor and
Peripheral Blood of Patients with Bladder
Cancer

Immune exhaustion occurs during chronic infection
as well as cancer, and refers to defects in effector
functions that result from prolonged stimulation
and suppressive factors in the tumor microenviron-
ment (TME).22 Few studies have examined the
functional potential of tumor-resident NK cells, in
part because of challenges associated with estab-
lishing a pipeline in which a sufficient quantity of
freshly resected tumor tissue is processed and
analyzed in the research laboratory. Similarly, there
are few data comparing differences in NK-cell func-
tion between patient-matched peripheral blood and
tumor. An early study found no defect in the ability
of peripheral blood NK cells from patients with BlCa
to degranulate in response to HLA-deficient target
cells compared with healthy donors. However,
there was a substantial defect in degranulation
observed in NK cells isolated from tumor and lymph
node.5 In contrast, subsequent work showed that
the peripheral blood NK cells from patients with
NMI BlCa had no cytolytic defect, whereas those
from patients with MI disease did.23 In addition, a
recent study found that tumor-resident CD56bright

NK cells produced more IFN-g than
CD56dimCD161 cells, but did not compare these
cells with NK cells in healthy or patient blood.7

The Role of Natural Killer Cells in Bladder
Cancer Treatments

Bacillus Calmette-Guérin (BCG) was the first immu-
notherapy widely used for cancer treatment, but its
precise mechanism of efficacy is not defined.
Several studies have pointed toward a role for NK
cells in BCG responders. A study of healthy volun-
teers receiving BCG vaccination showed that pro-
duction of interleukin (IL)-1b, IL-6, and TNF-a by
NK cells was enhanced during ex vivo restimulation
after vaccination, suggesting that NK cells from
BCG-experienced individuals develop a form of
memory.24 In addition, NK cells cultured in the pres-
ence of BCG for 1 week gained improved cytolytic
function against bladder tumor cell lines.25

Novel, preclinical studies have also focused on
improving NK-cell surveillance against bladder tu-
mors. Combination chemotherapy–epigenetic
therapy using cisplatin and an EZH2 inhibitor
showed efficacy against MI BlCa, both in direct tu-
mor killing and in improving the NK-cell response
against surviving tumor clones.26 NK cells can be
differentiated in vitro from cord blood–derived pro-
genitors, and it is possible to activate NK cells iso-
lated from adult peripheral blood with cytokines
such as IL-2, IL-15, IL-12, IL-18, and IL-21, all of
which improve effector functionality, induce prolif-
eration, and improve NK-cell survival27 (Fig. 3).
Both of these approaches can be used as sources
of NK cells for adoptive cell transfer therapy. For
example, adoptive transfer of IL-2/IL-15–activated
NK cells from healthy donors into immunodeficient
mice bearing orthotopic, chemoresistant bladder
tumors resulted in tumor regression. However,
transfer of activated NK cells isolated from pa-
tients with high-grade NMI BlCa was less effective,
suggesting that peripheral blood NK cells from pa-
tients with BlCa are exhausted.28 In addition, pre-
clinical ICB to enhance NK-cell tumor surveillance
in murine models and primary human cells ex vivo,
although not exclusively in BlCa, have shown that
blockade of Tim-3,29,30 TIGIT,13 and NKG2A11 all
improve NK function.
Clinical Trials Targeting Natural Killer Cells in
Bladder Cancer

Many ongoing and recently completed trials of NK
cell–centric immunotherapy involve adoptive trans-
fer of in vitro differentiated NK cells, infusion of pre-
activatedadultNKcells, or transferofNKcells stably
transduced with chimeric antigen receptor (CAR) T
cell-–like receptors that confer tumor-antigen spec-
ificity (see Fig. 3). Most of these studies use haploi-
dentical donors for source material, and are infused
intopatientswith hematologicmalignancies such as
chronic myeloid leukemia, acute myeloid leukemia,
chronic lymphocytic leukemia, and non-Hodgkin
lymphoma.27,31 However, there are also NK cell–
centric trials for patients with metastatic, locally
advanced, and/or cisplatin-ineligible BlCa. For
example, there is a phase I/II dose-escalation study
of DF1001, a novel biologic that simultaneously tar-
gets Her21 tumors and activates NK cells
(NCT04143711). This study will enroll 220 patients
with solid tumors, including those with metastatic
and locally advanced BlCa, and includes a
DF10011X-PD-1 arm. Several trials will also deter-
mine the effects of cytokine activation onNK-cell ef-
ficacy in BlCa, such as a phase II study of 205
patients with cisplatin-ineligible MI BlCa who will
receive bempegaldesleukin, a PEGylated IL-2,
alone or in combination with X-PD-1
(NCT03785925). Two trials being conducted in
China are testing the efficacy of so-called



Fig. 3. Major approaches to NK cell immunotherapy: 3 broad immunotherapeutic strategies to improve NK cell
tumor surveillance currently used preclinically and in clinical trials. (A) ICB relies on the administration of mono-
clonal antibodies that prevent signaling through inhibitory receptors. (B) NK-tumor engagers are biologics with
double or triple specificities. These molecules confer specificity to NK-tumor interactions by binding a protein an-
tigen expressed by tumor cells and simultaneously delivering a stimulatory signal to the NK cell through an acti-
vating or cytokine receptor. (C) Adoptive cell therapy approaches infuse NK cells isolated from PBMCs, or
differentiated in vitro from cord blood progenitors, into autologous, haploidentical, or allogeneic recipients.
The transferred NK cells can be preactivated with cytokines to enhance NK cell effector functions or can be
expanded using irradiated stimulatory cells engineered to express cytokines and stimulatory ligands. Ab,
antibody.
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cytokine-induced killer (CIK) cells; autologous
PBMCs expanded and activated to enhance NK
and T cell function. One of these will examine infu-
sion of CIK cells or CIK cells plus chemotherapy in
individuals with MI BlCa (NCT02489890). The sec-
ondwill test infusions of autologousPBMCafter cul-
tureconditions intended to increase the numberand
activity of NK and T cells, as well as dendritic cells
(D-CIK) using IL-2, IFN-g, IL-1a, X-CD3, and X-PD-
1 (NCT02886897), In addition, a phase Ib neoadju-
vant trial in patients with MI BlCa before scheduled,
radical cystectomy will compare X-PD-1 treatment
with a combination of X-PD-1 and lirilumab
(NCT03532451). Lirilumab is monoclonal antibody
that blocks the interaction of 3 inhibitory KIRs
(KIR2DL1/2/3) with various HLA-C alleles, with the
goal of decreasing the inhibitory interactions that
might preclude optimal NK-cell function.

NATURAL KILLER CELLS IN KIDNEY CANCER

In RCC, NK cells represent a significant portion of
TILs.32 In a rat model of RCC, injection of an NK
cell–depleting antibody significantly increased
the tumor growth rate, suggesting that NK cells
are important in antitumor defense.33 Eckl and col-
leagues8 showed that, after stratifying patients into
2 groups based on the percentage of their TILs
that were NK cells, patients with more NK cells
had significantly longer cancer-specific survival.
Another study found that, as the tumor T stage
increased, the percentage of infiltrating NK cells
decreased significantly.34

Natural Killer Cell Function in the Tumor and
Peripheral Blood of Patients with Renal Cell
Carcinoma

Studies have identified pathways by which the
TME inhibits NK-cell function. Prinz and col-
leagues35 found that a significantly lower number
of NK cells in TIL expressed perforin or granzyme
B than NK cells from the nontumor kidney. In addi-
tion, TIL NK cells had low levels of phosphorylated
ERK1/2 (extracellular signal-regulated kinase) and
JNK (Jun kinase), which are required to initiate lytic
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granule exocytosis. ERK activation depends on
diacylglycerol, which is metabolized by diacylgly-
cerol kinase (DGK). DGK levels were higher in TIL
NK cells than in normal renal tissue, leading to
less ERK activation and poor NK-cell degranula-
tion. In addition, DGK inhibition led to improved
NK-cell cytotoxicity. These findings suggest that
DGK and suppression of the ERK pathway may
be a way for RCC cells to escape NK cell–
mediated destruction.35 Xia and colleagues36

showed that exosomes from RCC tumor cells
inhibited NK-cell activity in a dose-dependent
manner. They then showed that the exosomes of
patients with RCC expressed increased levels of
transforming growth factor (TGF) b-1 and that
inhibiting TGFb-1 improved NK-cell cytotoxic
acitivity.36

The Role of Natural Killer Cells in Renal Cell
Carcinoma Treatments

There are several medications approved for the
treatment of RCC, many of which affect NK-cell
activity. IL-2 was the first widely used treatment
of advanced RCC and is the only medical treat-
ment that has resulted in a cure. In the 1980s, sci-
entists showed that IL-2 increases NK-cell
cytotoxicity.37 In addition, in patients with meta-
static RCC treated with IL-2 plus or minus IFNa
and histamine, low intratumoral CD571 NK-cell
count was an independent poor prognostic factor
(<50 cells/mm2 tumor tissue; hazard ratio, 2.1;
P 5 .01). These findings show that at least some
of the antitumor activity of IL-2 is through NK-cell
cytotoxicity. Sunitinib and sorafenib are multiki-
nase inhibitors with antiangiogenic effects.
Studies have shown that sorafenib but not suniti-
nib significantly reduced NK-cell activity, possibly
through suppressing the ERK pathway.38,39 Axini-
tib has been shown to exert its antitumor effects at
least partially through increasing RCC tumor sus-
ceptibility to NK cell–mediated degranulation.40

Clinical Trials Targeting Natural Killer Cells in
Renal Cell Carcinoma

Although NK cells do not express PD-1 to the
extent that T cells do, there is an active clinical trial
to determine the effects of nivolumab on NK-cell
function and cytotoxicity in both the blood and tu-
mor tissue in patients with metastatic RCC
(NCT03891485). Most other clinical trials, as in
BlCa, involve adoptive transfer of in vitro differen-
tiated NK cells or infusion of preactivated adult NK
cells. For example, there is currently a trial under-
way to determine whether there are any differ-
ences in progression-free survival (PFS) between
patients treated with the PD-1 inhibitor
camrelizumab alone or in combination with CIK
in patients with metastatic RCC who have pro-
gressed on tyrosine kinase inhibitors
(NCT03987698). There are several trials that
include incubating CIK cells with DCs. Coculture
of DCs and CIKs (D-CIKs) improves CIK cell anti-
tumor activity through cell-to-cell contact by
increasing NK-cell proliferation and cytotoxicity.
One phase II trial is assessing the effect of a PD-
1 inhibitor and D-CIK on PFS (NCT02886897)
and another is assessing the effect of axitinib in
combination with D-CIKs and the PD-1 inhibitor
pembrolizumab on PFS (NCT03736330). Alterna-
tively, DCs can be pulsed with tumor lysates or
tumor-associated antigens to create a DC vac-
cine. A study is underway to compare outcomes
of DC vaccines and CIKs compared with IL-2/
IFNa in patients with RCC (NCT00862303).
NATURAL KILLER CELLS IN PROSTATE CANCER

Although, compared with bladder and kidney can-
cer, prostate cancer is considered less immuno-
genic, NK cells have been identified in prostate
cancer tumors.41 In both tumor and healthy pros-
tatic tissue, infiltrating NK cells expressed activa-
tion markers but had poor degranulation
capabilities compared with circulating NK cells.
When comparing NK cells found in tumor with
those in healthy tissue, expression of the acti-
vating receptors NKp46 and NKG2D was signifi-
cantly decreased and the inhibitory receptor ILT2
was significantly increased. In addition, decreased
expression of NKp46 and NKG2D and increased
expression of ILT2 were more pronounced in NK
cells from metastatic tumors than from localized
or locoregional tumors (ie, tumor with extrapro-
static extension, seminal vesicle invasion, or local
lymph node invasion).42

NK-cell activity has been correlated with pros-
tate cancer outcomes. Increased concentrations
of infiltrating NK cells have been associated with
a lower risk of cancer progression.43 When exam-
ining circulating NK cells, low levels of NK activity
have been associated with an increased likelihood
of having a positive prostate biopsy.41,44,45 Koo
and colleagues46 found that patients with prostate
cancer had a significantly higher CD56dim/
CD56bright cell ratio compared with controls (41.8
vs 30.3; P<.001) and that the ratio gradually
increased as disease stage progressed (P for
trend 5 .001). They also showed that levels of
NK-cell activity were significantly lower in patients
with prostate cancer than in controls, and patients
with higher-stage disease had a greater reduction
of activity.46 Another study found that, among pa-
tients with metastatic prostate cancer, blood
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levels of the activating receptors NKp30 and
NKp46 were predictive of OS and time to castra-
tion resistance (TCR) (OS, P 5 .0018 and .0009;
TCR, P 5 .007 and P<.0001 respectively).42 There
is currently a clinical trial underway to prospec-
tively validate these findings (NCT02963155).

Several studies have also examined how the
prostate cancer TME inhibits or evades NK cells.
TGFb has been identified in the prostate cancer
microenvironment and is known to inhibit NK-cell
function. In addition, in coculture experiments,
prostate cancer cells promoted the expression of
the inhibitory receptor ILT2 and suppressed the
expression of activating receptors NKp46,
NKG2D, and CD16, preventing NK-cell activity
against tumor cells.47 As in BlCa, exosomes play
a critical role in prostate cancer’s ability to invade
the immune response. Lundholm and colleagues48

showed that prostate cancer cells secrete exo-
somes, which downregulate NKG2D expression,
leading to impaired cytotoxicity in vitro. As ex-
pected from these results, patients with
castration-resistant prostate cancer had a signifi-
cant decrease in the expression of NKG2D on
circulating NK cells compared with controls.48

The Role of Natural Killer Cells in Prostate
Cancer Treatments

The effects of current prostate cancer therapies on
NK cells are not well defined and research on the
issue is limited. Studies to determine whether
androgen deprivation leads to an increase in NK-
cell tumor infiltration have mixed results.43,49 At
present, sipuleucel-T is the only immunotherapy
approved to treat prostate cancer. Sipuleucel-T
is generated by culturing autologous blood mono-
nuclear cells with a fusion protein composed of
prostatic acid phosphatase and granulocyte-
macrophage colony-stimulating factor. The final
product is composed primary of T cells but also
contains NK cells.50 To better understand the ef-
fects of sipuleucel-T on the TME, a trial was per-
formed in which patients with localized prostate
cancer were treated with sipuleucel-T as a neoad-
juvant. After radical prostatectomy (RP), TILs in the
specimen were assessed and compared with the
infiltrating immune cells in the pretreatment pros-
tate biopsy specimens. NK-cell levels were not
higher in RP specimens, indicating that NK cells
do not play a significant role in sipuleucel-T
activity.51

Clinical Trials Targeting Natural Killer Cells in
Prostate Cancer

Immunotherapy as a treatment of prostate cancer
has not been as well explored as in renal cancer
and BlCa. Therefore, there are currently several
studies underway to evaluating the effects of
various treatments on NK-cell activity. For
example, there is a phase 1 clinical trial assessing
the effects of intraprostatic injection of mobilan,
which is an adenovirus carrying TLR5 (toll-like re-
ceptor 5) and a TLR5 activator, on circulating
immune-cell levels in patients with prostate can-
cer, including NK-cell counts (NCT02654938). At
Johns Hopkins, a clinical trial is underway to
assess the effect of neoadjuvant enoblituzumab,
an antibody directed against cancer stem cells,
on the intraprostatic immune response, including
mean NK-cell density, after RP (NCT02923180).
At Henry Ford, a study of intraprostatic injections
of an adenovirus carrying IL-12 in patients with
recurrence after brachytherapy is currently under-
way. Outcomes of interest include the association
with disease-specific outcomes, such as prostate-
specific antigen response and disease-free sur-
vival with serum NK-cell cytolytic activity
(NCT02555397). Roswell Park Cancer Institute is
currently performing a study to determine whether
radiation therapy potentiates the effects of
sipuleucel-T in patients with bone metastasis.
One of the primary end points will be the quantifi-
cation of circulating NK cells (NCT01833208).
There is also a trial that involves transfer of autolo-
gous NK cells and the protease inhibitor bortezo-
mib, which has been shown to increase the
sensitivity of cancer cells to NK-cell activity52 in
patients with metastatic prostate cancer
(NCT00720785).
SUMMARY

NK cells recognize target cells that have downre-
gulated HLA class I and upregulated markers of
cell stress. These changes often occur during viral
infections and cancer and therefore NK cells play
an important role in the body’s defense against
these disease processes. The magnitude of NK
cell’s functional response is determined by inte-
grating stimulatory and inhibitory signals delivered
though an array of receptors on the NK cell. NK
cells infiltrate bladder, kidney, and prostate tu-
mors. In all 3 malignancies, the frequency of NK
cells in tumor tissue has been correlated with sur-
vival. There are currently several trials designed to
increase NK-cell activity to improve cancer
outcomes.
CLINICAL CARE POINTS

� When an NK cell encounters a potential target
cell there are 2 possible outcomes.



Bhardwaj et al440
� Inhibition: KIRs on NK cells recognize HLA
class 1. Binding of the KIR to its cognate
class I HLA molecule delivers an inhibitory
signal to the NK cell and prevents the cell
from killing its target.

� Activation: when an NK cell encounters a
tumor cell that has downregulated class I
HLA, an inhibitory signal is not delivered.

� Magnitude of NK-cell activity depends on the
stimulation of several accessory receptors
found on NK cells.

� NK cells have been found in bladder, kidney,
and prostate tumor tissue.

� In all 3 malignancies, higher NK-cell levels are
associated with better outcomes.

� Blockade of inhibitory NK-cell receptors (such
as Tim-3) have been shown, in preclinical
models and in ex vivo human cells, to improve
NK-cell function and may serve as future drug
targets.

� NK cells likely play a greater role in cancer im-
munotherapies than previously realized. For
example, IL-2, which was the first immuno-
therapy for RCC and the only one that has
led to durable cures, is a potent NK-cell
activator.

� Several trials are underway to determine how
to best activate NK cells.

� At present there are many clinical trials that
involve adoptive transfer of preactivated NK
cells.
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