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KEY POINTS

� Heterogeneity of a tumor and its microenvironment (including the immune compartment) likely con-
tributes to differences in disease development and patient response to treatment.

� Next Generation Sequencing (NGS) of bulk tissue does not always capture heterogeneity.

� Single cell sequencing of cells from tissue allows for better resolution of minor cell populations.

� Understanding these populations can help identify tumor targets and cells that can be leveraged for
immunotherapy as well as to understand the effects of therapy on tumor development.
INTRODUCTION evolution, metastasis, and treatment outcomes,
Cancer is a complex disease rooted in heteroge-
neity, which is the phenomenon of individual cells,
tissues, or patients having distinct phenotypic
and/or genetic characteristics. This is particularly
true for cancers such as prostate cancer, in which
the 200,000 new cases diagnosed each year are
split between men diagnosed with clinically indo-
lent disease that does not require immediate treat-
ment and aggressive disease that requires
intervention.1 Similar heterogeneity is observed in
therapeutic response, in which some patients
relapse soon after treatment, but others remain
disease free for years before recurring. Such diver-
gent disease etiology is thought to be a result of tu-
mor heterogeneity, and therefore, better
understanding the complexity of this disease
may inform better diagnosis and treatment.

Tumors evolve as cancerous cells grow within
an intricate network of noncancerous cell types
and extracellular matrix proteins, which taken
together, comprise the tumor microenvironment
(TME). It is only recently that the complexity of
the TME has been appreciated for its role in cancer
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and that the varied subpopulations of cells (im-
mune, stromal, cancer, and others) each uniquely
contribute to the progression of disease. The clas-
sification of distinct and important subpopulations
of cells within the tumor and its associated micro-
environment has remained a technical challenge.
Next generation sequencing (NGS) of bulk tumor
tissue has yielded some exciting results, including
the discovery of certain driver mutations and vari-
ants of unknown significance. In this approach,
genetic material is extracted from bulk tissue and
sequenced, which provides an overall average ge-
netic profile of the sample, but masks contribu-
tions from individual cells and minor populations
of cells, particularly in heterogeneous samples.
Only with the advent of single-cell sequencing
technologies has it become possible to charac-
terize the key contributions of cell subpopulations
to identify new therapeutic targets and disease
biomarkers, and understand modes of treatment
for disease, in which single-cell sequencing char-
acterizes and reports the genome or transcrip-
tome of each individual cell in a population,
allowing the identification of subpopulations of
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cells that are genetically similar or distinct. This
advantage is particularly important in character-
izing and understanding tumor response to immu-
notherapy, as this therapeutic approach involves
highly heterogeneous immune cell populations
and tumor targets and bulk NGS approaches do
not necessarily capture the complexity of such
systems. In particular, single-cell analysis is
uniquely suited to (1) identifying known, rare, or
novel tumor targets; (2) characterizing patient-
specific populations of immune cells that can be
leveraged for immunotherapy; and (3) assessing
the effects of immunotherapy on subpopulations
of cells within a tumor to understand sensitivity
or resistance. In this review, we view cancer immu-
notherapy through a single-cell lens and discuss
the state-of-the art technologies that enable ad-
vances in this field.
HETEROGENEITY IN UROLOGIC CANCERS
Overview

Recognizing cancer as a highly heterogeneous
disease is essential to studying its causes and
evaluating therapeutic approaches. The extent of
heterogeneity, which is the phenomenon of indi-
vidual cells having distinct phenotypic and/or
genomic/transcriptomic characteristics, is known
to vary both as a function of disease and between
patients with the same disease. For a given dis-
ease, heterogeneity may be defined as “interpa-
tient” (mutational/transcriptional differences
between tumors from different patients), “intrapa-
tient” (mutational/transcriptional differences be-
tween tumors from the same patient, but derived
from different sites), or “intratumor” (mutational/
transcriptional differences between subpopula-
tions within one tumor and its associated TME).
Single-cell genomic and transcriptomic analyses
facilitate a more comprehensive understanding of
each level of heterogeneity, particularly intratumor
heterogeneity (ITH), by permitting the identification
and characterization of rare subpopulations of
cells that were not previously detectable by bulk
NGS methods. Moreover, single-cell analysis has
been essential in identifying susceptible subpopu-
lations of tumor cells that can serve as targets for
immunotherapy, or identifying subsets of immune
cells within the TME that can be leveraged for
immunotherapy treatment (Fig. 1).
Heterogeneous tumors consist of many different

cellular clones, or subpopulations of cells. The
types and relative numbers of these cells differ be-
tween patients and tumors: there is now evidence
that the degree of heterogeneity of a solid tumor
and its associated TME affects its propensity to
proliferate as well as its susceptibility to treatment.
The clonal distribution of tumor cells may change
during therapy, in an effect known as clonal evolu-
tion. Clonal evolution occurs when therapy targets
only certain subsets of tumor cells, and the overall
therapeutic profile of a tumor changes over the
course of treatment: previously treatment-
sensitive tumors may become treatment-
Fig. 1. Identifying subsets of immune
cells within the TME that can be lever-
aged for immunotherapy treatment.
NK cell, natural killer cell.
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resistant following therapy, where one possible
consequence of therapy is preferential selection
for survival of treatment-insensitive clones (which
may be potentially rare and difficult to detect).2

Leveraging single-cell data analysis to charac-
terize clonal evolution following therapy can help
inform clinicians as to the success of the approach
or suggest whether a combined approach is
necessary (Fig. 2).

As one particularly striking example, muscle
invasive bladder cancer is known to have one of
the highest mutation rates of any cancer, which re-
sults in extensive ITH at both the genomic and
transcriptomic levels.3 Although TP53 mutations
were recognized early on as one of the key drivers
of bladder cancer, targeting these tumors thera-
peutically yielded limited results, likely due at least
in part to their highly heterogeneous nature. Cote
and coworkers4 authored an early report suggest-
ing that patients bearing tumors with TP53 muta-
tions responded better to chemotherapy, but
follow-up clinical trials failed to support this obser-
vation. In one TP53-targeted phase III trial, which
assessed treatment response to adjuvant
cisplatin-based chemotherapy (vs surveillance)
Fig. 2. Leveraging single-cell data analysis to characterize
nicians as to the success of the approach or suggest whet
based on TP53 status, yielded no difference in 5-
year recurrence-free or overall survival based on
this marker.5 The investigators noted that immu-
nohistochemistry, which was the primary method
for assessing p53 dysregulation, likely failed to
accurately reflect the range of patients’ TP53 sta-
tuses, given that some mutations in TP53 result in
p53 protein that is not reactive to the immunohis-
tochemistry antibody.6 This contradictory result
was one of the first cautionary indicators that
more detailed understanding of the characteristics
of subpopulations of cells within these tumors was
necessary to be able to predict therapeutic
outcome.

Prostate cancer is also known to be particularly
heterogeneous, starting even at the level of gross
morphology. Classified as a “pluriform” neoplasm,
it can consist of glandular, cribriform, trabecular,
solid, and single-cell tumor patterns.7 Moreover,
prostate cancer is often multifocal, where some re-
ports estimate that 50% to 90% of all radical pros-
tatectomy specimens have more than one disease
foci, and this characteristic is associated with
higher grade, stage, and recurrence rates.8 The
origin of multifocal disease in prostate cancer is
clonal evolution following therapy can help inform cli-
her a combined approach is necessary.
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not clear: one school of thought is that different
genetic and epigenetic alterations occur in a single
clone, which evolve through generations of
daughter cells, resulting in different disease foci
(“monoclonal origin”),9 whereas an alternative
view is that genetic abnormalities arise indepen-
dently in otherwise healthy cells (“polyclonal
origin,” known as the cancer field effect).10 Bulk
sequencing of foci provides evidence supporting
both views and clearly illustrates the genomic
and transcriptomic heterogeneity in this
disease.11–14
Heterogeneity in Immune Response

By definition, immunotherapy leverages the pa-
tient’s own immune system to target tumor cells.
The complexity of human immune response relies
on the choreography of many different subpopula-
tions of cells that are not only defined by cell type
(eg, T cell, B cell, natural killer cell), but by state
(activated, exhausted, cytotoxic). The necessity
of single-cell analysis in characterizing immuno-
therapy mechanism and effectiveness becomes
even more clear when heterogeneity in the im-
mune response is considered alongside heteroge-
neity in the tumor and tumor-associated cells that
will serve as targets for the immune campaign.
Moreover, both sides of the immunotherapy coin
(immune cells and their tumor targets) undergo
phenotypic, genomic, and transcriptomic changes
that vary spatially and temporally as well as in
response to specific stimuli, further motivating
the need for single-cell analysis of these effects.
Immune cells residing in the tumor microenvi-

ronment, or the tumor immune microenvironment
(TIME), are particularly important in dictating tumor
behavior and response to treatment. These popu-
lations of cells have been the focus of a great deal
of recent research and are known to be highly het-
erogeneous in both identity and function. T cells
and tumor-associated macrophages (TAMs) have
both shown promise as biomarkers for immuno-
therapy, in which CD41 helper T cells and cyto-
toxic CD81 T cells can prevent tumor growth,
and highly plastic TAMs can repress antitumor im-
munity, angiogenesis, and cell migration. In many
cases, the makeup of the TIME can be used for
predicting prognosis and is often associated with
patient outcome. As one example, significant tu-
mor infiltration of type 1 T-helper (Th1) cells,
CD81 cytotoxic T cells, and their associated cyto-
kines typically suggest that a patient’s immune
system is capable of some degree of tumor sup-
pression. Characterizing and defining an antitumor
microenvironment is challenging given that tumor-
associated immune cell populations vary by
patient, disease subtype, and time. Furthermore,
the function and interactions of different subpopu-
lations have not been well-characterized, but
studies toward this goal have yielded promising
therapeutic targets, such as PD-1 and CTLA-4,
which can be targeted by antibodies to overcome
T-cell exhaustion.15,16 Prostate cancer is some-
what unique in that it is both a known immuno-
genic disease and, for certain molecular
subtypes, driven by hormone stimulation, making
this an ideal disease for targeting with combination
therapy. Designing combination therapy is inher-
ently complex, particularly when both the tumor
targets and immune system compartments are
heterogeneous and temporally dynamic. It is also
encouraging that prostate cancer has several
well-described tumor-associated antigens
(including prostate-specific antigen, prostatic
acid phosphatase, and prostate-specific mem-
brane antigen) that may serve as targets for
immunotherapy.17

In evaluating immunotherapeutic approaches,
single-cell analysis is uniquely suited to identifying
tumor targets (known, rare, or novel), character-
izing patient-specific populations of immune cells
that can be leveraged for immunotherapy and
assessing the effects of immunotherapy on sub-
populations of cells within a tumor to understand
sensitivity or resistance. One particularly notable
example of using single-cell characterization to
understand potential tumor response to immuno-
therapy was published by Chevrier and col-
leagues.18 They developed an immune atlas of
clear cell renal carcinoma from 73 affected pa-
tients and 5 healthy controls using single-cell
mass cytometry (a complementary technique to
single-cell sequencing that relies on antibody
panels). By interrogating 3.5 million single cells,
they identified 17 tumor-associated macrophage
phenotypes and 22 T-cell phenotypes, but most
significantly, were able to identify a signature im-
mune composition that was associated with
progression-free survival. This study clearly dem-
onstrates that single-cell analysis reveals addi-
tional layers of cellular complexity and that this
additional resolution can be clinically important.
Contributions of Bulk Next Generation
Sequencing to Understanding Urologic Cancer

The Cancer Genome Atlas, the International Can-
cer Genome Consortium, and efforts of individual
groups have illuminated some of the genetic roots
of cancer (including prostate cancer) using bulk
NGS approaches, such as whole genome
sequencing (WGS), whole exome sequencing
(WES), and bulk RNA sequencing.19–24 These
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approaches rely on genetic material isolated from
tissue and result in an average, overall genetic pro-
file of the entire sample where the genetic contri-
butions of individual cells are masked. Novel,
common alterations have been identified in pros-
tate cancer using this method, including SPOP
and CHD1 mutations, and previously known tar-
gets have been validated (including PTEN and
TP53 loss or mutation).25 Using prostate cancer
as a key example, though, the clinical utility of
these efforts has been somewhat limited because,
as one might expect, the genetics of this disease
are very complex. Several genetic anomalies (fu-
sions in ERG, ETV1/4, and FLI1 and mutations in
SPOP, FOXa1, and IDH1) are common among pa-
tients with prostate cancer, and these have led to
the evolution of 8 distinct molecular subtypes of
the disease: 7 groups, each based on 1 conserved
genetic alteration and 1 group of “other.” Howev-
er, samples within each of these classifications
have demonstrated additional contributors to het-
erogeneity (for example, in epigenetic profiles and
androgen-receptor activity) and these classifica-
tions have not been linked to either prognosis or
therapeutic effectiveness.7,19,26

It is interesting that the Gleason score, which is a
very strong predictor of disease progression in
prostate cancer, has been demonstrated in some
studies to be related to underlying genetic alter-
ations.7 As one example, Rubin and colleagues27

performed WGS and WES on samples from 426
prostate cancer samples, with the goal of identi-
fying genomic support for prognostic grade group-
ings, which are clinical categorizations based on
Gleason number. They observed increasing poly-
ploidal frequency with increases in genomic ampli-
fication, deletions, and nonsynonymous point
mutations with increasing grade.27 This observa-
tion, taken together with the knowledge that
single-cell analysis can better characterize the ge-
netic complexity of disease, leads to the hope that
single-cell sequencing and characterization may
contribute significantly toward clinically actionable
information, particularly in highly heterogeneous
treatment scenarios, such as immunotherapy of
urologic cancers.
Single-Cell Sequencing: Current State of the
Art

Single-cell sequencing has grown extensively in
the past several years, both in the characterization
of single-cell genomics (DNA) and single-cell tran-
scriptomics (RNA). Single-cell genomic analysis
has been particularly useful in understanding the
evolution of somatic mutations in disease. As
one example, Zhang and coworkers28 used
single-cell WGS to characterize the somatic muta-
tional landscape in B lymphocytes as a function of
age and found that cells from newborns contained
fewer than 500 mutations per cell, whereas cells
from centenarians contained more than 3000 mu-
tations per cell. They were also able to use this
approach to identify mutational hotspot regions,
some of which were located at genes associated
with somatic hypermutations, similar to mutational
signatures observed in B-cell tumors.28

Single-cell transcriptomic analysis reflects the
functional diversity of cells and can capture the
functional consequences of tumor/TME interac-
tions as well as the effects of treatment. As one
cogent example, Horning and coworkers29 used
single-cell RNA sequencing to characterize pros-
tate cancer cell response to androgen stimula-
tion, given that there is evidence that small
androgen-independent subclones of cells are
preferentially selected during androgen depriva-
tion therapy and drive post-therapy disease pro-
gression. In this work, they profiled the
transcriptomes of 144 single LNCaP prostate
cancer cells, following cell-cycle synchronization
and androgen treatment, which revealed previ-
ously unappreciated heterogeneity in the cellular
response of 8 potential subpopulations. In partic-
ular, they identified one subpopulation of cells
with enhanced expression of 10 cell-cycle genes,
and decreased dependence on androgen-
receptor signaling, which resulted in advanced
growth and sphere formation capability of these
cells. This work clearly highlights the need to un-
derstand the heterogeneity in this disease to bet-
ter understand disease progression and
therapeutic mechanism.

Single-cell immune profiling approaches also
have proven useful in understanding immune
response at the single-cell level. In brief, the V(D)
J sequences of T cells and B cells are character-
ized such that T-cell and B-cell clonotype diversity
profiles and antigen specificity can be evaluated.
This is invaluable not only as an additional dimen-
sion for understanding the TIME, but also in evalu-
ating personalized medicine approaches.
OVERVIEW OF SINGLE-CELL SEQUENCING
APPROACHES
Single-Cell DNA Sequencing

Although much of the discussion in this review has
been focused on the value of single-cell transcrip-
tomics (via single-cell RNA sequencing), it is
important to note that single-cell characterization
of the genome has also been evolving toward
novel and impactful data (Fig. 3). Single-cell
copy number variation analysis has proven useful



Fig. 3. Single-cell characterization of
the genome has also been evolving
toward novel and impactful data.
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in characterizing genomic heterogeneity and
clonal evolution, particularly in diseases driven by
such aberrations (such as multiple myeloma).30

Single-cell approaches to understanding epige-
netic heterogeneity have also been developed,
particularly those aimed at characterizing chro-
matin accessibility (single-cell assay for
transposase-accessible chromatin
sequencing)31,32 and methylation,33 where these
data are useful in understanding accessibility and
activity of transcriptional promoters.
Single-Cell RNA Sequencing

Early, plate-based approaches to single-cell anal-
ysis focused on single-cell isolation followed by
Smart-Seq library preparation and Illumina-based
sequencing. There are a variety of methods that
have been useful for single-cell isolation, including
laser dissection, targeted fluorescence-activated
cell sorting (FACS), or more novel microfluidic ap-
proaches such as the C1 (Fluidigm, South San
Francisco, CA), DEPArray (Menarini Silicon Bio-
systems, Bologna, Italy), or Beacon (Berkeley
Lights, Emeryville, CA). Cells are directly sorted
into well plates containing cell lysis buffer and re-
agents for reverse transcription. The resulting
complementary DNA (cDNA) then undergoes
amplification and tagmentation in preparation for
short-read NGS sequencing, where libraries are
prepared cell by cell and then barcoded before
pooling. Although these methods are highly useful
in that they yield full-length transcripts for each
cell, throughput is limited by sorting capacity,
manual effort required for library preparation, and
per cell cost.
Droplet-Based Single-Cell RNA Sequencing
Approaches

To address the limited throughput of plate-based
approaches, several groups have developed
droplet-based approaches (Drop-Seq and
InDrop); these are the most recent innovative ap-
proaches that facilitate the isolation and
sequencing of large numbers (thousands) of single
cells in a highly efficient manner.34,35 Droplet-
based methods combine single-cell isolation (via
Poisson loading of single cells into fluid droplets)
with cell lysis; in this approach, single cells in sus-
pension flow into a microfluidic network and are
captured into fluid droplets that also contain all
the necessary reagents for cell lysis, messenger
RNA (mRNA) capture/labeling with a Unique Mo-
lecular Identifier (UMI), and reverse transcription.
Then, cDNA is amplified and libraries are con-
structed for short-read NGS sequencing, where
droplet (and usually single-cell) identity is retained
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by a barcode. Sequencing is initiated from either
the 30 or 50 end of the transcript, but current read
lengths (100–150 base pairs) yield only partial in-
formation from the transcript. Research efforts
demonstrating targeted, long-read/full-length, sin-
gle-cell sequencing (ie, scIsoSeq) are ongoing and
aim to address this current limitation.36

TECHNICAL CONSIDERATIONS IN SINGLE-
CELL SEQUENCING
Sample Preparation and Handling

One of the major challenges associated with any
approach to single-cell sequencing is in the gener-
ation and/or selection of single viable, intact cells
from tissue; this is particularly true as more and
more patient and patient-derived samples are be-
ing interrogated via this method.37 Tumor or tissue
dissociation requires optimization and validation
to ensure that all populations are appropriately
represented and that disaggregation methods do
not selectively lyse sensitive cells. Moreover,
enrichment for cell populations of interest is often
necessary and strategies to accomplish this (eg,
depletion of bulk cells, targeted FACS, bead-
based enrichment of target cells) must also be
optimized and validated. Dynamic changes in the
tissue and isolated cells also must be considered
in designing and evaluating single-cell experi-
ments; changes in cell health, signaling, and tran-
scription (even those induced solely from
dissociation) will all be reflected in single-cell
sequencing data, particularly as the sensitivity of
this method increases.

Number of Cells Analyzed and Sequencing
Depth

One important consideration in designing single-
cell analyses is the size of the cell population of in-
terest; this is especially true if rare cell populations
are the target of a study, as many fold more total
cells must be analyzed to yield information from
a sufficient number of rare cells (where, for
example, rare cells might be treatment-resistant
clones, circulating tumor cells, or cancer stem
cells) with adequate sequencing depth (historically
50,000–100,000 reads per cell for differential gene
expression analysis, where deeper sequencing
can reveal additional genes up to the point of
sequencing saturation).37 This is a very important
clinical consideration when analyzing samples
from patients who are either at an early stage of
their disease or have low levels of refractory dis-
ease, as cells of interest from these patients may
be present in very low numbers. In some cases,
it is necessary to combine cells derived from mul-
tiple samples/patients/animals to achieve the total
number of cells required; this is especially true
when analyzing small tumor biopsies or highly
acellular tissue (such as some bladder tumors).
Although retaining the sample identity of single
cells is straightforward in plate-based ap-
proaches, historically, this has been more chal-
lenging for droplet-based methods, as there is no
way to track droplets through the microfluidic sys-
tem. Recent advances, such as “cell hashing,”
enable the pooling, analysis and de-multiplexing
of multiple samples such that data from individual
cells can be traced back to their original sample
source.38 In this novel approach, oligonucleotide
barcoded antibodies (or “hashtags”) that ubiqui-
tously recognize cell membrane proteins are
used to label individual cell populations before
pooling, where each sample is labeled with a
different oligonucleotide sequence and the hash-
tag oligonucleotides are sequenced alongside
the cDNA libraries to permit sample assignment
of each cell.

Scale

Handling samples on a cell-by-cell basis from
isolation to sequencing can be prohibitively
cumbersome and labor-intensive, so a number of
approaches have been developed that permit mul-
tiplexing of cells to increase the efficiency of this
process. Incorporation of cell barcoding allows
mRNA from many cells to be sequenced in one
batch, where de-multiplexing can be performed
computationally in the analysis phase; the
approach has been incorporated into single-cell
sequencing methods such as single-cell RNA bar-
coding and sequencing (SCRB-Seq),39 massively
parallel single-cell RNA sequencing (MARS-
Seq),40 and cell expression by linear amplification
sequencing (Cel-Seq).41 Furthermore, as
described previously, the addition of microfluidics
has increased the handling efficiency, and capac-
ity of several techniques. Although conceptually
Drop-seq relies on microfluidics to enable droplet
loading, companies such as 10X Genomics (Pleas-
anton, CA), BioRad (Hercules, CA), and Fluidigm
have engineered platforms that combine microflui-
dic devices and cell barcoding to enable cDNA
generation from hundreds to thousands of single
cells at once.

Data Handling/Analysis

As single-cell sequencing data becomes more
cost-effective, the shift from molecular and bio-
logic bottlenecks to data handling is apparent.
For example, single-cell RNA sequencing typically
targets 50,000 to 100,000 transcript reads per cell
to enable differential expression analysis.
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Transcripts are counted by the addition of UMIs
and aligned against a reference for gene calling.
Most commonly, data are filtered to remove back-
ground (too few UMIs), unhealthy/dead cells (as
determined by the percentage of mitochondrial
reads from a given cells), and doublets/multiplets.
Data normalization is then performed by scaling
count data to correct relative gene abundances
between cells, followed by correction methods
(to remove effects of technical batch or cell-cycle
variation). Given that up to approximately 25,000
genes are part of the original single-cell data set,
it becomes necessary to reduce the analysis to
genes that are most interesting, and are most var-
iable between cells, which is done by feature se-
lection to reduce the dimensionality of the
dataset to the most interesting approximately
500 to 5000 genes. Further dimensionality reduc-
tion is done using principal component analysis
and a nonlinear reduction method, such as
t-SNE,42 or uniform manifold approximation and
projection (UMAP)43 to facilitate cluster visualiza-
tion. The resulting clusters are then annotated
based on genes expressed, both for identity (ie,
clusters with high CD4 expression are T cells)
and, to some extent, for function (ie, clusters with
high granzyme B and lysozyme are likely cyto-
toxic). Additional downstream analyses, such as
trajectory analysis, in which clusters are related
to each other sequentially by differential gene
expression profile, are also becoming more com-
mon.44 Also, machine learning approaches have
been leveraged to dig deeper into large (typically
bulk) sequencing data sets to try to find correla-
tions between clinical metrics and gene
expression.45,46

There are still many challenges associated with
single-cell RNA sequencing data analysis. With
increasing experimental throughput, single-cell
datasets have become prohibitively large for the
average personal computer. Access to high-
performance computing options has become a
necessity in many cases. Data analysis methods
have exploded in parallel with single-cell experi-
mental approaches, and it has become important
for investigators to optimize and select the most
appropriate filtering, normalization and dimension-
ality reduction strategies for their data sets. Finally,
annotation of clusters by gene expression is still
largely manual in many cases, which presents
challenges in both bandwidth and consistency.
EMERGING TECHNOLOGIES
Other –Omics

As single-cell sequencing technologies develop,
investigators have had the opportunity to ask
increasingly challenging research questions that
require integration of complex cellular phenotype
data with sequencing data. Approaches, such as
cellular indexing of transcriptomes and epitopes
by sequencing (CITE-seq), where markers for
cellular protein expression are combined with
Drop-seq–based cell isolation and processing,
have begun to address these challenges, allowing
sequencing information to be linked to character-
ized cells.47 However, the types of phenotypic
data that can be linked to sequencing data are
currently limited to surface protein expression
that can be labeled with an antibody. Other types
of characteristic phenotypic data, such as growth
kinetics, secretion, or cellular function, are not
accessible by these methods, and require more
sophisticated approaches.48

Single-Cell Multi-Omic Integration

Active efforts are under way to enable integration
of data from multiple single-cell analytical
methods, including single-cell DNA and RNA
sequencing, with single-cell proteomics. Such
multilayered analysis will provide the most com-
plete characterization of the tumor and its associ-
ated microenvironment, both during the
development of disease and in response to ther-
apy. Some of the most exciting examples of these
approaches include CITE-Seq (described previ-
ously, which pairs single-cell RNA sequencing
and surface protein analysis),47 Genotyping of
Transcriptomes, or GoT (which pairs DNA
sequencing and RNA sequencing for the same
cell),49 and combining single-cell DNA methylation
analysis with RNA sequencing.50

Spatial Sequencing

One very significant caveat to single-cell
sequencing is that it requires isolated cells that,
by definition, have been removed from their
anatomic context. Given the increasing apprecia-
tion for spatial and temporal heterogeneity as
well as the role of dynamic cellular interactions in
disease progression, it has become critical to
develop methods that retain the spatial context
of individual cells. To this end, several spatial
sequencing approaches (such as Slide-Seq,51

multiplexed error-robust fluorescence in situ hy-
bridization [MERFISH],52 spatially resolved tran-
script amplicon readout mapping [STARmap]53

and the Visium assay from 10X Genomics) have
been developed and are now approaching
single-cell resolution. The methods are similar to
single-cell transcriptomic approaches, but are
used on a slide-mounted intact sample (such as
a tissue slice) and leverage a spatial barcode
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that allows the registration of transcripts to their
position on the slide.

This novel approach was used to characterize
spatially resolved gene expression in 6750 tissue
regions within a Gs 3 1 4 adenocarcinoma pros-
tate tumor section. Berglund and colleagues54

were able to resolve extensive intratumor hetero-
geneity and identify distinct expression profiles
for tissue compartments, including normal, can-
cer, stroma, immune cell, and prostatic intraepi-
thelial neoplasia glands. Moreover, they were
able to resolve the high degree of inflammation
and immune response in tumor and adjacent
normal tissue, compared with normal tissue. In
short, this approach (particularly when combined
with large-scale analysis of matched single cells)
will add spatial complexity and dimensionality to
single-cell sequencing and even further increase
the promise of this method.
SUMMARY

Cancer is a highly complex and heterogeneous
disease, and immunotherapy has shown promise
as a therapeutic approach. Although bulk NGS
has helped to broadly inform treatment of cancer
(including with immunotherapy), the increased res-
olution afforded by single-cell analysis offers the
hope of finding and characterizing previously un-
derappreciated populations of cells that could
prove useful in understanding the progression
and treatment of cancer. In evaluating immuno-
therapeutic approaches, single-cell analysis is
uniquely suited to (1) identifying known, rare, or
novel tumor targets; (2) characterizing patient-
specific populations of immune cells that can be
leveraged for immunotherapy; and (3) assessing
the effects of immunotherapy on subpopulations
of cells within a tumor to understand sensitivity
or resistance. Urologic and prostate cancers are
inherently heterogeneous diseases, even as far
as cancer is concerned, and the potential for
single-cell analysis to help understand and
develop immunotherapeutic approaches to treat
these diseases is very exciting. Further advances
in these technologies to interweave multiple
–omics methods with spatial analysis of the tumor
immune microenvironment promises to bring our
understanding of the evolution of cancer and ef-
fects of immunotherapy to an entirely new level,
which will hopefully translate to great improvement
in clinical outcomes.
CLINICAL COMMENTS

� Heterogeneity of a tumor and its microenvi-
ronment (including the immune compartment)
likely contributes to differences in disease
development and patient response to
treatment.

� NGS of bulk tissue does not always capture
heterogeneity.

� Single-cell sequencing of cells from tissue al-
lows for better resolution of different minor cell
populations, which can help identify tumor
targets, identify cells that can be leveraged
for immunotherapy, and to understand the ef-
fects of therapy on tumor development.
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