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KEY POINTS

� High sperm DNA damage increases the risks of pregnancy loss.

� Testicular sperm have less DNA damage than sperm in the ejaculate.

� Using testicular sperm for in vitro fertilization for men with high levels of sperm DNA damage is
widely used.

� Presently, there is insufficient evidence to conclude that the use of testicular sperm increases live
birth rates compared with ejaculated sperm for men with high levels of sperm DNA damage.

� The use of testicular sperm retrieval for in vitro fertilization to manage men with high sperm DNA
damage is not supported by the literature published to date.
m

BACKGROUND

In North America, approximately 15% of couples
suffer from subfertility. In approximately 35% of
these couples, a male factor is identified for the
subfertility.1 There are a variety of treatments avail-
able for men with subfertility, but quite often in vitro
fertilization (IVF) or intra-cytoplasmic sperm inser-
tion (ICSI) is used to help couples with male factor
infertility. IVF is the process in which sperm are
incubated with oocytes, whereas ICSI is the pro-
cess in which individual sperm are injected directly
into oocytes. Because ICSI requires the use of very
few sperm and because the injection of the sperm
directly into the oocyte ICSI means that the sperm
do not require the ability to bind to or penetrate the
oocyte, ICSI is now widely used to treat men with
abnormal semen parameters, including men with
low sperm counts and sperm motility, as well as
for men with low numbers of morphologically
normal sperm. ICSI has allowed millions of cou-
ples with infertility to become biological parents.

In North America, more than 200,000 IVF or ICSI
cycles are performed yearly.2 In Europe, there
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were more than 686,000 cycles performed in
2013, and in Japan, 244,000 cycles in 2015.3,4 If
a male factor is identified, more than 90% of the
cycles are ICSI rather than IVF alone.2

The medical costs of IVF can be quite high but
vary substantially by country. Chambers and col-
leagues5 reported that the cost of an IVF cycle
(in 2006 US$) ranged from $12,513 in the United
States to $3956 in Japan. In addition, a significant
amount of time and effort is taken by the couples
undergoing the fertility treatments, with multiple
visits to the infertility units for investigations and
treatments.

Reported first in 1992 by Palermo and col-
leagues,6 the use of ICSI has certainly revolution-
ized the treatment of male factor infertility. This
group reported that ICSI bypassed the natural se-
lection process, allowing for high fertilization,
pregnancy, and live birth rates for couples with
infertility, with the success rates being indepen-
dent of the sperm count, motility, or morphology.7

Other groups subsequently reported clinical
studies that ICSI fertilization and pregnancy rates
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were not affected by sperm counts, motility,
morphology, or even the source of the sperm
(ejaculated vs epididymal) as long as the sperm
were alive.8–10

This optimism that ICSI outcomes were inde-
pendent of sperm parameters has been chal-
lenged by more recent studies showing reduced
pregnancy rates and live birth rates for couples
with male factor infertility. Strassburger and col-
leagues11 in 2000 reported lower fertilization and
pregnancy rates as well as lower live birth rates if
the men had lower sperm counts, and De Vos
and colleagues12 in 2003 noted higher pregnancy
rates when morphologically normal sperm were
used for ICSI.
Although routine semen testing measures the

sperm count, motility, and morphology, other tests
of sperm function/capacity have been developed:
some of the most widely used approaches are as-
says to measure the sperm DNA integrity (Fig. 1).
The most common tests in use are the sperm chro-
matin structure assay, the sperm chromatin
dispersion test, the COMET assay (Fig. 2), and
the TUNEL assay (terminal deoxynucleotidyl trans-
ferase dUTP nick end-labeling assay).13 Unfortu-
nately, there is no standardized approach to the
measure of sperm DNA damage, and reports on
sperm DNA damage are typically a numeric value
that is then interpreted as a binomial result (either
high or normal/low levels of DNA fragmentation).
With such a variety of different measures and
normal reported ranges of sperm DNA damage,
it is difficult to interpret different studies using
sperm DNA damage levels as a metric.
Sperm DNA damage may occur during sper-

matogenesis with the induction of apoptosis
(reviewed by Sakkas and Alvarez14 in 2010), during
spermiogenesis15 (during chromatin remodeling),
or posttesticular with damage owing to reactive
oxygen species,16,17 reduced seminal antioxi-
dants,18 and exposure to environmental/lifestyle
factors, such as pollution, cigarette smoking, che-
motherapies, advanced age, and some drugs.19–21
Impact of High Sperm DNA Damage on
Intracytoplasmic Sperm Insertion Outcomes

There is now quite compelling evidence that
elevated rates of sperm DNA fragmentation are
associated with compromised ICSI outcomes. In
a metaanalysis in 2008, Collins and colleagues22

found an association between sperm DNA frag-
mentation as measured by standard sperm DNA
integrity assays and pregnancy rate (odds ratio
[OR] 1.44: 95% confidence interval [CI] 1.03–2.03)
with ICSI, whereas Zini and colleagues23 in 2008
noted that sperm DNA fragmentation was
predictive of pregnancy loss following IVF/ICSI cy-
cles (OR 2.48: 95% CI 1.43–5.2). Zhao and col-
leagues24 in 2014 in an updated metaanalysis
confirmed the above findings and noted that
abnormally high levels of spermDNA fragmentation
was associated with higher pregnancy loss rates
following IVF/ICSI (OR 2.68: 95% CI 1.40–5.14).

How frequently is high sperm DNA
fragmentation found?
There are several studies reporting on the fre-
quency of high sperm DNA fragmentation with re-
ported rates up to 40% of infertile men,25 but the
author’s series from Toronto found the rates of
high sperm DNA fragmentation depended on the
diagnosis, with high sperm DNA fragmentation
found in 48% of men with bacteriospermia, 30%
of men with varicoceles, and 22% of the men
with idiopathic infertility.26 Only 8% of fertile men
in the series by Zini and colleagues27 were found
to have significant sperm DNA fragmentation.

How to treat men to reduce sperm DNA
fragmentation?
There are potentially reversible causes for high
sperm DNA fragmentation, including varicoceles,
infections, and smoking.28 A recent metaanalysis
showed that varicocelectomy reduces sperm
DNA fragmentation rates by �3.37% (95% CI:
�4.09 to�2.65).29 Smoking has long been associ-
ated with male infertility, but the negative impact of
smoking on sperm DNA fragmentation has only
more recently been reported.30–32 Although smok-
ing cessation is recommended, the impact of
cessation on sperm DNA has not been reported.
Infections and inflammations of the male repro-
ductive tract may also be related to sperm DNA
fragmentation, with improvements in DNA integrity
with specific therapies.33–35 For most men, no
potentially reversible causes are identified. These
men have been treated with antioxidants with evi-
dence of a significant reduction of sperm DNA
fragmentation (reviewed by Zini and colleagues36

and Showell and colleagues37) in 1 metaanalysis
of 2 studies showing a reduction of �13.85%
(95% CI: �17.85 to �10.41). Despite these thera-
pies, many men end up with abnormally high rates
of sperm DNA fragmentation, which may be
contributing to IVF/ICSI failures.

If therapies to improve sperm DNA integrity are
ineffective, are there alternative ways to
improve the reproductive outcomes with
intracytoplasmic sperm insertion for men with
sperm DNA fragmentation?
It is well recognized that there is intense sperm-to-
sperm variability (within the same semen
specimens) in the levels of DNA fragmentation.



Fig. 1. Commonly used assays to measure sperm DNA damage levels. dsDNA, double-stranded dsDNA; ssDNA,
single-stranded DNA; TUNEL, terminal deoxynucleotidyl transferase nick end-labeling assay.
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Conceptually, if there was some way to choose in-
dividual sperm with less DNA fragmentation, this
method should improve the reproductive out-
comes following ICSI. Unfortunately, with the pre-
sent technology in use, there is no way to measure
the level of DNA fragmentation in an individual
sperm and then use that sperm for ICSI.
Selection of Sperm with Less DNA Damage

The standard sperm selection techniques use a
combination of centrifugation of the sperm through
a density gradient, often followed by a “swim-up”
procedure to select highly motile sperm.38 This
process does select sperm with higher motility
and with lower DNA fragmentation.39 This tech-
nique remains the standard selection technique
for most fertility centers in North America.

There have been several other different proced-
ures used to select sperm with lower DNA frag-
mentation. Hyaluronan binding has been used to
select sperm with lower DNA fragmentation rates:
these sperm have subsequently been used for the
ICSI procedure (PICSI technique: physiologic
hyaluronan-selected intracytoplasmic sperm in-
jection).40 This technique has not been shown to
improve live birth rates, with a very large recent
study recommending that PICSI be abandoned
for sperm selection.40,41 Others have reported
the use of high-resolution imaging of the sperm
Fig. 2. Examples of Comet assays
showing “high,” “normal,” and low
sperm DNA integrity. An electropho-
retic current separates the frag-
mented DNA into the tail of the
comet, leaving the nonfragmented
DNA in the head of the comet.
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to select sperm with normal sperm organelles
(motile sperm organelle morphology examination)
and intracytoplasmic morphologically selected
sperm injection (IMSI), both of which select sperm
with lower DNA fragmentation but neither of which
have been shown to increase live birth rates with
the exception of the potential use for recurrent im-
plantation failures for the IMSI procedure.42

Recently, there has been a significant research
effort to develop microfluidics devices to select
sperm with lower DNA fragmentation for IVF/
ICSI.43–50 Most of these devices use some type
of microchannel, which separates sperm based
on the ability to negotiate/swim through the micro-
channel (Table 1 lists available devices). The de-
vices avoid centrifugation, which was previously
shown to increase DNA fragmentation rates.39

Consistently, these devices are able to select high-
ly motile sperm with low DNA fragmentation, out-
performing the standard sperm selection
technique in selecting sperm with high DNA integ-
rity (reviewed by Nosrati and colleagues47).44,47,51

For example, Quinn and colleagues44 in 2018 re-
ported that sperm selected using a microfluidic
device had virtually undetectable rates of sperm
DNA fragmentation as measured by the sperm
chromatin dispersion assay, rates that were signif-
icantly less than the rates in sperm selected using
a standard density gradient and swim-up sperm
selection technique. Unfortunately, there are no
data for any microfluidic device on aneuploidy
rates for selected sperm. Although the microfluidic
approaches look promising for the selection of
sperm for IVF/ICSI, there are no randomized
controlled trials documenting improvements in
reproductive outcomes using these devices. In
2018, Yetkinel and colleagues43 reported on a ran-
domized controlled trial on the use of the Fertile
Chip device to select sperm for ICSI outcomes
compared with the standard sperm preparation
technique. They reported similar fertilization, preg-
nancy, and live birth rates between the 2 groups.
This group selected couples with unexplained
infertility not based on any particular semen
parameter. There is a registered clinical trial on
the use of the Zymot device for couples who
have had “poor embryo quality” in a previous IVF
cycle, but the details of this study were not
recorded at clinicaltrials.gov.
Despite the lack of well-controlled studies docu-

menting higher live birth rates using microfluidics-
selected sperm, several companies are selling
these devices for use to select sperm before IVF,
and 1 device (Zymot or FERTILE) is approved by
the Food and Drug Administration for sale in the
United States. The Zymot device is commercially
available and in clinical use to select sperm for
ICSI in North America (according to Koek Biotech,
having been used for thousands of ICSI cycles).

Testicular Sperm Retrieval

Some centers are now offering testicular sperm
retrieval (TSR) for men with high sperm DNA frag-
mentation. The rationale for offering TSR for men
with high sperm DNA fragmentation undergoing
ICSI is the finding that ejaculated sperm have
significantly higher rates of sperm DNA fragmenta-
tion than testicular sperm, with a metaanalysis by
Esteves and colleagues52 showing a significantly
lower sperm DNA fragmentation rate in testicular
versus ejaculated sperm (8.9% � 5.1% vs
33.4% � 12.8%).53,54

Presently, none of the major fertility associations
(American Society of Reproductive Medicine, Eu-
ropean Society of Human Reproductive Endocri-
nology, and the Canadian Fertility Andrology
Society) supports the use of TSR to treat men
with high sperm DNA damage. In fact, the Amer-
ican Society of Reproductive Medicine does not
even support the routine use of sperm DNA integ-
rity testing.55 Despite the lack of support from the
major fertility associations, this procedure is now
being offered in an unknown number of clinics
throughout the world. In a recent survey of Cana-
dian fertility clinics, 70% were performing TSR
with ICSI for nonazoospermic men (reported by
Zini and colleagues56).

Comparing Testicular Sperm Retrieval Versus
Ejaculated Sperm Reproductive Outcomes
with Intracytoplasmic Sperm Insertion

Although the evidence that sperm DNA damage is
less in the TSR sperm than in the ejaculate is
compelling, what evidence exists to support the
use of TSR to improve live birth rates for men
with high sperm DNA damage using ICSI? Greco
and colleagues54 were the first to report higher
pregnancy rates in testicular versus ejaculated
sperm for those with high sperm DNA fragmenta-
tion, with the reported pregnancy rate of 44% in
the TSR group versus 6% in the ejaculated sperm
group. Over the years, there has been a series of
other noncontrolled studies showing improved
pregnancy rates with TSR compared with ejacu-
lated sperm for men with high sperm DNA dam-
age.57–64 A study by Alharbi and colleagues65 did
not identify increased live birth rates.
In the metaanalysis by Esteves and colleagues52

reported in 2017, it was found that ICSI using
testicular sperm compared with ejaculated sperm
resulted in lower fertilization rates (59.8% vs
68.7%, P<.001), higher clinical pregnancies (50%
vs 29.4%, P<.001), and higher live birth rates

http://clinicaltrials.gov


Table 1
Microfluidic devices being marketed

Device Selection Mode

% DNA
Fragmentation

Index
Concentration
(Selected/Raw)

Clinical (IVF/ICSI)
Trial/Countries IVF/ICSI Test Results Reference/Web SiteRaw Selected

FERTILE 3D swimming 31–40 0–0.2 0.28 In progress/
United
States, Turkey

� Pregnancy %: 34%
when chip is used vs
23% with Percoll
method (performed in
Turkey)

� Quinn et al, 201872

� http://www.koekbiotech.com

QUALIS 3D swimming N/A 0–9 0.08 Japan � No information available � cho et al, 200373

� http://www.menicon-lifescience.com

ZECH SELECTOR 3D swimming 5–42.1 0–2.5 N/A No information
available

� No information available � Seiringer et al, 201374

� https//www.kinderwunsuch.at/de/
zech-selector.com

CS10 Electrophoretic
separation

16 5 0.18 Australia � No significant difference
in fertilization compared
with density-gradient
centrifugation (62.4%
vs 63.6%)

� Fleming et al, 200875

� http://www.memphasys.com.au/

Seaforia Thermotaxis1
3D swimming

N/A N/A 0.20 Australia � No information available � Irving et al, 201376

� http://wwwlotusbio.com

Abbreviation: N/A, not applicable.
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(46.9% vs 25.6%, P<.001) with an OR of 2.58 (95%
CI: 1.54–4.35). However, the study was limited
with the included reports being noncontrolled, in
some cases comparing ICSI outcomes sequen-
tially for the same couple and only a total of 2
studies reported live birth rates. As previously re-
ported by Khan and colleagues66 in 1996, these
types of crossover studies lead to significant over-
estimation of pregnancy rates. In addition, data
used in the metaanalysis included a study in which
the sperm had been cryopreserved without a sub-
analysis of the effect of cryopreservation on the
reproductive outcomes.63

Awaga and colleagues67 in 2018 performed a
systematic review on the use of testicular sperm
for men without azoospermia and identified a total
of 4 studies eligible for the review, with only 2
studies specifically on the use of TSR for high
sperm DNA damage. Because of the population
heterogeneity, a metaanalysis was not feasible,
so the investigators performed a systematic review.
The invstigators’ conclusion was that the existing
studies were too heterogeneous to compare and
that the data did not support the use of TSR to
manage men with high sperm DNA damage.

What Are the Risks Associated with Testicular
Sperm Retrieval?

There are risks associated with the biopsy and
even potentially the use of testicular sperm.
Esteves and colleagues61 reported a surgical
complication rate of 6.2%, although this included
no significant complications. In the author’s unpub-
lished series (Jarvi and Lo, 2014) following 50 men
after a testis biopsy, there were no significant com-
plications and only 1/50 had an intratesticular he-
matoma documented by ultrasound that resolved
spontaneously. The author’s series also has evi-
dence that testicular sperm aneuploidy rates are
significantly higher than ejaculated sperm aneu-
ploidy rates. Moskovtsev and colleagues68 re-
ported that although sperm DNA fragmentation
rates were lower in testicular versus ejaculated
sperm (14.9% � 5.0% vs 40.6% � 14.8%,
P<.05), the aneuploidy rates for 5 analyzed chro-
mosomes using fluorescent in situ hybridization
were significantly higher in the testicular sperm
Table 2
Cost per live birth for testicular versus ejaculated spe
men with high sperm DNA damage

Biopsy, $ IVF Direct Cost, $ Live B

Ejaculated sperm — 12,513 0.256

Testicular sperm 1875 12,513 0.469
(12.41% � 3.7% vs 5.77% � 1.2%, P<.05). The
group suggested that the apparent advantage of
lower sperm DNA damage in the testicular sperm
may be offset by the disadvantage of higher aneu-
ploidy rates. However, Cheung and colleagues64 in
2019 reviewed their results prospectively
comparing sperm DNA aneuploidy rates measured
by whole-exome sequencing in ejaculated versus
testicular sperm, finding that the testicular sperm
did not have significantly different aneuploidy rates.

What Are the Potential Cost Advantages of
Testicular Sperm Retrieval for Men with High
Sperm DNA Damage?

For this calculation, assume that the metaanalysis
of Esteves and colleagues52 provides accurate es-
timates of the effect size of TSR on live birth rates;
then, a cost/live birth can be calculated (biopsy
costs $1250–$2500 in Canada based on fees
paid in Montreal and Toronto, IVF cost US$
$12,513 in 2006; Table 2).
For individual patients and payers, this is a po-

tential significant saving. Considering that 22%
of men with idiopathic infertility have high rates
of sperm DNA damage, if TSR actually results in
higher pregnancy rates, there would be a signifi-
cant impact on payers if TSR was adopted.

What Is Required to Further Study the Role of
Testicular Sperm Retrieval in the Management
of Men with High Sperm DNA Damage?

Presently, the reports available do not provide
adequate evidence to support the use of TSR to
manage men with high sperm DNA damage. How-
ever, the relatively low risk associated with the
TSR procedure, the available studies that suggest
a possible positive effect on live birth rates, and
the lack of a viable proven alternative to improve
pregnancy rates for men with high sperm DNA
damage all lead to the obvious conclusion, that
further studies are needed in the area before
concluding that TSR should be a standard
approach to manage men with high levels of
sperm DNA damage.
There are several issues that need to be

addressed: a lack of a standard technique to
rm used for intracytoplasmic sperm insertion for

irth Rate Cost/Live Birth, $ Saving/Live Birth, $

48,878 —

30,678 18,200
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measure sperm DNA damage levels and a lack of
standard normal range values limit the ability to
compare studies of sperm DNA damage.13 Sec-
ond, the standard reports on sperm DNA damage
are categorical (reported as either high or normal/
low), whereas the numerical value does provide
added information on prognosis. Although a cutoff
value for DNA damage is useful to provide guid-
ance on the choice of assisted reproductive tech-
nologies (Spano and colleagues69 using a cutoff
value to predict the need for IVF or ICSI), it has
become clear that very high rates of sperm DNA
damage have different ICSI success rates than
those with marginally elevated rates of sperm
DNA damage.70

Complicating this, a controlled trial to definitively
answer the question about the role of TSR for men
with high sperm DNA damage would be ideal, but
difficult, because recruitment would be
challenging.71

SUMMARY

High levels of sperm DNA fragmentation lead to
poorer reproductive outcomes, with lower preg-
nancy and live birth rates following IVF and ICSI.
There is active research on techniques to select
sperm from the semen with the least DNA dam-
age, but presently, none of the techniques has
been proven to increase live birth rates. An alterna-
tive has been to retrieve sperm from the testicle.
The sperm in the testicles has not been exposed
to the more hostile environment of the epidid-
ymis/vas deferens and has less DNA damage
than ejaculated sperm. Many fertility centers offer
this sperm retrieval procedure for men with high
ejaculated sperm DNA damage, despite this pro-
cedure not being supported by the major fertility
organizations. The existing studies on the use of
sperm retrieval in this setting are single-center,
prospective, noncontrolled studies and do not
provide adequate evidence to support the use of
sperm retrieval to treat men with high levels of
ejaculated sperm DNA damage. Further studies
are required before the acceptance of TSR for
high sperm DNA damage as a standard of care.
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