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a b s t r a c t 

Inherited genetic variations may alter drug sensitivity in patients with acute lymphoblastic leukemia, 

predisposing to adverse treatment side effects. In this review, we discuss evidence from children and 

young adults with acute lymphoblastic leukemia to review the available pharmacogenomic data with an 

emphasis on clinically actionable and emerging discoveries, for example, genetic variants in thiopurine 

methyltransferase and NUDT15 that alter 6-mercaptopurine dosing. We also highlight the need for ongo- 

ing pharmacogenomic research to validate the significance of recent findings. Further research in young 

adults, as well as with novel therapeutics, is needed to provide optimal therapy in future trials. 

© 2020 Elsevier Inc. All rights reserved. 
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Improvements in outcomes for acute lymphoblastic leukemia 

ALL) have been driven in part by the ability to better person-

lize therapy to reduce toxicity and improve efficacy. Key as- 

ects of this personalization include risk-adapted therapy based 

n both leukemia genetics, disease response, as well as adapting

hemotherapeutic regimens to attempt to minimize toxicity to pa- 

ients. Chemotherapy can be preemptively modified using pharma- 

ogenomics on the basis of germline genetic variations that influ- 

nce the responsiveness and toxicity of chemotherapy [1] . 

Because pharmacogenomics involves the interaction between 

hemotherapy and inherited genetic variation, it is necessary to 

nderstand both the patient-specific genetics influencing treat- 

ent response as well as the chemotherapeutic regimen being 

tilized [2] . In this review, we will highlight data demonstrat-

ng genetic variations which may affect the efficacy and toxicity 

f current treatment regimens for young adults with ALL. While

e will highlight recent findings in adult pharmacogenomic stud- 

es, we will also note relevant data from pediatric studies using

imilar chemotherapeutic regimens. Increasing similarity between 

dult and pediatric trials makes these comparisons meaningful 

iven overlapping chemotherapeutic agents [3-5] . We will divide 

ur review according to the implicated chemotherapy agent and 

ocus on the five drug groups with the most extensive data: 6-
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ercaptopurine, methotrexate, asparaginase, vincristine, and glu- 

ocorticoids. 

-Mercaptopurine 

6-Mercaptopurine (6-MP) is a mainstay of maintenance ther- 

py for patients with ALL. It is taken orally daily with doses ad-

usted based on myelosuppression, the primary toxicity of 6-MP. 

ercaptopurine exerts its antileukemic effects through conversion 

o thioguanine nucleotides (TGNs) which are ultimately incorpo- 

ated into DNA (DNA-TG) [6] . There, they result in DNA dam-

ge and ultimately apoptosis ( Fig. 1 ). In addition to its use in

LL, mercaptopurine is used for patients with inflammatory bowel 

isease, as is its prodrug azathioprine. A related compound, 6- 

hioguanine, is also utilized in ALL, typically during intensification 

hases. While the primary toxicity of both mercaptopurine and 

hioguanine is myelosuppression, thioguanine is also associated 

ith a risk of venoocclusive disease/sinusoidal obstructive syn- 

rome [7] . In contrast, medication-induced transaminitis is more 

ommon with mercaptopurine and is reversible without long-term 

epatic injury, likely involving methyl metabolites of thiopurines. 

Mercaptopurine is the best characterized pharmacokinetic drug- 

ene pairing in ALL. Inter-individual differences in tolerance to 

ercaptopurine resulted in typical dose ranges between 10 mg/m ²
 days a week to more than 75 mg/m ² daily, with most patients

olerating 50 to 75mg/m 

2 daily [8] . The first genetic variant identi-

ed which was associated with decreased tolerance to mercaptop- 

rine was thiopurine methyltransferase (TPMT) [9] , a gene whose 

ctivity is regulated primarily by coding variants within the gene 

tself [10] . This association has been identified across diseases 
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Fig. 1. TPMT and NUDT15 inactivate thiopurines. As prodrugs, thiopurines (mercaptopurine [6MP] and thioguanine [TG]) are enzymatically metabolized to TGTP that is 

incorporated into DNA resulting in DNA damage and cytotoxicity. TPMT reduces MP cytotoxicity by converting it to inactive methyl-MP, whereas NUDT15 dephosphorylates 

TGTP and converts it to inactive TGMP. TPMT and NUDT15 are highlighted in red ovals, while MP/TG and their active metabolites (TGTP and DNA.TG) are shown in red text. 

TPMT = thiopurine methyltransferase. 
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reated with this drug, including inflammatory bowel disease as

ell as ALL [11] . 

TPMT methylates mercaptopurine and its intermediate metabo- 

ites; this results in lower thioguanine nucleotide levels [12] . While

hioguanine nucleotides have been most directly associated with

ellular cytotoxicity, methylated mercaptopurines have been as- 

ociated with transaminitis during mercaptopurine therapy [13] .

easurement of red blood cell TGN levels is now used as a sur-

ogate for these levels in blasts, as red blood cell (RBC) and blast

PMT activity are highly correlated and red blood cell TGN levels

re highly correlated with hematological toxicity [9 , 14 , 15] . While

o clinical threshold has been established for either efficacy or tox-

city in patients with ALL, evaluation of red blood cell thioguanine

nd methyl mercaptopurine nucleotide levels have been used to

onitor adherence to therapy in patients receiving 6-MP [16-18] .

ariants in TPMT are present in approximately 4.5% of patients

ith European ancestry, 7.7% of patients with African Americans,

2% of Asians, and 5% of Hispanic patients [19-21] . The most com-

on variant allele in European, Hispanic, and Asian patients is the

A (C > T at rs1800460 and T > C at rs1142345), while the 3C al-

ele (T > C at rs1142345) is the most common variant identified in

frican Americans ( Table 1 ) [21] . Patients with one known inac-

ivating variant in TPMT (ie, ∗3A, ∗3C, and 

∗2) are considered in-
ermediate metabolizers, while patients with 2 inactivating alle-

es are considered poor metabolizers. All other patients are con-

idered normal metabolizers. Preemptive identification of the ge-

etic variants in children with ALL resulted in reduced periods

f myelosuppression as well as a reduction in the risk of sec-

ndary acute myeloid leukemia [9 , 22 , 23] . Limited adult data also

uggests that patients who experience severe hematological toxic-

ty while receiving mercaptopurine frequently carries variations in

PMT [24] . 

The recent discovery of the association between NUDT15 vari-

nts and mercaptopurine intolerance has expanded the under-

tanding of causal variants driving thiopurine induced myelosup-

ression. Historical demographic data have suggested that patients

f Asian ancestry are more sensitive to 6-MP than patients of Eu-

opean ancestry, with mean tolerated dose approximately 65% of

hat is observed in other populations [25] . Genome-wide associa-

ion studies (GWAS) identified variants in NUDT15 significantly as-

ociated with this dose intolerance [25] . These variants are present

cross genetic ancestries but are relatively less common in pa-

ients of European ancestry (0.7%) compared to those of Hispanic

r Asian ancestry, in which they are observed in 4.5% to 6.4%

nd 10% to 12.1% of patients, respectively ( Table 1 ) [21 , 25] . Sim-

lar to patients with only inactivating TPMT variations, patients
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Table 1 

Frequently encountered low-function alleles in TPMT and NUDT15 . 

Data for the frequency of NUDT15 variant alleles in African Americans is unavailable at this time. Adapted from current Clinical Pharmacogenetics Implementation Consortium 

guidelines [21] . 

Gene/haplotype rsID Allele frequency 

European African American Hispanic East Asian 

TPMT 
∗3A rs1800460, rs1142345 3.4% 0.8% 4.2% < 0.1% 
∗3C rs1142345 0.5% 2.4% 0.6% 1.6% 
∗2 rs267607275 0.2% 0.5% 0.4% < 0.1% 

Other nonreference Various 0.6% 3.9% 0.6% 0.4% 

NUDT15 
∗2 rs869320766, rs116855232 < 0.1% 3.7% 3.5% 
∗3 rs116855232 0.2% 0.8% 6.1% 
∗9 rs746071566 < 0.1% < 0.1% < 0.1% 

TMPT = thiopurine methyltransferase. 

Prospec�ve TPMT 
and NUDT15 

genotype available

TPMT normal 
metabolizer

NUDT15 normal 
metabolizer

1b: 60mg/m2/day
HD: 50mg/m2/day 

Maint: 75mg/m2/day 

NUDT15 intermediate 
metabolizer

1b: 60mg/m2/day
HD: 50mg/m2/day 

Maint: 60mg/m2/day 

NUDT15 poor 
metabolizer

All phases: 
10mg/m2/day 

TPMT intermediate 
metabolizer

NUDT15 normal or 
intermediate 
metabolizer

1b: 60mg/m2/day
HD: 50mg/m2/day 

Maint: 60mg/m2/day 

NUDT15 poor 
metabolizer

All phases: 
10mg/m2/day 

TPMT poor 
metabolizer

NUDT15 any 
phenotype

All phases: 10mg/m2

3 days/ week

TPMT 
haplotype

NUDT15 
haplotype

Star�ng 
6-MP dose

Fig. 2. Genotype guided dose of 6-MP. Starting 6-MP doses in Total 17 (NCT03117751) vary by phase of therapy. Patients with one known inactivating variant in TPMT (ie, 
∗3A, ∗3C, and ∗2) or NUDT15 (ie, ∗2, ∗3, and ∗9) are considered intermediate metabolizers for the respective enzyme, while patients with 2 inactivating alleles are considered 

poor metabolizers. All other patients are considered normal metabolizers. Phases of therapy include late induction (1b), consolidation with high-dose methotrexate (HD), 

and continuation (Maint). All doses are given daily with the exception of patients with TPMT poor metabolizer genotypes who receive 6-MP only 3 of 7 days each week. 

TPMT = thiopurine methyltransferase. 
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ith one loss-of-function NUDT15 variation (ie, ∗2, ∗3, and 

∗9)

re considered intermediate metabolizers and tolerate 6-MP after 

 20% to 30% dose reduction (ie, 50 to 60mg/m 

2 /day as a start-

ng dose) [21 , 25] . While rare, NUDT15 variants in European adults

re also associated with myelosuppression [24] . Again similar to 

PMT variant patients, those with 2 inactivating mutations are 

onsidered poor metabolizers and tolerate less than 10% of the 

rotocol specified dose (ie, 10 mg/m 

2 /dose 3 to 7 days/ week;

ig. 2 ). 

NUDT15 acts by dephosphorylating thioguanine nucleotides 

rior to their incorporation into DNA [26] . Once thioguanine nu-

leotides are incorporated into DNA, they result in DNA damage

nd ultimately apoptosis. Damaging variants in NUDT15 result in 

ncreased incorporation of thioguanine nucleotides into DNA and 

hus increased sensitivity to the drug in the form of increased

yelosuppression. 

Because germline genetic variation in TPMT and NUDT15 are 

inherited" by a patients’ ALL blasts, dose adjustments to reduce 

yelotoxicity can be made while maintaining therapeutic efficacy 

27 , 28] . Data from clinical trials in which prospective dose de-

reases in 6-MP were made in patients with TPMT variation in-

icate similar therapeutic efficacy in patients with TPMT variant 

nd wild-type alleles [29] . Preclinical data demonstrate the efficacy 

f these NUDT15-informed decreases on murine leukemias [30 , 31] .

ithin the context of TPMT, host metabolism effects drug expo- 

ure such that even when wild-type TPMT leukemias are present 

w

n TPMT deficient hosts, therapeutic efficacy is maintained with 

ose decreased mercaptopurine [27] . 

In summary, clinical and preclinical data strongly support 

rospective dose adjustments of 6-MP in the context of TPMT or

UDT15 genetic variations. These recommendations are highlighted 

n a recently updated guideline from the Clinical Pharmacogenetics 

mplementation Consortium [21] . 

ethotrexate 

Methotrexate exerts antileukemic efficacy through alterations 

n the folate metabolism pathway and subsequent alterations in 

urine generation and DNA synthesis. It is critical to antileukemic 

herapy and is used in intrathecal injections to control or pre-

ent central nervous system (CNS) leukemia, during interim main- 

enance periods either in the form of high-dose methotrexate (with 

eucovorin rescue) or in an escalating IV fashion when combined 

ith asparaginase, the so-called Capizzi regiment. Finally, along 

ith mercaptopurine, it is taken either orally or intravenously 

eekly as part of maintenance therapy. 

The most commonly observed side effects of methotrexate in- 

lude myelosuppression, mucositis, and hepatic toxicity [4] . In ad- 

ition, acute renal insufficiency may also be observed, particularly 

fter high-dose administration [32] . More rarely, an acute stroke- 

ike syndrome is observed which is typically transient and resolves 

ithin 7 to 10 days [33] . Chronically, leukoencephalopathy and 
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eurological impairment can be observed both during therapy and

nto survivorship [34 , 35] . 

There have been no genetic variants which have been in-

egrated into preemptive pharmacogenomics testing prior to 

ethotrexate administration. Both GWAS and candidate gene ap-

roaches have been used to attempt to identify genetic variants

hich are associated with methotrexate sensitivity or toxicity.

ariants in SLCO1B1 were first identified as being associated with

ethotrexate clearance and gastrointestinal toxicity in 3 St. Jude

reatment cohorts [36] . Variants associated with slower methotrex-

te clearance were also associated with an increased risk of gas-

rointestinal toxicity/ mucositis in treatment regimens that did not

djust doses to target a predetermined drug exposure level. In

ontrast, this association with toxicity was not observed in regi-

ens that specified the desired exposure (rather than a prespec-

fied dose). This suggests that altering drug dosing to account for

lterations in clearance mediated by SLCO1B1 variation can ame-

iorate toxicity. Although genetic variants in SLCO1B1 accounted for

reater variation in clearance than sex, ancestry, or age, these vari-

nts explained only 11% of the variation in clearance. By compar-

son, dosing regimen accounted for 17% of the variability in drug

learance. 

The association between these variants alleles and methotrex-

te clearance was validated in an additional study of 1279 patients

ith ALL [37] . In addition to the lead SLCO1B1 single nucleotide

olymorphism (SNP), 2 additional SNPs in this gene were associ-

ted with methotrexate clearance after adjusting for the lead SNP.

ithin this cohort, the SNPs accounted for approximately 2% of the

ariation in methotrexate clearance in contrast to a 38% difference

n clearance associated with a 4-hour versus 24-hour infusion. No-

ably, the variability associated with genetics was still greater than

ther treatment factors such as the presence of a delayed intensi-

cation phase, age, or sex. 

Although the findings of these studies have not led to pre-

mptive pharmacogenetics dose adjustments, they remain signifi-

ant because they have highlighted the importance of the SLCO1B1

ransporter in the clearance of methotrexate. This highlights poten-

ial drug-drug interactions that are particularly important around

igh-dose methotrexate infusions. Notably, proton pump inhibitors,

minopenicillins, and statins may all act as inhibitors of SLCO1B1

nd therefore result in increased methotrexate exposure and asso-

iated toxicities [38] . 

In summary, interpatient and intrapatient variability in dos-

ng regimen result in greater differences in toxicity and clearance

han genetic variants. Thus, careful monitoring of patients receiv-

ng high-dose methotrexate is needed to ensure optimal therapeu-

ic efficacy and minimize toxicity. 

sparaginase 

Asparaginase deaminates the amino acids asparagine and, to a

esser extent, glutamine to form aspartic acid and glutamic acid,

espectively. This depletes serum asparagine. While most cells can

enerate asparagine using asparagine synthetase, ALL blasts are un-

ble to do so because they frequently lack asparagine synthetase

xpression. The use of asparaginase in pediatric ALL regimens is

 key difference when compared to conventional adult ALL regi-

ens. The effectiveness of asparaginase in pediatric ALL regimens

as been well documented [39-41] , and improvements in out-

omes for adults with ALL receiving pediatric regimens have been

ttributed to the addition of asparaginase to these therapies [3] .

ommon toxicities experienced by patients receiving asparaginase

nclude allergic reaction, thrombosis, hepatic injury, and pancreati-

is. Allergic reactions can be either clinically apparent or associated

ith a subclinical immune response that results in rapid asparag-
nase clearance (“silent inactivation”) and therefore inadequate as-

aragine depletion. 

Asparaginase allergy occurs in between 5 and 15% of patients

eceiving multiple doses of pegylated asparaginase during ALL

herapy [42-44] . Antiasparaginase antibodies are highly correlated

ith the development of clinical allergy, with almost all patients

ho experience a clinical allergy having antiasparaginase anti-

odies [42] . Silent inactivation can also occur in the presence of

ntibodies and is associated with an inferior therapeutic response

41 , 45] . Candidate gene studies evaluating major histone com-

atibility regions have identified the human leukocyte antigen

HLA)DRB1 ∗07:01 haplotype as being associated with the develop-

ent of asparaginase allergy [46 , 47] . Patients with this haplotype

ad a 60% increased risk of developing clinical hypersensitivity

nd a 2.9-fold increased risk of developing antiasparaginase anti-

odies [47] . This association was maintained in both patients that

eceived native asparaginase (which was used historically but is

o longer commercially available in the United States) as well as

egylated asparaginase which is currently used in frontline trials

round the world. The mechanism of this association appears to

e increased binding due to alterations in the amino acid sequence

n the binding pocket of the HLA-DR. While less frequently seen in

he population studied, associations were also observed between

LA-DRB1 ∗04:05 and 

∗04:08 haplotypes. 

Evaluations in a European cohort confirmed associations be-

ween HLA loci and the development of asparaginase allergy [48] .

n that cohort, HLA–DQA1 was associated with an increased risk of

sparaginase allergy, although individual patient haplotype’s were 

ot assigned. This study also associated a variation in CNOT3 , a

ene associated with major histocompatibility class II expression,

ith the development of asparaginase allergy. In a multiethnic co-

ort of patients treated in the United States, variants in NFATC2

ere associated with an increased development of asparaginase

llergy [46] . Interestingly, this gene is located on chromosome 21

nd is paradoxically inhibited in Down’s syndrome due to overex-

ression of competing repressive genes. This analysis also demon-

trated that patients with Down’s syndrome have a lower inci-

ence of asparaginase allergy than patients without constitutional

risomy 21. 

Asparaginase hepatotoxicity appears to be more common in

dults than in children receiving similar ALL therapy [3 , 4 , 49] . At-

empts to identify genetic associations with asparaginase induced

epatotoxicity have included evaluations of both adult and pedi-

tric cohorts. In one adult cohort, the 55 patients with the rs4880

C genotype in SOD2 had a 2.5-fold increase in their risk of grade

/4 ALT/AST/bilirubin increase compared to the 135 patients with

ither a CT or TT genotype [50] . Separately, GWAS in pediatric pa-

ients identified a variant in PNPLA3 as being associated with the

evelopment of hepatotoxicity during ALL induction [51] . The iden-

ified variant (rs738409) has also been associated with the devel-

pment of fatty liver disease in adult populations. Although not

linically actionable, these data, combined with data demonstrat-

ng fat accumulation as a mechanism of asparaginase induced hep-

tic injury [52 , 53] , suggest potential pathways underlying therapy

oxicity which may be amenable to intervention. 

Extensive work has been undertaken to identify genetic risk

actors for the development of asparaginase associated pancre-

titis. Identified variants linked to increased risk of pancreatitis

ave varied across cohorts. A candidate gene evaluation of French-

anadian children treated on Dana-Farber protocols identified the

1 (double-repeat) allele of asparagine synthetase as being a risk

actor for pancreatitis development (hazard ratio [HR] 8.6, 95%

onfidence interval [CI] 2 to 37.3) [54] . A study of a multiethnic

ohort from the Children’s Oncology group and St. Jude identified

ative American ancestry as being associated with pancreatitis

evelopment, particularly in patients carrying rare nonsense
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Table 2 

Most notable current pharmacogenomic interactions. 

Drug Most notable pharmacogenomic interactions Clinical implications; actionability 

6-mercaptopurine TPMT, NUDT15 Increased myelosuppression; preemptive dose decrease indicated 

Methotrexate SLCO1B1 Decreased clearance; avoidance of inhibitors during high-dose therapy 

Asparaginase HLA DRB1 ∗07:01, NFATC2 Increased risk of allergy; no intervention yet available 

Vincristine CEP72 Increased neuropathy; prospective trial of preemptive dose decrease ongoing 

HLA = human leukocyte antigen; TMPT = thiopurine methyltransferase. 
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ariants in CPA2 (HR 587, 95% CI 67 to 5166) [55] . Evaluation of

ancreatitis in a Nordic cohort identified rs281366 near ULK2 as 

ssociated with pancreatitis (HR 6.7, 95% CI 3.2 to 14) [56] . Finally,

 combined analysis of 10 therapy groups evaluated pancreatitis 

n a case/control cohort and identified an association with pan-

reatitis in an expression-quantitative trait locus for trypsinogen 

rs13228878 and rs10273639) which was replicated in a Children’s 

ncology Group cohort [57] . Despite these exciting findings, the 

nability to replicate these genetic risks consistently across pop- 

lations suggests further study is needed before altering therapy 

rospectively due to their presence. 

Although thrombosis is a commonly observed toxicity in chil- 

ren and young adults treated with asparaginase, studies have not 

dentified consistent genetic risk factors. Notably, “classic” throm- 

ophilia variants (eg, factor V Leiden, prothrombin G20210A, ho- 

ozygosity for MTHFR variation) have not been consistently shown 

o be associated with an increased risk of thrombosis [58-61] .

hus, clinical factors, rather than the presence of prothrombotic 

ariation, appear to be the most consistent drivers of thrombosis 

isk during ALL therapy. 

incristine 

The vinca alkaloid vincristine blocks microtubule polymeriza- 

ion and is used in multiple phases of ALL therapy, frequently

n combination with glucocorticoids. The most frequently encoun- 

ered toxicity is peripheral motor and/ or sensory neuropathy. This 

ppears to be dose related, with patients receiving higher single

nd cumulative doses experiencing more neuropathy [62] . Neu- 

opathy also appears to be more common in older vs. younger chil-

ren, although no differences were observed between adults and 

hildren treated with identical therapy [5 , 62] . 

Numerous evaluations have been undertaken to identify predis- 

osing genetic factors to vincristine induced neuropathy (VIN). Be- 

ause vincristine is metabolized by cytochrome P450 3A4 (CYP3A4) 

nd CYP3A5, the literature is rife with reports of increased VIN

hen used with CYP3A4/5 inhibitors, particularly azole antifungal. 

valuations of CYP3A5 genotype and expression have suggested 

hat polymorphisms which drive higher CYP3A5 expression may be 

ssociated with lower rates of VIN [63 , 64] , although that finding

as not been replicated in all treatment groups [65] . 

More recently, GWAS identified an association between a vari- 

nt (TT at rs924607) in the centrosomal protein 72 ( CEP72 ) pro-

oter and the development of VIN in children with ALL [66] . This

ariant was associated with decreased CEP72 expression, increased 

ensitivity of nerve cells to disruption by vincristine, and increased 

n vitro sensitivity of lymphoblasts to vincristine mediated cyto- 

oxicity. The variant allelic frequency is 8% in African Ancestry, 40%

n Europeans, and ∼30% to 40% in Asian and Hispanic populations.

his differential frequency may partly underly lower incidence of 

IN in African American populations. Notably, the association is 

eakened with higher cumulative doses of vincristine, suggesting 

hat the variant lowers the threshold for development of VIN but

hat increased dose intensity may abrogate the significance of the 

ariant allele. The association between this variant and VIN was 

lso replicated in an adult cohort of ALL patients, in which 75% of
atients with the TT genotypes developed VIN compared to 44% of

hose with either CC or CT genotypes [67] . Prospective genotyping

nd dose reduction for patients with CEP72 TT alleles is currently 

eing testing in the St. Jude Total 17 study (NCT03117751). 

lucocorticoids 

The glucocorticoids prednisone and dexamethasone are back- 

one components of all therapies for ALL. Common adverse effects 

rom steroids include hyperglycemia, hyperlipidemia, hypertension, 

steopenia, and osteonecrosis [59] . Although these symptoms are 

ypically transient, patients with hyperglycemia are at increased 

isk of developing type II diabetes as survivors [68] . Leukemia

urvivors with osteonecrosis also suffer diminished quality of life 

69 , 70] . 

GWAS have attempted to identify risk variants for osteonecro- 

is. An analysis of St. Jude Total XV patients identified variants

ear ACP as being associated with the development of osteonecro- 

is [71] . This variant was also associated with higher lipid levels,

 feature associated with an increased risk of osteonecrosis in a

eparate cohort [72] . Analysis in a pediatric Québécois and Dana-

arber cohort identified an association between BCL2L11 variants 

nd osteonecrosis development [73] . 

Work from St. Jude and the Children’s Oncology group in con-

emporary trials identified associations between variants in or near 

lutamate receptors and increased osteonecrosis risk [74 , 75] . Genes

inked to these variants were also associated with an increased risk

f arterial embolism and thrombosis in a large adult cohort. These

ata suggest that glucocorticoid induced osteonecrosis is driven 

y vascular factors, a theory supported by both clinical and pre-

linical data [76-78] . Unfortunately, the variants identified in these 

tudies await validation in external cohorts, with a recent analysis 

nly confirming the association between ACP and osteonecrosis in 

 Dana-Farber/French-Canadian cohort [79] . Based on the available 

ata, it appears that further replication is needed before preemp- 

ively intervening to address them. 

onclusions 

Pharmacogenomics offers the promise of a future where 

hemotherapy for ALL is tailored to maximize anti-leukemic effi- 

acy while minimizing therapy toxicity. While the current list of 

harmacogenes which are clinically actionable are limited ( TPMT 

nd NUDT15 ), work is ongoing to assess the effectiveness of in-

erventions on other variants (eg, CEP72 for vincristine). Moreover, 

ndings from pharmacogenomic studies have elucidated additional 

echanisms of disease toxicity which are potentially amenable to 

argeted interventions. A summary of these are found in Table 2 .

hile many of the associations identified in pediatric studies 

ave been replicated in adults, further study in this population is

eeded to understand gene/ environment/ age interactions in ther- 

py response and toxicity. Such studies will be needed to unlock

he future promised by pharmacogenomics. 
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