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Keywords: The introduction of chimeric antigen receptor (CAR) T-cell therapy in acute lymphoblastic leukemia (ALL)
CAR T-cell therapy has dramatically altered the landscape of treatment options available to children and adults with ALL.
gggm::rfgzerapy With complete remission induction rates exceeding 70% in most trials and FDA approval of one CD19
CAR T-cell construct in ALL, CAR T-cell therapy has become a mainstay in the ALL treatment algorithm
for those with relapsed/refractory disease. Despite the high remission induction rate, with growing ex-
perience using CAR T-cell therapy in ALL, a host of barriers to maintaining long-term durable remissions
have been identified. Specifically, relapse after, resistance to, or loss of long-term CAR T-cell persistence
may all hinder CAR T-cell efficacy. In this review, we provide an overview of the current limitations which
inform the design of the next generation of CAR T-cells and discuss advances in CAR T-cell engineering
aimed to improve upon outcomes with CAR T-cell-based therapy in ALL.
© 2020 Published by Elsevier Inc.
Introduction neering designed to improve upon the current outcomes with CAR

The introduction of chimeric antigen receptor (CAR) T-cell ther-
apy has revolutionized the treatment of relapsed and refractory
CD19 B-cell malignancies. With complete remission induction rates
exceeding 70% in most trials [1-3], and FDA approval of one CD19
CAR T-cell construct in acute lymphoblastic leukemia (ALL) [4],
CAR T-cell therapy has become a mainstay in the ALL treatment
algorithm, particularly for children and young adults with re-
lapsed/refractory disease.

With growing experience, however, a number of limitations to
CAR T-cell therapy have emerged. Broadly divided into inherent
leukemic factors vs intrinsic characteristics of the CAR T-cell prod-
uct; relapse after, resistance to and failure of CAR T-cells collec-
tively account for some of the greatest mechanisms limiting long-
term durable remission. Equally important to efficacy outcomes,
improving upon the toxicity profile of CAR T-cells remains a de-
sired goal. Herein, we discuss recent advances in CAR T-cell engi-
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T-cell-based therapy in ALL.

Overcoming intrinsic leukemia-associated factors limiting CAR
T-cell efficacy

Limitation: Antigen negative escape

Approximately 35% to 45% of patients with ALL who achieve
a response to treatment with CD19-CAR T-cell therapies eventu-
ally relapse [1,5]. Among those with relapse, 33% to 65% will re-
lapse with CD19 negative disease [6,7]. Leukemic loss of CD19 ex-
pression has been shown to occur through a number of mech-
anisms including genetic disruption of CD19 membrane anchor-
ing with acquired loss of heterozygosity at CD19 [8], alternative
splicing of CD19 mRNA [9], lineage switch [10,11], antigen mask-
ing [12], and expansion of pre-existing minor CD19-negative sub-
populations [13]. Given the frequency of CD19-negative relapses,
targeting a single antigen in ALL is unlikely to provide curative
therapy in a large proportion of treated patients. Indeed, in expe-
riences with single antigen targeting of CD22, antigen escape with
CD22 neg/dim disease was the primary reason precluding durable
response [14].

Dual-targeting CAR T-cells

With the hypothesis that simultaneous targeting of more than
one antigen on tumor cells will limit antigen-negative escape, a
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Fig 1. Model of dual-antigen targeting strategies.
Top panel: Co-infusion model.

Second panel: Co-transduction model.

Third panel: Tandem CAR T-cell model.

Fourth panel: Split (Cis) CAR T-cell model.

number of novel dual-targeting approaches have been developed.
Beyond co-infusion strategies, CAR T-cell constructs incorporat-
ing co-transduction, tandem (bivalent) models or bicistronic (split
CARs) [15] targeting CD19 and CD22 seek to improve upon remis-
sion durability (Fig. 1) Antigen targeting strategies beyond 2 anti-
gens are also in active development [16]. The earliest clinical ex-
periences with these various strategies have demonstrated efficacy
rates comparable to each of these approaches, though long-term
follow-up is needed to evaluate for both dual functionality and the
ability to reduce antigen-negative relapses [17-19].

Dual-antigen targeting has also been achieved via engineered
expression of synthetic notch (synNotch) receptors, which induce
transcriptional activation following target binding [20]. SynNotch
receptors are composed of the core regulatory domain of the cell-
cell signaling receptor Notch, coupled to a synthetic extracellu-
lar recognition domain and synthetic intracellular transcriptional
domains. Engagement of these receptors by their antigen target
leads to cleavage-induced release of an intracellular transcription
factor that can then be engineered to stimulate expression of a
second CAR. Thus, synNotch receptors can be employed to target
2 antigens, one via the SynNotch and a second via a traditional
CAR. T-cells expressing SynNotch receptors selectively target dual-
antigen expressing cells in preclinical models [21]. This approach
may ultimately prove to be a useful strategy to also limit on-target,
off-tumor toxicity, given the expected increased specificity of Syn-
Notch vs conventional CAR T-cells.

Limitation: Primary resistance

There remains a sizable proportion of patients who do not
achieve remission after CD19 CAR T-cell treatment. In long-term
follow up, approximately 50% of patients with diffuse large B-cell
lymphoma, and at least 1 in 5 patients with CD19+ ALL remain
refractory to treatment with CD19-targeted CAR T-cell therapies

[1,5,22]. In clinical trials, approximately 1 out of every 5 patients
with CD19+ ALL does not achieve remission with CD19-directed
CAR T-cell therapy [1,5,7]. Although lack of clinical response is pri-
marily attributed to intrinsic T-cell intrinsic defects which CAR T-
cell expansion and response [23,24], ALL intrinsic mechanisms also
exist.

Targeting low antigen disease

Low levels of baseline leukemic surface target antigen expres-
sion (eg, low site density) have emerged as an important factor
for CAR T-cell efficacy [25]. Specifically, low antigen density may
promote limited CAR T-cell expansion leading to suboptimal re-
sponses [26], as seen in a phase I trial of CD22 CAR T-cells [14]. At-
tributes of the CAR T-cell construct, including higher affinity bind-
ing [26], selection of the co-stimulatory domain [27], and/or incor-
poration or deletion of immunoreceptor tyrosine-based activation
motifs (ITAMs) may modulate the ability for a particular construct
in its ability to target lower antigen density disease [27], and re-
main under active investigation.

ALL-mediated CAR T-cell dysfunction

An additional ALL-intrinsic mechanism of resistance to CAR T-
cell therapy was recently identified using a CRISPR-based genome-
wide loss-of-function screen in NALM6 ALL cells [28]. Under se-
lective CAR T-cell pressure, impaired death receptor signaling was
found in CAR T-cell-resistant leukemic cells. Their screen identified
depletion of genes involved in activating the cell death pathway
(eg, FADD, BID, and CASP8) and enrichment of genes important for
resisting death (eg, CFLAR, TRAF2, BIRC2). Persistence of ALL led to
progressive impairment of CAR T-cell function in vitro, as T-cells
were unable to kill resistant leukemia cells. Together, this suggests
that death receptor signaling may be a key regulator of primary
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CAR T-cell resistance, a hypothesis that was further validated by
clinical correlation. Reduced expression of death receptor genes in
primary leukemia samples prior to CAR T-cell therapy was asso-
ciated with worse overall survival and reduced T-cell fitness [28].
These data support a novel model of tumor-intrinsic biological re-
sistance that complements previously observed CAR T-cell exhaus-
tion. Engineering of CAR constructs that utilize killing mechanisms
independent of the death receptor pathway could prevent this type
of resistance and the subsequent leukemia-induced T-cell exhaus-
tion, though alternate resistance mechanisms may then evolve.

Optimizing CAR T-cell design to promote functional CAR T-cell
persistence

In addition to CD19 negative relapse, CD19+ relapses following
CAR T-cell infusion are thought to occur primarily due to poor T-
cell function or loss of CAR T-cell persistence which can no longer
effectively provide ongoing immunosurveillance. Thus, designing
CAR T-cell constructs which can maintain long-term functional per-
sistence without undergoing rapid exhaustion has the potential to
improve upon remission durability.

Limitation: CAR T-cell exhaustion

Study of dysfunctional CAR T-cells in the tumor microenviron-
ment has provided evidence that T-cells exposed to continuous
antigen-specific stimulation display an exhausted phenotype [23].
The unique structural design of individual CARs can also precipitate
functional exhaustion. Antigen-independent signaling, or cluster-
ing of CAR soluble chain variable fragments (scFVs) in the absence
of antigen, can result in tonic CAR-CD3¢ phosphorylation [29].
This constitutive signaling can lead to early CAR T-cell exhaustion,
which ultimately limits antitumor efficacy. Exhausted CAR T-cells
are likely to expand less efficiently ex vivo show higher rates of
apoptosis and have higher expression of PD-1, TIM-3, and LAG-3
[30].

Biologic underpinnings of CAR T-cell exhaustion

Several seminal reports have further elucidated the underly-
ing transcriptional mechanism of induced CAR T-cell exhaustion.
Chen et al. employed cancer cell-specific CAR T-cells in 2 mouse
models of solid tumors, noting that exhausted CD8+CAR+ tumor-
infiltrating lymphocytes expressed higher levels of the NR4A family
members (NR4A1, NR4A2, and NR4A3). N4RA expression correlated
with increased PD-1 and TIM3 expression, and generation of NR4A
triple knockout cells produced higher levels of effector cytokines
and expressed fewer inhibitory receptors [31]. At the same time,
Liu et al. conducted a genome-wide transcriptomic and epigenetic
screen of in vitro-generated tolerant CD4 T-cells, identifying NR4A1
as a mediator of T-cell exhaustion. Overexpression of NR4A1 sup-
pressed effector cytokine production (IL-2, IFNy), whereas abla-
tion enhanced T-cell production of effector cytokines and increased
their proliferative capacity.

Mechanistically, NR4A1 was preferentially recruited to binding
sites of the transcription factor AP-1, thereby repressing effector
gene expression through inhibition of the AP-1 mediated transcrip-
tional program [32]. Accordingly, CAR T-cells engineered to over-
express the canonical AP-1 factor c-Jun, exhibited the opposite
phenotype. Overexpression of c-Jun rendered CAR T-cells with en-
hanced expansion potential, functional capacity, diminished termi-
nal differentiation phenotype, and improved antitumor responses
[33]. Together, these data warrant further clinical investigations
making use of either NR4A depleted, or c-Jun overexpressed CAR
T-cells to overcome T-cell exhaustion.

Incorporating checkpoint inhibition

Early clinical evidence supports checkpoint inhibition as a ther-
apeutic strategy to enhance the efficacy and persistence of infused
CAR T-cells. A small cohort of children with relapsed B-ALL, in
whom treatment with CD19 CAR T-cells demonstrated only par-
tial/no response to or poor CAR T-cell persistence, were treated
with the PD-1 inhibitor pembrolizumab [34]. Treatment resulted in
prolonged detection of circulating CAR T-cells in all 4 patients, in
addition to objective responses in 2 of the 4 patients. Interestingly,
1 patient with widespread extramedullary disease despite marrow
remission developed a second peak of CAR T-cell expansion fol-
lowing pembrolizumab treatment, resulting in a reported dramatic
reduction in PET-avid disease [34]. These data support the notion
that checkpoint pathway targeting may have clinical efficacy in pa-
tients without an initial response to CAR T-cell infusion.

Limitation: CAR T-cell persistence

Clinical experience with CAR T-cell therapies have further in-
formed our understanding that persistence of the infused CAR T-
cell product correlates with durable antitumor efficacy [35-37].
Indeed, monitoring for persistence of B-cell aplasia as a proxy
for monitoring of ongoing functional CAR T-cell activity has been
adopted as one approach for surveillance of emerging relapse [38].

CAR T-cell vector integration

Case reports of clonal expansion of CAR T-cells mediating anti-
tumor effect have illustrated how the progeny of a single CAR T-cell
can be sufficient to mediate a potent antitumor response [39,40].
As an example, a recent case report of a patient with delayed CAR
T-cell expansion emerging from a single clone has provided mech-
anistic insight validating the importance of the CAR T-cell differ-
entiation phenotype to clinical outcomes [39]. Further analysis of
this clone revealed vector-mediated insertion of the CAR transgene
into the TET2 gene locus. A germline hypomorphic mutation af-
fected his second TET2 allele, and experimental knockdown of TET2
in healthy donor CTLO19 cells, conferred the ability for these cells
to undergo repetitive expansion in response to serial re-stimulation
[39]. Another example of disruptive vector integration accounting
for an enhanced CAR T-cell response resulted from lentivector in-
tegration in the CBL gene [40]. Recent investigations into clonal ki-
netics of CD19-targeted CAR T-cells have similarly revealed novel
insights into the role of vector integration in CAR toxicity and pro-
liferation [41,42]. Future efforts in CAR T-cell design may be able
to capitalize on these discoveries to improve upon the persistence
of CAR T-cell therapy.

Implications of current CAR T-cell constructs and costimulatory
domains

There is evidence that the composition of a CAR can affect
the differentiation state of the product. The binding affinity of the
scFv, choice of costimulatory signal, and degree of constitutive sig-
naling through the CD3¢ domain have a multifactorial impact on
the differentiation state of the infused product. The first genera-
tion of CAR T-cells consisted of a scFv coupled to the ¢-chain of
the CD3 complex, providing only signal 1 of T-cell priming. Not
unexpectedly, this resulted in poor production of IFN-y and an-
ergic T-cells [43]. Addition of a co-stimulatory domain (signal 2),
prevented CAR T-cell anergy and exhaustion, promoting clonal ex-
pansion and differentiation. The most commonly incorporated co-
stimulatory domains in CAR T-cell products are CD28 [44] and
4-1BB [45]. The use of both of these has resulted in remarkable
clinical responses. However, these domains exhibit different tumor
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elimination kinetics with CD28 CARs conferring a brisk prolifera-
tive response and faster tumor reduction, and 4-1BB CARs greater
persistence [46]. Phenotypically, T-cells from 4-1BB expressing con-
structs retain a central memory-like phenotype and increased ox-
idative metabolism. 4-1BB containing CAR T-cells demonstrate in-
creased effector memory formation and glycolytic metabolism [47].
A comprehensive comparison of combinations of intracellular do-
mains revealed that the addition of a 4-1BB signal in trans to the
1928z second-generation CAR potentiated in vivo tumor control.
Combined CD28 and 4-1BB signaling in trans reduced expression
of PD-1, LAG-3, and TIM-3 and exhibited IRF7-dependent activation
of the T-cell IFN-I pathway [48].

Finally, the strength of the stimulus delivered by the CD3¢ do-
main has the potential to affect the differentiation state of the CAR
T-cell product. T-cell signal strength can induce a state of termi-
nal differentiation [49]. With this knowledge of endogenous TCR
behavior, Feucht et al. hypothesized that CAR signal strength was
similarly impactful. To test this hypothesis, they modified the CD3¢
ITAMS in a series of CARs and assessed the function, differentia-
tion, and therapeutic potency of these constructs. Deletion of the
2 C-terminal ITAM motifs augmented T-cell potency and induced
a long-lived memory T-cell phenotype with reduced expression of
exhaustion markers [50]. Similarly, a novel CD19 CAR expressing a
scFv with >40-fold lower affinity to CD19 with a much faster off-
rate, showed enhanced proliferative and in vivo antitumor activity.
A clinical trial utilizing this construct achieved molecular remis-
sion in 12/14 patients with ALL, demonstrating enhanced CAR T-
cell expansion and persistence in 11/14 patients at 2-year follow-
up [51]. These data foster the recurring notion that the strength
of the signal imparted on the CAR T-cell affects the differentiation
state of the infused product, which in turn may improve its an-
titumor efficacy. This has been suggested previously in preclinical
models, where T-cell subsets with self-renewing capacity demon-
strate improved antitumor control [52,53]. In summary, a number
of structural components of a CAR T-cell appear to impact the dif-
ferentiation state of the final product. The summation of these sig-
nals may play a more important role than initially realized, and are
an important area of future investigation.

Impact of manufacturing strategies on CAR T-cell functionality

CAR T-cell therapy differs from anticancer cytotoxic chemother-
apy, targeted drugs, antibodies, and antibody-based conjugates in
that CAR T-cells are “living drugs,” engineered from a patient’s
own T-cells. The infused product is not uniform, but rather is com-
prised of a heterogeneous conglomeration of T-cells, often of vary-
ing CD4/8 ratios, with variability in patient-derived T-cell subsets
as well as in those induced by unique CAR constructs. A host of
manipulations in the CAR T-cell manufacturing process also im-
pacts the CAR T-cell performance.

Additionally, one of the major limitations to manufacture CAR
T-cells from patients with leukemia is the need for collection of
T-cells that will expand and maintain functionality. This need is
challenged by patient receipt of prior therapy and/or progressive
disease impacting T-cell fitness. This personalized approach is also
highly expensive and may be cost-prohibitive [54,55]. In this sec-
tion, we review strategies which are being employed to further op-
timize CAR T-cell manufacturing and will also discuss the impact of
CAR T-cell construct modification on product characteristics.

CAR T-cell differentiation

The quality and differentiation profile of T-cells collected for
manufacture impact outcomes, as T-cell populations enriched for
naive and early memory T-cells have demonstrated greater abil-
ity to expand during manufacturing [56]. Recent data suggest that

adoptive transfer of less differentiated naive and central memory
T-cells confer enhanced T-cell expansion, persistence, and antitu-
mor efficacy as compared to more differentiated effector mem-
ory and effector T-cell populations [57]. Notable to the case with
TET2-disrupted CAR T-cells, these cells displayed an epigenetic pro-
file consistent with a central memory phenotype which may have
further contributed to the efficacy of this delayed expansion [39].
Based upon this knowledge, generation of CD19+ CAR-modified
CD8+ memory stem cells represent yet another approach in CAR
T-cell design. Whether this modification improves upon CAR T-
cell persistence is being tested in the clinic [58]. Manufacturing
techniques, including choice of exogenous cytokine, affect the final
product composition. For instance, as opposed to expansion with
interleukin-2 (IL-2), culture of activated T-cells with IL-7 and IL-
15 enriches for naive and central memory-like T-cells in the pre-
infusion product [59]. This becomes of importance, as cumulative
cycles of chemotherapy have been shown to deplete naive T-cells,
reducing the expansion potential associated with successful cellu-
lar therapies [60].

Modifications to the manufacturing platform

Although not strictly related to CAR T-cell design, considering
the apheresis product and standardizing the CD4/CD8 ratio may
also impact outcomes [61]. Specifically combining pre-established
CD4/CDS8 ratios for CAR T-cells allowed for synergistic antitumor
effects in vivo and provided a more uniform potency than in prod-
ucts where the CD4/CD8 ratios were purely based on intrinsic pa-
tient factors [61]. Similarly, manipulation of the apheresis product
has been another strategy to improve feasibility of CAR T-cell man-
ufacturing [62]. One recent example emerged from a minor man-
ufacturing change which incorporated CD4/CD8 selection of the
apheresis product without any other downstream changes to the
manufacturing on the CD22 CAR T-cell trial. While this optimized
the ability to manufacture CAR T-cells in subjects whose aphere-
sis product was heavily involved with leukemic blasts and/or im-
munosuppressive NK or myeloid derived cells, it also augmented
the potency and toxicity, leading to a dose de-escalation. This pro-
vided a clear illustration that minor manufacturing changes can
have significant clinical impact [63].

Recent advances in closed and distributive manufacturing mod-
els may decrease per-patient costs, ultimately improving feasibility
and access to CAR T-cell manufacturing [64]. Product characteris-
tics will need to be closely studied as these new platforms evolve,
particularly in the context of new constructs.

Universal CAR and alternative CAR T-cell constructs

In addition to the inherent limitations of manufacturing autolo-
gous CAR T-cells from subjects with leukemia, a major obstacle to
expanded use of CAR T-cell therapy is the expense associated with
personalized manufacture. Creation of an “off-the-shelf” or “uni-
versal” CAR product may not only reduce the cost of treatment,
but also could expand the number of patients eligible for CAR T-
cell therapy. One hurdle limiting CAR T-cell universality is the risk
of graft-vs-host disease (GVHD) following allogeneic T-cell trans-
fer. One potential strategy to overcome this obstacle involves tar-
geted integration of the CAR transgene to the TRAC locus using
CRISPR/Cas9 mediated homologous recombination [65]. Targeted
insertion prevented endogenous TCR expression and therefore pre-
vented GVHD. This technique also resulted in enhanced CAR T-
cell potency, potentially by averting tonic CAR signaling and subse-
quently also delaying effector T-cell differentiation and exhaustion.
CRISPR/Cas9 edited CAR T-cells have recently been proven safe in
a first-in-human phase I clinical trial. Multiplex CRISPR/Cas9 was
utilized to target TRAC, TRBC and PDCD1 on T-cells, followed by
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Fig 2. Summary of Barriers to Durable CAR T-cell Remission and Considerations for the Next-Generation CAR T-cell constructs.

lentiviral transduction of their CAR transgene, which resulted in
durable engraftment and edits at all 3 genomic loci [66].

CAR natural killer (CAR-NK) cells are another promising “off-
the-shelf” product with diminished risk of GVHD. Allogeneic NK
cells can be adoptively transferred safely without the need for full
HLA matching [67-69]. Earlier this year, results of a phase 1/2 clin-
ical trial demonstrated the effectiveness of CD19 CAR NK cells de-
rived from cord blood used to treat 11 patients with relapsed or
refractory CD19-positive cancers. Of the 11 treated patients, 8 had
a response, 7 with complete remission. Importantly, there was no
increase in the levels of inflammatory cytokines, cytokine release
syndrome (CRS), or neurotoxicity observed [70].

CAR T-cell-based modifications to improve the safety profile

The most severe and potentially use-limiting toxicities associ-
ated with CAR T-cell therapy are CRS and immune-effector cell as-
sociated neurotoxicity syndrome (ICANS) [71]. CRS correlates with
T-cell expansion, and typically develops within the within the first
few days after infusion, whereas ICANS presents with a more vari-
able course, and can occur as early as the day following infusion
or as late as several weeks after CAR T-cell infusion [71]. Both
CRS and ICANS, when severe, can lead to death. Understanding
the biological underpinning of CRS and ICANS is critical to further
CAR T-cell clinical development. Preclinical models provide some
clarity in the underlying mechanism of these toxicities. A rheuses
macaque model of neurotoxicity demonstrated disproportionally
high levels of IL-6, IL-2, GM-CSF, and VEGF in the cerebrospinal
fluid. This was accompanied by CAR and non-CAR T-cell infiltra-
tion in the CSF and brain, resulting in pan-encephalitis [72]. In a
humanized mouse model of CRS, it was revealed that monocytes
were the major source of IL-1 and IL-6 during CRS, and that this
syndrome could be prevented by monocyte depletion of by block-
ing of the IL-6 receptor with tocilizumab. However, tocilizumab
treatment could not protect mice from delayed lethal neurotoxicity,
which instead could be abrogated by the IL-1 receptor antagonist
anakinra [73].

In an effort to prevent and manage CRS, ICANS, and unidentified
toxicities that would not be evident prior to human trial, some CAR
T-cell constructs have been engineered with “suicide switches” (in-
ducible Caspase 9) or depletion markers (tEGFR or CD20) [74,75].
Unfortunately, these treatments potentially abrogate the antitu-
mor effect of the intended therapy. An alternate strategy employs
the tyrosine kinase inhibitor dasatinib as a reversible CAR T-cell
inhibitor. Dasatinib has been shown to effectively interfere with
lymphocyte-specific protein tyrosine kinase (Lck) function, leading
to suppression of CD3¢ and ZAP70 phosphorylation. As all current
CAR designs incorporate CD3¢ as part of their signaling domain,
dasatinib induces a function-off state of CD8+ and CD4+ CAR T-
cells. This effect was immediate and could be sustained for sev-
eral days without affecting T-cell viability. Upon withdrawal, the
inhibitory effect was rapidly and completely reversed [76].

Intrinsic changes to the CAR itself are also important. Modifi-
cations to the design of the “classic” second-generation CD19 CAR
have provided insight into the functional relevance of CAR struc-
ture. Addition of several amino acids to the CD8« hinge and trans-
membrane domains in the prototype CD19-BBz CAR can produce
a CAR T-cell product that produces less cytokines while retaining
potent cytolytic activity [77]. This construct was used to gener-
ate CD19-CAR T-cells for a phase I trial in which 35% of patients
with B-cell lymphoma achieved a complete remission. No neuro-
logic toxicity or CRS (greater than grade 1) occurred in any of the
25 treated patients [77]. While the mechanism underlying the ob-
served functional difference remains unknown, these results un-
derscore the potential great impact of seemingly minor structural
changes. It is possible that the strength of the CAR signal influ-
ences the differentiation phenotype of CAR T-cells, as a substantial
proportion of T-cells in this study demonstrated a central mem-
ory phenotype after in vivo expansion. Similar results were found
in a first-in-human trial of T-cells expressing a fully human anti-
CD19 CAR. In this trial, severe neurologic toxicity occurred in only
5% of patients [78]. This is stark comparison to the prior reported
50% incidence of neurologic toxicity seen in patients treated with a
FMC63-28Z CAR T-cell product [79]. T-cells expressing the human-
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ized scFv secrete less cytokine than those expressing a FMC63-28Z
CAR, potentially explaining the lower level of neurologic toxicity
[78].

Conclusion

Given the successes of CAR T-cell-based immunotherapy in ALL,
it is imperative to continue to optimize this treatment strategy. In
recognition of current limitations, a host of approaches (Fig. 2) are
being actively pursued to improve upon the more well-established
paradigm. By virtue of CAR T-cell construct design and/or mod-
ifications in the manufacturing process, the future of CAR T-cell
therapy will focus on: improving CAR T-cell persistence, extending
durable remissions, limiting antigen escape, enhancing the safety
profile, increasing the feasibility of CAR T-cell manufacturing, and
reducing cost. These active efforts will contribute to a host of novel
CAR T-cell constructs as we enter the next decade and will fur-
ther improve upon the therapeutic index of CAR T-cell therapy—
and most importantly, continue to revolutionize the field.
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