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a b s t r a c t 

The accurate determination of minimal or measurable residual disease (MRD) during the early months 

of therapy in acute lymphoblastic leukemia is well established as the most important independent prog- 

nostic biomarker, predicting response to combination chemotherapy. Stratification based on MRD maxi- 

mizes treatment effectiveness while minimizing adverse effects. Allele-specific real-time quantitative PCR 

of clone-defining immunoglobin/T-cell receptor gene rearrangements in the patients’ leukemic clones 

and/or multiparametric flow cytometric tracking of leukemia-associated immunophenotypes are consid- 

ered standard of care. Following recent advances in high throughput sequencing (HTS; next generation 

sequencing), much attention has been devoted to the development of HTS-based MRD assays, which can 

increase sensitivity; theoretically only limited by the number of cells input into the assay. Knowledge of 

the methods and limitations of each technology, along with awareness of the sensitivity and specificity of 

MRD at particular treatment time points is important in interpretation of the MRD value. MRD negativity 

at pre-established protocol-appropriate time points guides continuance with consolidation/maintenance 

chemotherapy, whereas positivity leads to a change to a biological therapy such as blinatumomab and 

intensification of therapy to allogeneic stem cell transplant. Positivity after maintenance may herald im- 

pending relapse enabling treatment intervention. MRD has been integral to the introduction of novel 

agents and cellular therapies into clinical trials and standard of care, but the long-term predictive value 

of MRD on outcome of novel therapies is not yet established. Integration of somatic genetics with MRD 

may further improve accurate identification of patients with the lowest and highest risk of relapse. 

Crown Copyright © 2020 Published by Elsevier Inc. All rights reserved. 
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The majority of adults with acute lymphoblastic leukemia (ALL) 

chieve remission with the use of multiagent chemotherapy, how- 

ver half of patients will relapse [1-3] . Accurate risk stratification

s essential to deliver optimal treatment to improve outcomes. The 

ssessment of treatment response through the measurement of 

inimal or measurable residual disease (MRD) is the most power- 

ul factor-predicting outcome after combination chemotherapy, and 

as been standard of care for well over a decade [4-8] . Integra-

ion of MRD monitoring into risk-adapted protocols has been used 

o successfully guide therapy intensification and reduction [5 , 9-11] .

he use of MRD in adult ALL is equally as predictive of outcome as
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n pediatric practice and a recent survey of adult practice in Eu-

ope confirms MRD testing is standard of care in the treatment of

dult ALL [12-15] . The clinical management of patients with ALL

elies on accurate prediction of relapse hazard to determine the 

ntensity of therapy. Novel therapeutic approaches and allogenic 

tem cell transplant (alloSCT) must target patients who will de- 

ive the most benefit whilst consideration to reducing therapy (and 

ssociated toxicity) may be appropriate in patients with the most 

hemotherapy-sensitive disease. Here we review MRD methodolo- 

ies and technical aspects for interpretation. 

hat is MRD? 

MRD, simply defined, is “measurable leukemia in samples ap- 

arently devoid of leukemia cells.” It is the low-level disease, 

hich is not detectable by morphological assessment with a light 

icroscope. Given the estimated 10 12 (a trillion) blasts present 

t diagnosis, MRD represents anything less than 10 billion cells 
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Fig. 1. MRD assessment in ALL. Schematic diagram of disease levels in ALL, with equivalent MRD levels. Two example of patients assessed after induction chemotherapy 

are shown. The patient represented by the green line is MRD negative after induction chemotherapy and is essentially cured with a very low risk of relapse. The patient 

represented by the red line is MRD positive and destined to relapse. 

Table 1 

Characteristic of MRD techniques. 

MRD technique Sensitivity Applicability Benefits Limitations 

ASO-RQPCR IG/TCR 0.001% (10 −5 ) BCP-ALL: 95% 

T-ALL: 90-95% 

-Applicable to majority of patients 

-Sensitive 

-Highly standardized with QA 

scheme 

-Time consuming 

-Expensive 

-Requires pre-treatment sample 

-Requires extensive experience 

MFC for LAIP 0.01% (10 −4 ) BCP-ALL: > 90% 

T-ALL: > 90% 

-Rapid 

-Cheap (relatively) 

-Information about whole sample 

cellularity 

-Variable sensitivity 

-Need technical expertise (especially 

low level disease) 

-Lack of standardization, no QA 

-Fresh cells required 

RQ-PCR fusion 

genes 

0.01% to 0.0 0 01% (10 −4 to 

10 −6 ) 

< 50% -Sensitive 

-Standardized primers 

-Not applicable to all (absence of 

targets in > 50% cases) 

-Risk contamination 

HTS IG/TCR 0.0 0 01% (10 −6 ) –potentially 

lower (depending on 

amount of DNA analyzed) 

Potentially 100% -Applicable to all patients 

-Highly sensitive (only limited by 

cells input) 

-Clone unbiased -revealing persisting 

or evolving clones (even if not 

defining clones at presentation) 

-Whole repertoire assessment 

-Lack of standardization 

-Complex bioinformatics pipelines 

-Only clinically available in US 

-Minimal clinical validation 

-Risk contamination (if no barcoded 

primers are used) 
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10 10 ). With a maximal sensitivity of 5 logs MRD negative repre-

ents anything below 10 million cells (10 6 ), hence the use of ter-

inology “measurable” replacing “minimal” by many groups. The 

riving concept behind MRD is really quite simple; the rate of de-

line in disease quantity in the face of systemic chemotherapy is of

rognostic value and is a measure of relapse prediction, examples

f this are shown in Fig. 1 . 

The human eye (down a microscope) can detect leukemic blasts

t a maximal sensitivity of 1%. At the end of induction therapy,

he majority of patients are in clinical remission with less than 5%

lasts by morphologic examination of a bone marrow (BM) smear.

owever, morphological assessment of regenerating post therapy

M is prone to error [16 , 17] . Sensitive measurement of response

o treatment is achieved through powerful molecular and flow cy-

ometry methods to more precisely monitor disease. 

ethodologies/technical aspects of MRD 

All methods of MRD detection exploit features present exclu-

ively in leukemic cells to differentiate them from normal cell.

n current clinical practice this includes use of gene fusions,
ighly variable junctional regions of immunoglobulin (IG), and T-

ell receptor (TCR) gene rearrangements and aberrant leukemia-

ssociated immunophenotypes (LAIP). The principles and the ad-

antages and disadvantages of these MRD techniques are summa-

ized in Table 1 and Fig. 2 . 

Allele-specific real-time quantitative (ASO-RQ) PCR of clone- 

efining IG/TCR gene rearrangements in the patients’ leukemia can

e used in > 80% of adults with ALL although the applicability of

his technology does decline with increasing age [18] . Initial char-

cterization of clonal IG/TCR in performed in diagnostic samples

ith a panel of screening PCRs which target the rearranged VDJ

variable, diversity, joining) of the IG/TCR genes, which encode

he hypervariable complementarity determining region 3 domain. 

his is then followed by Sanger sequencing or high throughput

equencing (HTS) of products to identify the clones [19-23] . ASO-

Q PCR then requires assays tailored to each individual patients

lonal rearrangements and, depending on template availability

nd primer selection, has a maximal sensitivity of 1:1 × 10 -5 

1 leukemic cell in 10 0,0 0 0 normal cells) due to nonspecific

ackground amplification [20] . This method has been highly stan-

ardized by the EuroMRD Consortium ( http://www.euromrd.org )

http://www.euromrd.org
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Fig. 2. Comparison of relative sensitivities of residual disease assessment methods. 

This can be thought of as an “iceberg” - with HTS technologies potentially offering 

the power to increase sensitivity and breadth of detection. 
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ith laboratories all over the world participating in shared 

uality assurance testing twice a year working to the same proto-

ols/guidelines. The ASO-RQ PCR MRD method requires expertise, 

 large amount knowledge about IG/TCR gene rearrangement and 

s both laborious and time consuming. Detection and sequencing 

f IG/TCR rearrangements and design of the corresponding ASO 

rimers typically takes up to 4 weeks, whereas the analysis of

ollow-up samples (actual MRD assessment) takes less than a 

eek. 

IG/TCR rearrangements are not directly related to the onco- 

enic process and can clonally evolve, which may lead to loss of

eukemia specific sequences and false negative results. Clonal ar- 

hitecture is dynamic. When disease relapse occurs, it can involve 

lones that were not identified, or only viewed as minor clones, at

iagnosis and therefore were not tracked [24] . 

Multiparamter flow cytometric (MFC) tracking of LAIP approach 

valuates ALL at diagnosis with a specific reagent panel. This de-

nes regions where leukemic events are present outside of those 

een during normal maturation for the relevant lineage (the LAIP). 

hese LAIP regions are then employed for analysis of subsequent 

amples and events appearing in the predefined regions counted as 

esidual disease [25 , 26] . This is more rapid than ASO-RQ PCR, al-

owing prompt reporting of results. The LAIP method is applicable

o > 90% of patients; however sensitivity is often a log lower than

SO-RQ PCR. Standardization of flow cytometric tracking is diffi- 

ult, requires an experienced operator, and inter-operator variation 

an lead to inconsistent reporting [26] . The method also assumes

tability of immunophenotype for both the leukemia and the back- 

round normal and regenerating BM populations. Phenotypic shifts 

ommonly occur in MRD and normal cells during therapy conse- 

uently can give rise to both false positive and negative results. Im-

unotherapy and cellular therapies targeting antigens on leukemic 

lasts (such as CD19, CD20, or CD22) may hamper classic flow cy-

ometry gating strategies. 

Although highly predictive of outcome, these methods are not 

pplicable to all patients. Following recent advances in HTS (next 

eneration sequencing), much attention has been devoted to the 

evelopment of HTS-based MRD assays, which can increase sensi- 

ivity; theoretically only limited by the number of cells input into

he assay. Highly parallel HTS is employed to sequence the rear-

anged VDJ of the IG/TCR genes. Combined with the high capac-
ty of HTS, this allows a single, clone-unbiased, and highly sensi-

ive test to be applied to all patients, revealing persisting or evolv-

ng clones, potentially even if these were not the defining clones

t presentation. Importantly, HTS generates exact nucleotide se- 

uences for all clones, which can be traced through subsequent 

ollow-up analysis [27 , 28] . HTS technology has the advantage of

eing able to visual a larger picture of the IG/TCR repertoire in one

xperiment and therefore the ability of detecting clones that are 

ow frequency at diagnosis, but become major players at later stage

29] . HTS has been widely introduced for the screening of diagnos-

ics samples and increases applicability [19 , 22 , 23] . The clonoSEQ

TS technology (Adaptive Biotechnologies, Seattle, WA) is the first 

ssay to be approved by the US Food and Drug Administration

or MRD detection [30] . Clinical application of this assay has been

emonstrated by improving stratification compared to MFC in B- 

LL [31-34] . However, before implementation of HTS-MRD detec- 

ion into routine clinical practice, several issues must be addressed, 

irect comparison to ASO-RQ PCR is required and workflows stan- 

ardized, which will require large multicentre trials [35] . 

ractical consideration for MRD data interpretation 

ource and quality of material for assessment 

MRD levels in T cell ALL are roughly equivalent (generally less

han a log lower) in peripheral blood (PB) and BM, however in pre-

ursor B cell (PBC) ALL MRD can be up to three logs lower in the

B than in BM, so hence BM is a prerequisite [36-39] . HTS has an

nhanced sensitivity that could potentially enable MRD quantifica- 

ion from PB, this has been explored in both the adult and pedi-

tric setting but requires larger studies to confirm its clinical utility

33 , 34] . 

Attention must be given to the quality of the sample obtained.

RD should be measured in the first 2.5 mL of BM aspirated from

ne puncture site and the procedure performed by experienced 

nd carefully instructed operator, as MRD may be underestimated 

n large PB contaminate BM aspirates [40] . There is however no ev-

dence for unequal distribution of ALL cells in different parts of the

M compartment [41] . 

Finally, sufficiently regenerated BM is required for the assess- 

ent of morphological BM remission and in order to fulfill quali-

ative and quantitative criteria for MRD analysis. However, this has 

o be balanced by the effect of BM aspiration delay. Delay has been

hown to have a significant impact on measured MRD levels with

naccurate risk group allocation in over 20% of patients [42] . 

imits of detection and how to define “MRD negativity”

The definition of MRD negativity is a misnomer, differs by 

echnology used and is related to different definitions of sensi- 

ivity. MRD negative does not mean complete absence of disease. 

s mentioned previously with a maximal sensitivity of 5 logs 

MRD negative” represents anything below 10 million cells present. 

herefore like other quantitative assays consideration to the lower 

imit of detection and lower limit of quantification are crucially 

mportant when interpreting results as well as the clinical time 

oint at which the test is applied. MRD negativity implies that

o MRD is detected with high certainty, using an MRD technique

hat can truly measure low residual disease levels with quanti- 

ative range ≤10 −4 thereby identifying patients with a compara- 

ively lower risk of relapse than those remaining MRD positive. 

owever, MRD negative states still associate with an appreciable 

isk of relapse ( > 20%-30%) highlighting a current limitation in as-

aying measurable disease. The use of HTS technologies claim to 

each sensitivities down to 10 −7 potentially enabling a status of 

RD negativity to be assigned more robustly [27 , 33] . However, to
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Table 2 

Summary of characteristic of international study group of MRD in adult ALL. 

Study group MRD technique Time point Cut-off value 

GMALL [44 , 46] ASO-PCR Day 11, day 24, 

week 16 

1 × 10 −4 

MRC UKALL 

XII/ECOG2993 [13] 

ASO-PCR Week 8 1 × 10 −4 

PETHEMA [48] MFC Week 16-18 5 × 10 −4 

GRALL [47] ASO-PCR Week 6 1 × 10 −4 

(1 × 10 −3 HR) 

MD Anderson [49] MFC CR, 3 months, 6 

months 

1 × 10 −4 

NILG [45] ASO-PCR Week 16, week 22 1 × 10 −4 
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chieve these levels of sensitivity experiments require a sufficient

mount of DNA (cells) input, which ignore the cellularity limits of

M samples, especially aplastic samples during treatment. 

MRD assessment is not possible in all patients because of

echnical limitations such as lack of identification of patient spe-

ific clonal markers or insufficient diagnostic or follow-up sample.

hese limitations are more prevalent in the advanced age setting

18] . HTS has been shown to address some of these limitations, al-

hough further data is required in the adult setting [19 , 34] . 

ptimal time points and prognostic significance 

The rate of decline in disease quantity in the face of systemic

hemotherapy varies by patient, giving each patient a unique re-

apse prediction. MRD interpretation is dependent on the time

oint taken in treatment, and interpretation of different time

oints gives different relapse predictions. As well as for risk classi-

cation and prediction MRD is increasingly being utilized for post

emission treatment decision making [43] . When comparing MRD

tudies several important considerations influence the predictive

mpact of MRD, including treatment regime used, sensitivity of

RD assay, timing of assessment and the rate of SCT in the cohort.

se of MRD during chemotherapy 

In adults with T-cell ALL or Philadelphia (Ph)-negative PBC ALL,

nitial MRD response is a highly relevant prognostic marker, re-

orted by all major study groups [13 , 44-49] . Study groups use dif-

erent cut-off values, depending on the MRD technique used and

iming of MRD analysis, this is summarized in Table 2 . Apart from

hese differences, all study groups confirmed the strong indepen-

ent predictive value of chemotherapy response in adult ALL. This

s further confirmed by a recent meta-analysis of 16 studies (stud-

es evaluated MRD at the end of induction or early consolidation,

sing ASO-PCR or MFC) comprising 2076 adult ALL patients, which

oncluded 10-year disease free survival rate of 64% for patients

ho achieved MRD negativity, compared with 21% for those who

ere positive [12] . 

The most commonly used time point for conducting the first

RD assessment is at the completion of induction chemotherapy

hich is approximately 2 to 3 months into therapy. For patients

ho are MRD negative, therapy is often guided to start consoli-

ation. In contrast, MRD positivity leads to a change to blinatu-

omab and alloSCT. There is no clear guidance on the frequency of

onitoring post remission, however, a German multicentre adult

LL study demonstrated that nearly 90% of patient relapsed with

 median interval of 4 months, suggesting that it would be pru-

ent to monitor at a minimum of 3 monthly intervals in order to

ntercede before frank relapse [50] . A recent survey of European

ractice reported an average of four to five tests per patient in

he 12-months after initial negative MRD test. In MRD positive pa-
ients, the number of tests was reported to be lower, possibly re-

ecting intensification with SCT in these patients and frequency of

RD testing not specified by protocols; alternatively it may reflect

oorer survival. The use of MRD in second remission to monitor

or progression and offer additional therapeutic options including

nforming on SCT was also reported [14] . 

RD and alloSCT 

Several studies have confirmed that poor early MRD response

dentifies adult patients who may benefit from intensification of

herapy with myeloablative alloSCT in adult ALL [45 , 46 , 48 , 51] .

owever, many adults above the age limit for this approach and

t remains unclear whether reduced intensity conditioned (RIC) al-

oSCT is an effective salvage therapy for adult patients with MRD

rior to alloSCT. The UKALL14 study prospectively evaluated a RIC

lloSCT and the data from several hundred patients indicate a sub-

tantial difference in outcome when patients are MRD positive

rior to the procedure [52] . MRD is, of course, a continuous quan-

itative variable and MRD levels correlate with post SCT outcomes

45 , 46 , 53] . Patients with very high level MRD ≥10 −3 pre alloSCT

ave worse outcome than those with levels < 10 −3 irrespective of

hen MRD is measured (end of induction or immediately prior to

CT) [33 , 51 , 54 , 55] . Such patients would now be recommended to

eceive blinatumomab prior to alloSCT. On the basis of the BLAST

tudy, the agent is licensed for patients with residual high level

RD [56] . Serial MRD measurements after RIC alloSCT are likely to

e critical, allowing early identification of impending relapse and

mportant clinical window to act on MRD to prevent overt clinical

elapse [33 , 55 , 57] . It is hoped that the sensitivity of HTS may allow

requent PB testing to supplement BM sampling, to allow this clin-

cal window to be detected in a timely and more feasible fashion

han repeated BM assessment [34 , 55 , 58] . Interventions that may

ave value in this context include donor lymphocyte infusions, ty-

osine kinase inhibitors in Ph + ALL and novel agents [52] . 

RD in the context of novel therapies 

The rapid development and use of immune and cellular ther-

pies has offered effective alternatives for treatment in patients

ith relapsed or refractory ALL who previously would have had

alvage cytotoxic chemotherapy, or no viable treatment option.

RD has played a key role in defining eligibility and monitoring

esponse in key studies of inotuzomab ozogamicin, blinatumomab,

nd chimeric antigen receptor T-cells (CART) therapy [59-61] . MRD

s now considered standard of care assessment of response to these

herapies, planning further therapy and assessing eligibility for SCT.

ith the increasing use of these therapies, the number of MRD

ssessment per patient will potentially increase on contemporary

rotocols. Long term data on the prognostic value of MRD in these

herapies is still preliminary, however compared to MRD response

ata from first line chemotherapeutic approaches, relapse rate is

igh even in patients reaching MRD negativity [62 , 63] . Therefore,

aution has to be used when extrapolating interpretation of MRD

alues after these novel therapies from upfront treatment MRD re-

ponse long-term outcome data. These data highlight the treat-

ent/protocol dependency of MRD diagnostics as a tool for clin-

cal prediction. Attention must also be given to the MRD method

sed to monitor these novel therapies. Antigen negative (eg, CD19-

egative) relapse in PBC ALL is observed after immunotherapy and

n up to 20% of patients after CD19-directed CART immunotherapy

64-66] . Monitoring blasts in patients with CD19-negative relapse

y MFC is challenging as CD19 is often used as a parameter to

uantify MRD and diagnose relapse. MRD detected by PCR provides

eliable results independently from CD19 expression; however, it

oes not identify the important change of CD19-negative relapse,
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hich may in itself have therapeutic implications. The ability to ac-

urately monitor ALL progression during treatment and after CD19- 

egative relapse by MFC requires identifying additional B-lineage 

r other specific markers consistently expressed on B cells. Using 

 combination of MFC, ASO-RQ PCR as well as tracking CART per-

istence and B cell recovery ensures impending relapse is detected 

67] . 

RD in the context of Ph + ALL 

The Philadelphia chromosome is found in approximately 25% 

f adults with. MRD in Ph + ALL can be assessed by quantify-

ng BCR-ABL transcripts for p190 or p210, as well as the methods

lready discussed. BCR-ABL transcript quantification (using RNA) 

s relatively straightforward assay technically and, for p210 tran- 

cript quantification can be carried out and reported to interna- 

ional standards due to the work done in CML. However, the re-

orts produced for CML characterize the molecular response on a 

cale which is well validated for CML but not validated as suitable

or Ph + ALL. P190 quantification is less commonly available and

s much less standardized. International standardization of p190 

uantification has been led by Heike Pfeifer on behalf of the Eu-

oMRD consortium with 35 laboratories participating [68] . At the

owest levels of MRD there was still variation between labs and an

ppreciable false negative rate. The extremely detailed laboratory 

ecommendations are a considerable move forward in p190 quan- 

ification. 

Although there is general agreement in the literature that 

atients in whom BCR-ABL1 does not significantly diminish during 

nitial therapy after second generation TKI are at higher risk for a

oor outcome [69-72] the relationship between BCR-ABL1 levels 

nd outcome the predictive value of BCR-ABL monitoring is not 

o great for that of Ig/TCR monitoring in Ph- disease. Where

CR-ABL1 and Ig/TCR monitoring have both been monitored in 

 childhood ALL study, overall concordance between the two 

ethods was only 69%. Ig/TCR appeared more reliable at pre- 

icting outcome. An early MRD response was highly predictive 

f a favorable outcome [73] . The discrepancies between the two

ethods were investigated by Hovorkova et al by flow-sorting dif- 

erent subsets of cells. A BCR-ABL1-positive clonal haematopoiesis 

manating from early progenitors, closely resembling a CML-like 

isease was shown, suggesting that at least some of the biological

eterogeneity of BCR-ABL1-positive ALL may result from this [74] . 

In practical terms, wherever possible, BCR-ABL1 should be mon- 

tored early and monitored often and if possible, both patient spe-

ific Ig/TCR re-arrangements and BCR-ABL1 should be monitored. 

ombining genotype profiling with MRD for more accurate 

rognostication in ALL 

MRD alone is not sufficient to fully predict outcome. Somatic 

enetic abnormalities define fundamentally distinct biological sub- 

roups with important prognostic and predictive significance. MRD 

s a continuous variable, however it has traditionally been used 

n a dichotomized way, using the same “cut-off” for all patients.

hen MRD is examined as a continuous variable it is log nor-

ally distributed but the shape of the distribution depends on ge-

etic subtype; confirming differential MRD kinetics. Using a single 

RD threshold does not reflect the biological heterogeneity that 

s a fundamental feature of the disease [75 , 76] . These observations

learly demonstrate the need for tailoring MRD cut-offs to differ- 

nt genetic subgroups. HTS technologies with deeper levels of de- 

ection may further influence these integrated risk groups. The fu- 

ure of stratification in ALL lies in the integration of clinical risk

actors with high-sensitivity MRD and detailed genetics. Prognostic 

ndex models have been developed to include all these variables
nd provide an accurate method for predicting outcome, but also 

llow greater flexibility for defining risk groups [77] . 

ummary 

MRD is clearly fundamental to risk directed therapy for ALL. It

s accepted as the most powerful independent prognostic indicator 

n both adult and childhood ALL. The rapid introduction of novel

herapies, particularly blinatumomab, inotuzomab ozogamicin, and 

ART therapies are playing an increasing role in MRD eradication 

nd long-term data on prognostic significances of the depth and 

inetics of MRD clearance are eagerly awaited. Development of 

ltra-sensitive HTS assays may allow for further refinement of risk 

tratification. However, multicentre standardization for all phases 

f analysis including use of control quantification material, quality 

ssessment and informatics analysis of HTS data is still lacking and

his is a priority topic for the EuroClonality NGS Consortium. Other

ensitive technologies including digital/droplet PCR are also being 

idely assessed. To allow correct interpretation of the MRD result, 

RD reports must provide information on the MRD technique used 

nd on MRD markers as well as the theoretical limits of detection

nd the limits of quantification of the assay. 

Recent studies have suggested that other genetic factors influ- 

nce MRD kinetics and MRD cut-offs. MRD is a continuous vari-

ble and optimal cut-offs vary by genetics subgroup so the cur-

ent “one size fits all” may not be utilizing the data efficiently as

ichotomization of continuous variables leads to the loss of sta- 

istical power [75] . To develop true precision medicine strategies, 

ntegrated prognostic index models should be considered in future 

linical trial design to refine patient stratification. 

These factors all serve as a framework for integration of MRD

s a diagnostic and research tool in to future adult ALL studies. 
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