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KEY POINTS

� Upper airway stimulation (UAS) has shown high success rates in carefully selected pa-
tients with moderate to severe sleep apnea.

� UAS has shown equivalent or better outcomes with lower morbidity compared with
transoral robotic (TORS) base of tongue surgery.

� Studies comparing UAS and TORS directly have shown clear benefit of UAS over TORS in
patients meeting UAS criteria; however, many TORS candidates are not UAS candidates
under current candidacy criteria.

� Future studies of UASwill further characterize long-term treatment efficacy, adverse event
profile, and effect on medical outcomes.
INTRODUCTION/BACKGROUND

Obstructive sleep apnea (OSA) is a chronic sleep disorder characterized by recurrent
episodes of upper airway collapse and associated reduction or cessation of airflow
with resulting hypoxia. The adverse health effects on both quality of life and medical
comorbidities, including cardiac arrhythmia and stroke, are well described.1,2 First-
line treatment of OSA includes medical measures, with continuous positive airway
pressure (CPAP) being the gold standard of treatment.3 Intolerance of CPAP is com-
mon and drives many patients to pursue surgical treatment.4

The pathophysiology contributing to OSA is multifactorial and includes mechanical
airway obstruction from soft tissue and skeletal elements, as well as dynamic collapse
related to decreased tone and inadequate reflex airway dilation.5 Transoral robotic
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multilevel surgery (TORS) was first approved for removal of benign tongue base tissue
in 2009 under the Davinci robotic platform; it became increasingly popular over the last
decade as a way to address anatomic obstruction from hypertrophied lingual tonsillar
tissue that could not be accessed easily or safely by conventional methods.6 As the
understanding of the pathophysiology of OSA has evolved, recent treatments falling
into the category of neurostimulation (upper airway stimulation, UAS) have emerged
as a dynamic alternative to traditional static soft tissue and skeletal framework sur-
gery. Currently, hypoglossal nerve stimulation (HGNS) is the only UAS device that is
Food and Drug Administration (FDA) approved (Inspire, 2014) for the treatment of
OSA.7,8

TORS is ideally suited for patients with primarily tongue base obstruction from
lingual tonsil hypertrophy, although it may be performed in conjunction with other
multilevel surgeries when other sites of mechanical obstruction are present9 (Fig. 1).
A major benefit of TORS includes improved surgical access, allowing more complete
surgical resection of tongue base tissue, which could not otherwise be addressed by
traditional surgical methods.
The UAS procedure effectively works at multiple levels of obstructions simulta-

neously, as targeted nerve stimulation advances the base of tongue to open the retro-
lingual airway while simultaneously opening the retropalatal space by palatoglossal
coupling10 (Fig. 2). UAS is logically an excellent option for patients with tongue
base obstruction primarily due to muscular hypertrophy rather than lymphoid tissue
hypertrophy. In contrast to static soft tissue and skeletal framework surgery, UAS
Fig. 1. TORS base of tongue surgery best addresses static obstruction from hypertrophied
lingual tonsils. (A) Schematic, (B) endoscopic, and (C) sagittal CT views showing obstruction
of the retrolingual space, size 4 lingual tonsils. CT, computed tomography. (From Friedman
M, Yalamanchali S, Gorelick G, Joseph NJ, Hwang MS. A standardized lingual tonsil grading
system: interexaminer agreement. Otolaryngology–head and neck surgery: official journal
of American Academy of Otolaryngology-Head and Neck Surgery. 2015;152(4):667-672.)



Fig. 2. UAS addresses airway collapse via dynamic airway dilation in phase with respiration.
Endoscopic view of hypoglossal nerve stimulation; the base of tongue and palate move
together in coordination as a result of palatoglossal coupling.
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uniquely addresses the common contributing pathology of low neuromuscular tone by
way of dynamic airway dilation during respiration. In its early implementation, highly
favorable outcomes in carefully selected patient populations have contributed to the
rise of UAS in the current era of sleep medicine.

ASSESSMENT/EVALUATION
Transoral Robotic Surgery

In 2014, TORS was approved for removal of benign base of tongue tissue, rather than
specifically for the diagnosis of OSA.11 Surgical candidates should have significant
lymphoid hypertrophy (Friedman lingual tonsil size 3–4), as well as Apnea Hypopnea
Index (AHI) less than 60, body mass index (BMI) less than 30, and no evidence of
lateral velopharyngeal collapse on drug-induced sleep endoscopy (DISE).9,11,12 Pa-
tients with predominantly muscular tongue hypertrophy should be excluded, as antic-
ipated benefit of muscular resection is low and carries high morbidity. To this point,
muscular tongue dissection should be kept to a minimum to prevent dysphagia and
foreign body sensation. Swallowing function must be normal and should be routinely
assessed preoperatively using a validated questionnaire (eg, MD Anderson Dysphagia
Inventory) or formal swallowing evaluation (clinical swallow evaluation or formal swal-
low study).13 Feasibility of robotic access must be considered, further excluding pa-
tients with retrognathia, or interincisor distance less than 2.5 cm. Patients cannot be
on anticoagulation and should have an ASA less than 3.
The surgeon must determine whether lingual tonsil hypertrophy is the entire cause

of obstruction or whether there is multilevel collapse of the airway. Thus, patients be-
ing considered for TORS should have preoperative DISE. If multilevel obstruction is
determined, the surgeon can elect to perform single stage surgery including palate,
palatine tonsils, and lingual tonsils. The option to stage the procedure with an interval
polysomnogram is also reasonable, with the disadvantage of subjecting the patient to
multiple procedures with attendant risk.
To better assess candidacy in patients with OSA, Lin and colleagues12 developed a

scoring system to predict surgical response based on combined measures of BMI,
AHI, and DISE findings (Table 1). Several measures of success have been reported;



Table 1
Algorithm for transoral robotic surgery candidacy proposed by Lin and colleagues

Clinical Stratif. Score

BMI <30 0
>30
but <40

1

>40 2

AHI <60 0
>60 1

Lat. VP Collapse No 0
Yes 1

Combined
Assigned
Score

Surgical
Response
Rate

0 86.7% (13/15)

1 71.4% (5/7)

2 25% (2/8)

3 16.7% (1/6)

4 0.0% (0/3)

Scoring system includes combined measures of BMI, AHI, and DISE pattern of collapse. Surgical
response rates highly depend on preoperative score.

Data from Lin HS, Rowley JA, Folbe AJ, Yoo GH, Badr MS, Chen W. Transoral robotic surgery for
treatment of obstructive sleep apnea: factors predicting surgical response. The Laryngoscope.
2015;125(4):1013-1020.
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here, surgical response was defined by greater than 50% reduction in AHI and final
AHI less than 15 (mild OSA) with resolution of daytime somnolence (symptomatic
improvement).12,14

Upper Airway Stimulation

The Inspire device was FDA approved in 2014 and is currently the only FDA-approved
UAS device available for treatment of OSA. Hypoglossal nerve stimulation is currently
approved for adults (age >18 years) with BMI less than 35 and moderate to severe
OSA (AHI 15–65, <25% central/mixed apneas)8 (Table 2). Patients must have failed
Table 2
Candidacy criteria for upper airway stimulation

Age >18

Body mass index �35

Polysomnography AHI 15–65 events per hour
<25% central or mixed apneas

DISE Excludes pattern of concentric
collapse at the palate

Contraindications � Anticipated need for MRIa

� Some neurologic or
psychiatric conditions

� Pregnancy

a New Inspire model is compatible with head and extremity MRI under most conditions.
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conservative treatment including CPAP. Patients meeting these criteria and pursuing
UAS treatment must have a recent polysomnogram and must undergo DISE to deter-
mine the pattern (anteroposterior, lateral, concentric), level (velum, oropharynx,
tongue base, epiglottis), and severity of airway collapse.15 UAS will best address ante-
roposterior collapse at the tongue base (retroglossal space) and velum (retropalatal
space). A pattern of complete circumferential collapse (CCC) is a contraindication to
UAS, as patients with this pattern of obstruction on DISE are felt to be poor surgical
candidates16 (Fig. 3). Potential candidates for surgery should be evaluated by both
the surgeon and sleep medicine physician before undergoing hypoglossal nerve stim-
ulator implantation. Although currently only approved for adults, UAS has been per-
formed in children with hypotonia related to trisomy 21 on a clinical trial basis with
encouraging results.17,18

SURGICAL TECHNIQUE AND POSTOPERATIVE CARE
Transoral Robotic Surgery

The DaVinci Si robot is the standard platform for the procedure (Xi and SP models are
not required). To prepare for robotic access, patients are intubated transnasally, the
bed is rotated 180�, and plastic eye shields are placed. The tongue is retracted with
a stitch to better expose the lingual tonsils. A tonsil mouth gag with a short tongue
blade and integrated suction is used to expose the lingual tonsils. The robot cart is
brought into the field and docked. The robotic instruments include a 30-degree cam-
era, monopolar cautery, and Maryland grasper, typically arranged in a tripod configu-
ration (Fig. 4). The bedside assistant aids with suction cautery, surgical clips as
needed for hemostasis, and retraction.
The lingual tonsil resection is performed sequentially from right to left, and resec-

tions of the right and left tonsils are performed separately (Fig. 5). Care is taken not
to enter the muscular tongue, which avoids postoperative pain, risk to the dorsal
branch of the lingual artery, as well as persistent dysphagia and globus sensation.
Care should be taken not to demucosalize the lingual surface of epiglottis, and resec-
tion of the upper third of epiglottis should be avoided unless there is clear evidence of
collapse at this level. If single-stage surgery is performed, it is imperative to leave a
bridge of mucosa in the glossotonsillar sulcus between the lingual and palatine
Fig. 3. DISE examination showing (A) complete circumferential collapse versus (B) antero-
posterior collapse at the velum.



Fig. 4. TORS surgical set up showing (A) positioning with mouth gag in place, nasal intuba-
tion, and eye shields. (B) Robotic arms in tripod configuration including the Maryland
retractor and monopolar spatula tip cautery (lateral placement), as well as 30-degree endo-
scope placed centrally.
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tonsillectomy sites in order to prevent circumferential scarring. The volume of resected
tissue should be measured and sent to pathology. Measured volume of lymphoid tis-
sue should be greater than 7 to 10 cc; resected volume between 10 and 20 cc has
been correlated with improved outcomes as measured by decrease in AHI.19

Hypoglossal nerve stimulator
The anatomy and physiology of the hypoglossal nerve allows easy surgical access in
the submandibular triangle. Integral to the UAS procedure, the distal branching pattern
of the nerve can be leveraged to preferentially stimulate the muscles that protrude and
stiffen the tongue. Lateral branches of the hypoglossal nerve innervate the styloglos-
sus and hyoglossus muscles, whereas more medial branches innervate the genioglos-
sus muscle, the geniohyoid muscle (C1 contribution), and intrinsic tongue muscles of
the tongue (Fig. 6).
The current Inspire device has 3 components: a stimulation lead, an implantable

pulse generator (IPG), and a breath sensing lead (Fig. 7). The stimulating electrode
sits around the hypoglossal nerve to deliver mild electrical stimulation in phase with
inspiration to maintain multilevel airway patency. The IPG sits in a subcutaneous
Fig. 5. (A) Ideal resection of lingual tonsil tissue (right lingual tonsil outlined) and (B) intra-
operative view. Resection of the right and left lingual tonsils are performed separately.



Fig. 6. Distal branching pattern of the hypoglossal nerve. Retractors of the tongue include
the styloglossus and hyoglossus. Protrusion muscles of the tongue include the genioglossus
and geniohyoid (C1 contribution). The intrinsic muscles of the tongue stiffen the tongue.

Fig. 7. Inspire UAS device with 3 components: (1) stimulation lead, (2) pulse generator, and
(3) breath sensing lead.
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pocket overlying the pectoralis fascia and generates the impulses based on input from
the sensing lead. The breath sensing lead is placed between the external and internal
intercostal muscles at the fourth to sixth rib space and senses breathing patterns,
which are relayed to the pulse generator.
For surgical positioning, the bed is turned 180� and a bump is placed under the right

chest to allow better access to the chest wall for the breath sensing lead placement. A
bite block or other oral retractor is placed to allow placement of the neuromonitoring
electrodes: an exclusion lead is placed in the superficial lateral tongue to monitor stim-
ulation of the hyoglossus and styloglossus, and an inclusion lead is placed in the ante-
rior floor of mouth lateral to the frenulum to monitor stimulation of the genioglossus
and geniohyoid muscles. The patient is then prepped and draped, including a clear
plastic drape over the face to maintain a sterile field while allowing visualization of
the tongue. Long-acting paralytics are avoided due to need for neuromonitoring and
nerve stimulation during the case.
The procedure includes 3 surgical sites. The first incision is placed 1 to 2 cm below

the border of the mandible to the right of midline: dissection to expose the distal hy-
poglossal nerve includes raising subplatysmal flaps, retraction of the submandibular
gland superiorly, retraction of the digastric tendon inferiorly, and retraction of the
mylohyoid anteriorly. A ranine vein is often encountered in the vicinity of the hypoglos-
sal nerve and can be ligated or, preferentially, freed and retracted using blunt dissec-
tion to avoid bleeding in the surgical field. Meticulous dissection of the hypoglossal
nerve is carried out under loupe or microscope magnification, and the nerve is stimu-
lated along its course to identify inclusion and exclusion branches (Fig. 8). The stim-
ulation electrode cuff is placed around a 1 cm segment of the hypoglossal nerve,
which ideally excludes proximal branches innervating the retractors of the tongue
and includes the C1 contribution branch and distal hypoglossal branches that
Fig. 8. Intraoperative stimulation of the hypoglossal nerve to determine location of the
functional breakpoint. Inset: NIMS monitor output showing inclusion versus exclusion
branches.
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innervate protrusion and stiffening muscles of the tongue. This location is referred to
as the functional breakpoint.
The second incision is made several centimeters below the clavicle centered on the

midclavicular line. A subcutaneous pocket superficial to the pectoralis fascia is bluntly
dissected to create a pocket for the pulse generator.
The final incision is made at the fourth to sixth rib space, 5 cm lateral to the nipple

line. The serratus muscles are retracted to expose the external intercostal muscles,
and a window is made in the external intercostal muscles to create a pocket between
the internal and external intercostal muscles for placement of the breath sensing lead
along a malleable retractor. It is critical that the breath sensing lead be placed in the
correct layer and with the correct orientation with the sensing side facing the pleura.
Wires from the breath sensing lead and the stimulation lead are then tunneled in a sub-
cutaneous plane to the chest pocket and are connected to the IPG, which is then
secured with suture to the pectoralis fascia. Finally, breath sensing and stimulation
of the tongue are tested before closing the incisions. A successful test will show gross
excursion of the tongue favoring protrusion.
DISCUSSION
Clinical Outcomes

Comparisons of both TORS and UAS with conventional surgery (eg, uvulopalatophar-
yngoplasty, UPPP) have been made, with each showing benefits over traditional sur-
gical approaches.11,20 The usage of TORS for management of OSA began with a pilot
study by Vicini and colleagues21 evaluating the utility and feasibility of robotic manage-
ment of tongue base hypertrophy. Following this innovation, several studies have eval-
uated and demonstrated the efficacy of TORS tongue base reduction, with a meta-
analysis demonstrating impressive success (68%) and cure rates (24%) for patients.22

Prospective comparison studies to previously established techniques such as radio-
frequency tongue base reduction and/or palatoplasty procedures demonstrate poten-
tial for improvement in clinical outcomes in those who undergo TORS.23 In terms of
newer technology, TORS is most readily comparable to coblation lingual tonsillec-
tomy, where outcomes are roughly equivalent, and the anticipated TORS benefits
including more complete and easier removal for large lingual tonsils are tempered
by higher cost, longer hospital stay, and higher morbidity than coblation.24

There exists great clinical promise for UAS as well. A landmark study from the Stim-
ulation Therapy for Apnea Reduction (STAR) trial group was published in 2014 evalu-
ating the safety and efficacy of UAS at 12 months. In the original study of 126 patients
meeting selection criteria (AHI 15–65, BMI <32, failed CPAP, DISE without CCC), sig-
nificant improvements were seen in all primary (AHI and oxygen desaturation index
[ODI]) and secondary (Epworth sleepiness scale [ESS], functional outcomes of sleep
questionnaire [FOSQ], and percentage of sleep with O2 saturation <90%) outcomes.8

Two-thirds of patients had a successful response, defined as 50% reduction in AHI
and AHI score less than 20. Further, responders of this study were randomized to
treatment continuation and treatment withdrawal groups, showing significant wors-
ening of AHI and ODI when therapy was withdrawn at 12 months. A 5-year follow-
up study was recently published showing that outcomes including AHI, ODI, ESS,
FOSQ, and patient-reported snoring, all showed durable responses at 60 months
following implantation.25

Similar efficacy was demonstrated by early reports from the Adherence and Out-
comes of Upper Airway Stimulation for OSA (ADHERE) International Registry, which
was designed to study UAS outcomes as the procedure transitioned from trail to
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clinical practice.26 The ADHERE registry collects data including demographics, surgi-
cal outcomes, complications, quality of life, and other patient-reported outcomes for
patients undergoing treatment in the United States and Europe and will prove a power-
ful tool to study outcomes. Recent results of a cohort of 508 patients from the AHDERE
registry notably show significant reductions in AHI (36.3 baseline to 10.2 posttitration,
events per hour) and ESS (11.8 baseline to 7.7 posttitration) following implantation, as
well as uniformly high percentages of patient satisfaction (94%–96%). Steffen and col-
leagues27 observed similarly excellent outcomes for AHI reduction, ESS improvement,
and FOSQ improvement in a postmarket study of 60 patients where a BMI cutoff of
less than 35 was used.28 A study by Hofsauer and colleagues also found that in addi-
tion to the improved metrics discussed earlier, UAS had significant effects on sleep
architecture, with PSG REM time increasing from 9.5% pretreatment to 15.7%
posttreatment.
Predictors of success based on AHDERE data included increased age (OR 1.04 for

each additional year) and lower BMI (OR 0.91 for each 1 unit BMI increase).26 Among
the STAR trial population, UAS responders had lower VOTE scores on DISE than did
UAS nonresponders.29 Prior studies have shown CCC at the velum to predict poor
response to UAS and thus use of this finding as a contraindication to surgery.16

With regard to other multilevel surgery, UAS has shown higher cure rates (AHI <5)
compared with traditional UPPP in patients with moderate to severe OSA intolerant
of CPAP.20 Further, having prior soft tissue or skeletal framework surgery has not
been shown to negatively impact UAS outcomes.26

These favorable outcomes have prompted consideration of UAS as an alternative to
TORS base of tongue reduction.23,30 As TORS has been used for treatment of OSA
since 2009, and UAS was approved for treatment of OSA in 2014, the 2 modalities
constitute separate but overlapping eras of treatment. Retrospective cohort compar-
isons of TORS to UAS have shown consistently superior reduction in AHI and cure
rates with UAS when groups are matched to include only the subset of patients
who would be potential candidates for both procedures.30 As we move toward an
era of precision medicine and surgery, although, candidacy criteria become increas-
ingly important; when TORS cohorts are evaluated retrospectively for UAS candidacy
by the current criteria, dual candidacy has been observed in as low as just 20% of pa-
tients.30 Thus, there is still clearly a role for TORS in a large proportion of patients with
tongue base hypertrophy who do not qualify for UAS. When considering a treatment
algorithm that includes DISE-directed therapy, this direct comparison of TORS with
UAS is a potential area of future study, particularly in the likely event that UAS inclusion
criteria broaden.
Serious adverse events following UAS are reported around 2%, most commonly de-

vice discomfort requiring surgical revision.8,26 More commonly, transient changes to
tongue sensation, temporary weakness, minor discomfort related to the implanted de-
vice, and discomfort during the initial titration period are noted (up to 40% of pa-
tients).7,8 This adverse event profile is distinct from that of TORS, which has longer
hospital stay, higher readmission rates, and higher bleeding rates compared with
UAS.11,23

Considerations/Future Directions

Studies of UAS since FDA approval have reported treatment success rates upward of
80%. Under the current paradigm, criteria for candidacy continue to be highly selec-
tive. In light of this, it is unclear why some patients continue to fail treatment, and
further studies to determine predictors of treatment success and failure are warranted.
This rise of UAS will allow optimization patient outcomes as surgical volume increases
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and long-term follow up data become available. Treatment effect on medical comor-
bidities, including cardiovascular outcomes and mortality, will be additional critical
areas of future study.
As existing UAS devices continue to evolve and new devices enter the market, the

field will likely benefit from increased access, lower cost, and liberalized criteria for
candidacy. There are opportunities to improve and optimize multidisciplinary care,
training during and after residency, and delivery of care in various practice settings.

SUMMARY

OSA remains a challenging disease process to treat. Given the complexity and unique
anatomic profile of each individual patient, the addition of the HGNS to the sleep sur-
geon’s armamentarium has had promising early results. This period is the golden age
of sleep surgery, where medical management with CPAP is complemented by cutting
edge surgical technology including UAS and TORS to provide sleep physicians with
the personalized options that this complex patient population demands.

CLINICS CARE POINTS

1. Candidacy criteria for TORS multilevel surgery include AHI less than 60, BMI less
than 30, and DISE finding showing no evidence of lateral velopharyngeal collapse.

2. Candidacy criteria for UAS are selective and include adults (age >18 years) with
BMI less than 35, moderate to severe OSA (AHI 15–65), and DISE examination
demonstrating absence of complete circumferential collapse.

3. In patients qualifying for both UAS and TORS, studies have shown superior out-
comes and lower morbidity in those undergoing UAS.

4. UAS with the HGNS is predominantly being performed in high-volume centers in
conjunction with device technicians and sleep medicine physicians to allow for
optimal postimplant titration and calibration.
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