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I
n a previous volume of The Journal, Berge et al attempted
a “which comes first, the chicken or the egg?” argument
when it comes to parental feeding practices and young

child eating behaviors.1 Their statistical method of choice
was a cross-lagged path analysis (CLPA). This appropriate
statistical technique is appropriate for this research question,
because the technique allows one to examine a feedback loop
across repeated measurements. I present the fundamentals of
CLPA and assume an understanding of basic regression tech-
niques. My own education was influenced by Loehlin’s intro-
ductory textbook; I draw heavily on this source throughout
the overview (any errors, of course, are my own).2

Overview of Path Analysis and Structural
Equation Modeling

Simply put, path analysis is regression that has multiple
dependent variables. Given the wide use across fields of study,
dependent variables may be referred to as endogenous or
downstream variables, and independent variables may be
referred to as exogenous or upstream variables. An endoge-
nous variable may be both an independent and a dependent
variable, whereas exogenous variables are only independent.
For example, Berge et al use models that typically have base-
line parent and child measures as exogenous variables, and all
other time-point variables as endogenous.1 A sample path
analysis model is given in the Figure where the x1 and y1
variables are exogenous, and all other variables (ie, x2, x3,
x4, y2, y3, y4) endogenous.

For those unfamiliar with structural equation modeling
(SEM), it is worth pointing out that path analysis is 1 piece
of that particular puzzle. Sometimes we want to account
for measurement error while answering a research question.
SEM does this via a combination of confirmatory factor anal-
ysis and path analysis. Confirmatory factor analysis takes into
account differences in measurements by combining multiple
measures of a single construct. We picture the construct as
something we cannot precisely or directly measure, but we
are sure the true construct exists. This true construct is a
latent variable, which are variables that are not directly
measured, but also estimated with what we can measure:
the manifest variables. Once we take into account measure-
ment error, we try to answer our research question, which
is what we are most concerned with in path analysis (eg,
are the exposure and outcomes related?).

SEM and associated techniques were intended to answer
causal questions; unfortunately, it is hung on regression tech-
niques that make those implicit causal tenets difficult to pull
out (given that correlation does not equal causation). The
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application of causality to SEM and related methods has
been debated for many years.3 With that caveat, we can apply
causal theory to SEM in an attempt to answer causal ques-
tions, specifically using causal diagramming, when the design
and data allows for causal inference.4,5

Thus, a core feature of SEM and associated techniques in-
cludes graphically displaying the desired model (such as in
the Figure). Typical conventions include using boxes to
indicate manifest variables (eg, variables x and y at each of
4 time points in the Figure) and circles for latent (not
shown in path analysis). Lines are used to denote a
relationship between variables. If the line has an arrow at
only 1 end, then we are regressing a variable onto an
endogenous variable (eg, x and y at times 2 through 4); if
the line has arrows at both ends, typically curved, it
denotes a correlation (such as between x1 and y1). Small
arrows pointing to endogenous variables denote error
(residual arrows; zetas in the Figure). Although
constructing the graphics in many user-friendly software
packages seems to be simple (just drawing lines to boxes!),
given the link with causal inference it should also be readily
apparent that it is an easy tool to misuse.6 Careful
construction of the graphic can assist the reader in
determining the validity of the causal inference of the results.
CLPA

Berge et al use multiple measurements.1 Like all regression
techniques, repeated measurements warrant specialized
modeling, because it violates the assumption of indepen-
dence of observations. One way we can take this into account
in path analysis is via cross-lagged paths, or CLPA. CLPA ac-
counts for the autoregressive nature of the data by allowing
each variable to regress on the next nearest time point, and
additionally adds the cross-lags, or relationships between
variables over time. For example, paths b1 to b6 in the
Figure are the cross-lags. Taking a closer look at one
cross-lagged path, b1, shows a relationship between x at
time 1 with y at time 2, controlling for y at time 1. The
example by Berge et al uses 4 time points for each child
and parent variable. With a good fitting model, causal
implications can be examined by comparing standardized
coefficients of the cross-lagged paths (hence answering the
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Figure. Example of a CLPA with 4 time points and 2 variables, x and y. Simplified, without assuming a mean structure or latent
equivalents to the manifest variables, other parameters include exogenous variances (phi), correlations at the same time point
across exogenous variables (r) or via the disturbances (psi), cross-lagged paths (b1 to b6), autoregressive paths (b7 to b12), and
endogenous residuals (zeta).
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chicken or egg question). Are the relationships consistently
stronger between the cross-lags going from the parent
(eg, the x variables in our simplified Figure) to the child
(eg, the y variables), vice versa, or both? Nested models
(ie, another model that includes or takes away paths) could
be used to explore the best fit by dropping b1 to b3 (all x
to y paths), for example, and comparing against a full
model. If the model fit better without b1 to b3, this would
indicate that the correct direction of the relationship would
be y to x, rather than the reverse.

A key consideration is the time component. Were the mea-
surements made at time points that allowed the relationship
to be captured accurately? The traditional CLPA is a simple
autoregressive model (ie, the relationship of each variable
to itself over time), which is assumed stable and equidistant
over time points. Time variability is assumed to only be
related to (and fully mediated by) the next time-point in
the series. Violations of this assumption will result in biased
estimates, particularly if the constructs are trait like or time
invariant.7 Others critique this model for the inability to
separate the between and within-person associations of the
model.8

Model Fit and Interpretation

A powerful aspect of this particular tool (and all related SEM
frameworks) is that it uses a wide range of model fit indices to
help us determine the usefulness of our model.2 Much like we
interpret the omnibus ANOVA before determining where
group effects occur, one should always look at the model fit
before interpreting the parameter estimates included in the
model. Model fit includes 4 different types: (1) an omnibus
model fit measure, the c2, (2) incremental fit measures,
akin to effect sizes, (3) absolute fit, akin to how “badly” fitting
the model is, and (4) comparative fit, which allows us to test
related models.
First, we look at the c2 for the model. It is an assessment of

badness of fit, but it uses inferential testing via reverse hy-
pothesis testing. A significant P value indicates significant
differences between the correlations you obtained with
your sample and the correlations implied by your model.
Thus, a P of more than .05 indicates a good-fitting model.
Unfortunately, given this is reverse hypothesis testing, very
small differences in model fit are generally statistically signif-
icant if you have a well-powered model, meaning you may
obtain a P value of less than .05 but your model may other-
wise have good fit indices. The model c2 forms the basis
for many other fit indices, and is useful when conducting a
change in c2 test on nested models.
Incremental fit measures include a wide variety of “larger is

better” measures, such as the comparative fit index used by
Berge et al, where a poor fitting model has a standardized
value of 0 and a perfect model has a value of 1.1 It is called
incremental (or sometimes relative) fit because it compares
your model against a “null” model, or a model with all cor-
relations set to 0, relative to the best possible model fit the
data can have. It is akin to an R2 value; it is a descriptive effect
size measure. We generally look for values close to 1.00, and
preferably larger than 0.95.9 These are (to some extent unsat-
isfactory) rules of thumb.10

Absolute fit measures include the root mean square error
of approximation used by Berge et al.1 Models with small
amount of error will have values closer to 0; it involves the
c2 implied by the model, but takes into account the sample
size and model parsimony, and is often a preferred fit index
particularly for power analysis.11 This fit measure is descrip-
tive, but has an accompanying CI; we prefer values smaller
than 0.06, and CIs that do not cross 0.10.6
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Finally, comparative fit indices include the Akaike infor-
mation criterion, where “smaller is better.” The numbers
by themselves are not interpretable, but rather should help
us to select the best fitting model among nested models while
taking into account parsimony.

A use of all these measures gives us a feel for how useful the
model may prove to be (with the caveat that they should be
interpreted with caution), and should be examined before
looking at the parameter estimates included in the model.10

They are most powerful when considering nested models.
Once we know we have a useful model, parameter estimates
may be interpreted as one would typically interpret regres-
sion estimates. R2 values are typically given for each depen-
dent variable in the model.

Conclusions

CLPA is an effective traditional technique for basic repeated
measures data where a feedback loop should be examined,
and where time effects are fairly stable, evenly spaced, and
likely capturing the imagined feedback effect. Unfortunately,
the models presented had generally poor fit indices, nested
models not reported, and only three models had more than
1 significant cross-lagged coefficient, and no models showed
consistent temporal feedback.1 Despite the spotty model fit,
the authors suggest the significant cross-lag paths give
some clinical implications about parent and child feedback
loops with pediatric eating behaviors. Given that a CLPA is
not as flexible as more advanced models under the same
SEM framework, the authors may well have also considered
a parallel-growth latent growth curve (or trajectory) model,
or a random intercept cross-lagged panel model.7,12 There
are many alternatives; some argue the underlying theory of
time/change may best dictate statistical model selection.13

A final cautionary reminder: this tutorial is a brief, summary
introduction that gives a background of the statistical topic
without any math proofs. With that being said, this tutorial
intends to convey that CLPA provides an intuitive graphical
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approach and statistical tool clinicians may wish to use when
thinking about feedback loops in their research. n
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