
ORIGINAL
ARTICLES
Plasma and Cerebrospinal Fluid Candidate Biomarkers of Neonatal
Encephalopathy Severity and Neurodevelopmental Outcomes
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Frances Northington, MD1,4, and Allen D. Everett, MD1,4

Objectives To identify candidate biomarkers in both plasma and cerebrospinal fluid (CSF) that are associated
with neonatal encephalopathy severity measured by encephalopathy grade, seizures, brain injury by magnetic
resonance imaging (MRI), and neurodevelopmental outcomes at 15-30 months.
Study design A retrospective cohort study of plasma (N = 155, day of life 0-1) and CSF (n = 30, day of life 0-7) from
neonates with neonatal encephalopathy and healthy neonates born at term (N = 30, ³36 weeks of gestation) was
conducted. We measured central nervous system necrosis (glial fibrillary acidic protein [GFAP], neurogranin
[NRGN], tau), inflammatory (interleukin [IL]-6, IL-8, IL-10), and trophic (brain-derived neurotrophic factor [BDNF],
vascular endothelial growth factor) proteins. Clinical outcomes were Sarnat scores of encephalopathy, seizures,
MRI scores, and Bayley Scales of Infant and Toddler Development III at 15-30 months.
Results Plasma NRGN, tau, IL-6, IL-8, and IL-10 were greater, whereas BDNF and vascular endothelial growth
factor were lower in patients with neonatal encephalopathy vs controls. In plasma, tau, GFAP, and NRGN were
directly and BDNF inversely associated with encephalopathy grade. IL-6 was inversely related to seizures. Tau
was directly related to MRI abnormalities. Tau was inversely associated with Bayley Scales of Infant and Toddler
Development III cognitive and motor outcomes. In CSF, NRGN was inversely associated with cognitive, motor,
and language measures. GFAP, IL-6, and IL-10 were inversely related to cognitive and motor outcomes. IL-8
was inversely related to motor outcomes. CSF candidate biomarkers showed no significant relationships with en-
cephalopathy grade, seizures, or MRI abnormalities.
Conclusions Plasma candidate biomarkers predicted encephalopathy severity, seizures, MRI abnormalities, and
neurodevelopmental outcomes at 15-30 months. (J Pediatr 2020;226:71-9).
eonatal encephalopathy is a syndrome defined by clinical features of neurologic dysfunction during the first few days of
life, including difficulty initiating or maintaining respiration, altered consciousness, and seizures.1,2 Neonatal enceph-
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monitor therapeutic efficacy, which warrants further
research into multidimensional approaches to assess and
monitor evolving brain injury in neonates with neonatal
encephalopathy.9,10

As a potential component of a multidimensional diag-
nostic/prognostic approach, biological fluid markers can
provide objective, serial, and noninvasive information to
identify pathologic processes reflected by distinct peripheral
concentrations. Biomarker assays have been studied exten-
sively in adults to predict neurologic pathologies, including
traumatic brain injury and neurodegenerative diseases.11-13

However, there is limited research and clinical application
of pediatric biomarkers due to the need for large sample vali-
dation studies, especially in neonatal brain injury.14

Several candidate biomarkers, including central nervous
system (CNS) necrosis, inflammatory, and trophic proteins,
were identified in adult studies on brain injury and some
have been investigated in neonatal populations. Glial fibril-
lary acidic protein (GFAP), a CNS-specific astrocyte cyto-
skeletal intermediate filament protein, was associated with
abnormal magnetic resonance imaging (MRI) and neurode-
velopmental outcomes.15-18 Neurogranin (NRGN), a brain-
specific protein kinase C substrate, has not yet been studied
in neonatal populations but has associations with adult trau-
matic brain injury and neurodegeneration.11,19-22 Tau,
another CNS necrosis factor, is associated with asphyxia
and neonatal encephalopathy.23-25 Inflammation plays an
important role in brain injury, and increased cytokines, espe-
cially interleukins 6, 8, and 10 (IL-6, IL-8, IL-10), have been
associated with infants with brain injury.17,24,26-29 Brain-
derived neurotrophic factor (BDNF), a trophic protein, was
associated with severity of injury and worse neurodevelop-
mental outcomes.24,30,31 Another trophic factor, vascular
endothelial growth factor (VEGF), was also associated with
worse neonatal encephalopathy severity, abnormal imaging,
and mortality.17,32,33 Research in brain injury biomarkers
suggests that a combination of biomarkers is the most effec-
tive for providing evidence of injury.9,34,35 However, review
of the current literature reports a need for validation studies
before these biomarkers can be introduced for routine clin-
ical care.9,10

We investigated a candidate multibiomarker panel to
identify molecules in both plasma and cerebrospinal fluid
(CSF) that are associated with neonatal encephalopathy
severity measured by encephalopathy grade, seizures, brain
injury by MRI, and neurodevelopmental outcomes at 15-
30 months.
Methods

In this multicenter retrospective cohort study of neonatal en-
cephalopathy, we identified and analyzed the concentrations
of CNS necrosis markers (GFAP, NRGN, tau), inflammation
markers (IL-6, IL-8, IL-10), and trophic-factor markers
(BDNF, VEGF) from a cohort of neonates with neonatal en-
cephalopathy and a cohort of healthy neonatal controls. The
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study received institutional review board approval at all hos-
pitals, and signed informed consent was obtained from the
parent of each participant. Johns Hopkins University institu-
tional review board approved the use of all cohorts in this
study.

Control Patient Cohort
Healthy neonates born at term (³36 weeks of gestation) had
plasma samples collected from National Maternity Hospital
Dublin and CoombeWomen and Infants University Hospital
(Trinity College) from 2016 to 2018 from day of life (DOL) 0-
7 with a median collection of DOL 2. The samples were
stored in the Trinity Translational Medicine Institute Bio-
bank in Dublin, Ireland. Deidentified plasma samples
(n = 30) from healthy neonates born at term were analyzed
in collaboration with the Neonatal Inflammation and Multi-
organ Dysfunction and Brain Injury Research group
(NIMBUS) at Trinity College Dublin, Ireland (JHU MTA
A33285).

Patients with Neonatal Encephalopathy Cohort
Neonatal encephalopathy was defined as requiring resuscita-
tion at birth and having an abnormal neurologic examina-
tion. Inclusion criteria were as follows: all infants with
neonatal encephalopathy Sarnat score 2 or 336 requiring ther-
apeutic hypothermia, neonatal encephalopathy in the first
48 hours of life without therapeutic hypothermia, or postna-
tally diagnosed with brain injury on cranial ultrasound.33,37

Exclusion criteria consisted of maternal substance abuse
and major congenital abnormalities. The neonatal encepha-
lopathy cohort was drawn from National Maternity Hospital
Dublin and Children’s National Health System, Washington,
DC. The National Maternity Hospital (Trinity College)
neonatal encephalopathy neonates had plasma and CSF sam-
ples collected as previously described. At Children’s National,
neonates with neonatal encephalopathy had plasma samples
collected from 2012 to 2016 as part of a prospective study
evaluating candidate biomarkers of brain injury in neonatal
encephalopathy. From both studies, a single deidentified
plasma sample at enrollment from DOL 0-1 and clinical
data (n = 155) were analyzed. From the Trinity College
neonatal encephalopathy cohort only, deidentified CSF sam-
ples fromDOL 0-7, with amedian of DOL 3, and clinical data
(n = 30) were analyzed.
Clinical outcomes of neurologic injury severity were eval-

uated for significant relationships with candidate biomarker
concentrations. To measure clinical severity, degree of en-
cephalopathy was determined by the Sarnat classification
and stratified as mild (Sarnat score 0-1) or moderate-to-
severe (Sarnat score 2-3).36 Clinical evidence of brain injury
was defined as the presence of seizures or severity of injury by
MRI on DOL 5-15 according to the Barkovich scale, evalu-
ating the basal ganglia area, watershed area, and the com-
bined basal ganglia/watershed area.38,39 The Barkovich scale
was categorized into two groups: score of 0 and scores 1-5.
Neurodevelopmental outcomes were evaluated using

cognitive, motor, and language scores of the Bayley Scales
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of Infant and Toddler Development (Bayley-III) at
15-30 months.40 We evaluated the Bayley-III as both a
continuous and binary variable. For our binary analysis, we
categorized the scores into two groups normal, scores ³85
and abnormal, scores <85 or death.41 The patients who
died before neurodevelopmental follow-up were assigned a
score of 39 for the continuous Bayley-III analysis.42

Laboratory Methods
All primary plasma samples were stored up to 24 hours at 4�C
until aliquoted and stored at�80�C. All sample aliquots were
exposed to 1-2 freeze/thaws before assaying. All assays were
performed from 2018-2019 in the same laboratory (Everett
Laboratory) at the Johns Hopkins University School of Med-
icine in Baltimore, Maryland.

A custom multiplex enzyme-linked immunosorbent assay
(ELISA) was developed to measure BDNF, IL-6, IL-8, IL-10,
and VEGF simultaneously using robotically spotted capture
antibodies on the 96-well plate format (Meso Scale Discovery
[MSD], Rockville, Maryland). Capture antibody-spotted
plates were washed with 1 � phosphate-buffered saline sup-
plemented with 0.05% TWEEN. Calibrators for BDNF,
VEGF, and IL-6, IL-8, and IL-10 (MSD) were produced using
commercially provided diluent (product number R50AG-2,
MSD). The detection antibody cocktail was prepared in com-
mercial diluent (product number R51BA-5, MSD). Plasma
and CSF samples were diluted 5-fold. The lower limits of
quantification for the BDNF, IL-6, IL-8, IL-10, and VEGF as-
says were 48.47 pg/mL, 0.47 pg/mL, 0.56 pg/mL, 1.26 pg/mL,
and 1.59 pg/mL, respectively, with interassay coefficients of
variation of 9.7%, 4.7%, 1.8%, 1.7%, and 2.7%, respectively.

A custom duplex ELISA was developed to measure GFAP
and NRGN simultaneously using robotically spotted capture
antibodies on the 96-well plate format (MSD). The develop-
ment of the capture antibodies, detection antibodies, and cal-
ibrators of NRGN and GFAP have been previously
described.21,43 Plasma and CSF samples were diluted 2-fold.
The lower limits of quantification for the GFAP and NRGN
assays were 0.014 and 0.016 ng/mL, respectively, with inter-
assay coefficients of variation of 2.6% and 2.8%, respectively.

Tau was measured using a commercial ELISA (product
number N451LAA-1; MSD). Plasma and CSF samples were
diluted 4-fold and assayed according to manufacturer in-
structions. The lower limits of quantification for Tau was
82.03 pg/mL, with an interassay coefficient of variation of
5.1%.

Statistical Analyses
Demographic and functional data are presented as median
and IQR or percentages, as appropriate. As demographic,
candidate biomarker, and clinical outcome data were not
normally distributed for the neonatal encephalopathy
cohort, the Mann–Whitney U test was used for categorical
variables, and Spearman correlation was used for continuous
variables. For the binary demographic data, the Fisher exact
test was used for comparison. Adjusted analysis was
performed by logistic and linear regression using
Plasma and Cerebrospinal Fluid Candidate Biomarkers of Neona
Outcomes
log-transformed candidate biomarker concentrations and
adjusted for gestational age and sex. For all statistical ana-
lyses, a P value of £.05 was considered significant. Statistical
analysis was performed using GraphPad Prism (Version 8.0.0
[131]; 2018; GraphPad Software, San Diego, California) and
Stata (Version 15, StataCorp LLC, College Station, Texas).
Results

Subject Demographics
There were 30 healthy control neonates born at term and
155 neonates with neonatal encephalopathy available for
analysis. From the neonatal encephalopathy cohort, 155
plasma samples and 30 CSF samples were available for
analysis (Table I).
Clinical outcomes of the neonatal encephalopathy cohort

are summarized in Table II. The neonatal encephalopathy
cohort were predominately (92%) moderate-to-severe
neonatal encephalopathy (Sarnat score of 2-3). In total,
54% of the neonatal encephalopathy cohort had seizures.
For MRI-derived brain injury, the majority had low
Barkovich scores of 0 for basal ganglia (76%), watershed
(74%), and combined basal ganglia/watershed area (67%).
At 15-30 months, the majority of the neonatal
encephalopathy cohort had normal (Bayley-III score ³85)
Bayley-III cognitive (75%), motor (72%), and language
(70%) composite scores. Clinical outcomes were not
available for the control cohort.
Plasma Candidate Biomarkers in Patients with
Neonatal Encephalopathy and Healthy Neonates
Born at Term
Plasma candidate biomarker concentrations significantly
differed in patients with neonatal encephalopathy compared
with controls (Table III; available at www.jpeds.com). CNS
necrosis markers NRGN (P = .03) and tau (P < .001) and
inflammation markers IL-6 (P < .001), IL-8 (P < .001), and
IL-10 (P < .001) were greater, whereas trophic-factors BDNF
(P < .001) and VEGF (P < .001) were lower in patients with
neonatal encephalopathy compared with controls.

Candidate Biomarkers and Clinical Outcomes of
Brain Injury
In univariate analysis of plasma candidate biomarkers,
greater tau (P < .001), GFAP (P = .05), and NRGN
(P = .03) and lower BDNF (P = .002) and VEGF (P = .05)
were associated with moderate-to-severe encephalopathy
(Table IV; available at www.jpeds.com). IL-6, IL-8, and IL-
10 were all greater but not significantly. When adjusted for
gestational age and sex, tau (P = .002), GFAP (P = .03),
and NRGN (P = .05) were directly related and BDNF
(P = .04) was inversely related to severity of
encephalopathy (Table V). There were no significant
associations of CSF candidate biomarkers with moderate-
to-severe encephalopathy in univariate or adjusted analysis
(Table VI; available at www.jpeds.com).
tal Encephalopathy Severity and Neurodevelopmental 73
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Table I. Demographic data of healthy neonates born at term and neonates with neonatal encephalopathy

Demographic measures
Control cohort

(n = 30)

Total neonatal
encephalopathy cohort

(n = 155)
Trinity college cohort

(n = 57)

Children’s
National cohort

(n = 98) P value

Median (IQR)
Gestational age, wk 39.1 (37.9, 40.0) 39.6 (38, 40.7) 40.7 (40.0, 41.6) 39.0 (38.0, 40.0) .22*
Birth weight, kg 3.3 (3.1, 3.6) 3.3 (2.9, 3.8) 3.6 (3.2, 4.0) 3.1 (2.8, 3.6) .73*
First blood gas pH 7.3 (7.2, 7.4) 7.0 (6.9, 7.1) 7.0 (6.9, 7.2) 7.0 (6.8, 7.1) <.001*
5-min Apgar score 10 (10, 10) 4 (2, 6) 5 (3, 7) 3.5 (2, 5) <.001*

Sex, n (%)
Male 12 (40) 88 (57) 38 (68) 50 (51) .11†

Female 18 (60) 66 (43) 18 (32) 48 (49)
Mode of delivery, n (%)
Cesarean 9 (30) 66 (52) 20 (36) 46 (64) .04†

Vaginal 21 (70) 61 (48) 35 (64) 26 (36)
Therapeutic hypothermia, n (%)
Yes 0 (0) 135 (88) 37 (66) 98 (100) <.001†

No 30 (100) 19 (12) 19 (34) 0 (0)

*Mann–Whitney U test was used for comparison of the control cohort and the total neonatal encephalopathy cohort.
†Fisher exact test was used for comparison of control cohort and the total neonatal encephalopathy cohort.
Bold values indicate statistical significance.
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In univariate analysis of plasma candidate biomarkers and
seizure occurrence, lower IL-6 (P = .02) was associated with
seizures (Table VII; available at www.jpeds.com). In adjusted
analysis, IL-6 showed an inverse relationship (P = .02) with
seizure occurrence (Table V). There were no significant
associations of CSF candidate biomarkers with seizures in
univariate or adjusted analysis (Table VIII; available at
www.jpeds.com).

Candidate Biomarkers and Brain Injury by MRI
In adjusted analysis, only plasma tau was directly related to
Barkovich basal ganglia (P = .002), watershed (P = .03),
and basal ganglia/watershed (P = .006) scores (Table V).
CSF candidate biomarkers did not have any significant
relationships with MRI abnormalities (Table IX; available
at www.jpeds.com).

Candidate Biomarkers and Neurodevelopmental
Outcomes
In univariate analysis of plasma candidate biomarkers, tau
and IL-6 negatively correlated with Bayley-III cognitive
(P = .02, P = .05) and motor (P = .02, P = .03) composite
scores (Table X; available at www.jpeds.com). IL-8
negatively correlated with cognitive (P = .005), motor
(P < .001), and language (P = .02) composite scores. IL-10
negatively correlated with motor composite scores only
(P = .03). VEGF positively correlated with motor
composite scores (P = .03). In univariate analysis of CSF
candidate biomarkers, NRGN and IL-6 negatively
correlated with Bayley-III cognitive (P = .04, P = .05) and
motor (P = .03, P = .02) scores, respectively (Table XI;
available at www.jpeds.com). IL-8 negatively correlated
with motor scores only (P = .03).

In adjusted analysis of plasma candidate biomarkers, only
tau was associated with decreased cognitive (P = .03) and
motor (P = .03) outcomes (Table XII). In adjusted analysis
of CSF candidate biomarkers, NRGN was inversely related
74
to all 3 outcomes of cognitive (P = .001), motor (P < .001),
and language (P = .007) measures (Table XII). GFAP, IL-6,
and IL-10 were inversely related to cognitive (P = .02,
P = .02, P = .02) and motor (P = .04, P = .009, P = .008)
outcomes, respectively. IL-8 was inversely related to motor
outcomes only (P = .03).
In univariate analysis of plasma candidate biomarkers and

binary neurodevelopmental outcomes (abnormal [Bayley-III
<85 or death] or normal [³85]), greater tau and IL-8 were
associated with abnormal cognitive (P = .03, P = .05), motor
(P = .01, P = .009), and language (P = .04, P = .005) out-
comes, respectively (Table XIII; available at www.jpeds.
com). In adjusted analysis, greater than 1 SD of increased
tau between individuals presented a 1.76 times increased
likelihood for abnormal cognitive outcomes (P = .04), 1.82
times increased likelihood for abnormal motor outcomes
(P = .03), and 1.71 times increased likelihood for abnormal
language outcomes (P = .05).

Discussion

In this multicenter retrospective cohort study of neonatal en-
cephalopathy, we demonstrated a candidate multibiomarker
panel of CNS necrosis, inflammatory, and trophic-factor
proteins differentiated neonates with neonatal encephalopa-
thy from healthy neonates born at term within the first
24 hours of life. Moreover, this candidate biomarker panel,
with the best performance from tau, differentiated severity
of neonatal encephalopathy measured by clinical encepha-
lopathy, seizures, brain injury by MRI, and neurodevelop-
mental outcomes at 15-30 months. Although previous
research focused on candidate biomarkers such as cytokines,
tau, and GFAP, our study contributes novel investigation of
less-studied candidate biomarkers, NRGN, VEGF, and
BDNF, providing important performance comparisons.
We found that CNS necrosis markers (NRGN and tau) and

inflammation markers (IL-6, IL-8, and IL-10) were greater,
Dietrick et al
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Table II. Clinical data of neonates with neonatal encephalopathy

Clinical measures

Total neonatal
encephalopathy
cohort (n = 155)

Trinity college
cohort (n = 57)

Children’s National
cohort (n = 98)

Degree of encephalopathy, n (%)
Sarnat 0 3 (2) 3 (5) 0 (0)
Sarnat 1 9 (6) 9 (16) 0 (0)
Sarnat 2 116 (75) 36 (63) 80 (82)
Sarnat 3 27 (17) 9 (16) 18 (18)

Seizures, n (%)
Yes 74 (54) 33 (67) 41 (47)
No 63 (46) 16 (33) 47 (53)

Brain injury by MRI: Barkovich score, n (%)
Barkovich basal ganglia (n = 117)

Barkovich 0 89 (76) 26 (84) 63 (73)
Barkovich 1 5 (4) 0 (0) 5 (6)
Barkovich 2 6 (5) 1 (3) 5 (6)
Barkovich 3 9 (8) 0 (0) 9 (10)
Barkovich 4 8 (7) 4 (13) 4 (5)

Barkovich watershed (n = 117)
Barkovich 0 86 (74) 22 (71) 64 (74)
Barkovich 1 7 (6) 3 (10) 4 (5)
Barkovich 2 7 (6) 2 (6) 5 (6)
Barkovich 3 1 (1) 0 (0) 1 (1)
Barkovich 4 11 (9) 2 (6) 9 (10)
Barkovich 5 5 (4) 2 (6) 3 (4)

Barkovich basal ganglia/watershed (n = 117)
Barkovich 0 78 (67) 21 (68) 57 (66)
Barkovich 1 7 (6) 1 (3) 6 (7)
Barkovich 2 12 (10) 5 (16) 7 (8)
Barkovich 3 16 (14) 3 (10) 13 (15)
Barkovich 4 4 (3) 1 (3) 3 (4)

Neurodevelopmental outcomes: Bayley-III, median (IQR)
Cognitive score (n = 99) 99.5 (85, 105) 105 (95, 110) 95 (39, 100)
Motor score (n = 99) 97 (76, 107) 103 (97, 118) 91.5 (39, 100)
Language score (n = 96) 94 (74, 106) 100 (86, 112) 91 (39, 106)

Neurodevelopmental outcomes: Bayley-III, n (%)
Cognitive score (n = 99)

Normal (³85) 74 (75) 34 (87) 40 (67)
Abnormal (<85) 5 (5) 1 (3) 4 (7)
Dead 20 (20) 4 (10) 16 (27)

Motor score (n = 99)
Normal (³85) 71 (72) 34 (87) 37 (62)
Abnormal (<85) 8 (8) 1 (3) 7 (12)
Dead 20 (20) 4 (10) 16 (27)

Language score (n = 96)
Normal (³85) 67 (70) 32 (82) 35 (61)
Abnormal (<85) 9 (9) 3 (8) 6 (11)
Dead 20 (21) 4 (10) 16 (28)

Bayley-III indicates Bayley Scales of Infant and Toddler Development III at 15-30 months.
Patients with missing data: Sarnat n = 0, seizures n = 18, Barkovich scores n = 38, Bayley-III Cognitive n = 56, Motor n = 56, Language n = 59.
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whereas trophic factors (BDNF and VEGF) were lower in pa-
tients with neonatal encephalopathy compared with controls.
Greater IL-627�29 and tau,23 and lower VEGF44 in neonates
with neonatal encephalopathy compared with controls is
consistent with previous smaller, single center studies. The
findings of greater NRGN21,22 and lower BDNF45-47 in pa-
tients with brain injury compared with healthy controls has
also been reported in adults with traumatic brain injury
and delirium. Conversely, others showed greater BDNF in
neonates with asphyxia compared with controls using cord
blood samples.30,31 Olin et al found that cord blood is not
representative of neonatal blood, and therefore our use of
plasma samples from the first 24 hours of life is a strength
of our study.48 In addition, timing variation of sample collec-
tion and therapeutic hypothermia also may have contributed
Plasma and Cerebrospinal Fluid Candidate Biomarkers of Neona
Outcomes
to discrepancies, as cooling may affect candidate biomarker
concentrations.32,44 However, because the standard of care
is to begin therapeutic hypothermia within 6 hours of birth,
and the plasma samples in our study span DOL 0-1, thera-
peutic hypothermia was considered a mediator, not a
confounder, and was not included in the adjusted analysis.
The median plasma concentrations of GFAP and tau are
greater in the control cohort than the infants with mild en-
cephalopathy in the neonatal encephalopathy cohort. This
difference was driven by 3 control outliers not excluded
from analysis that each had elevated GFAP, tau, and
NRGN. In addition, although the control cohort had no
overt clinical brain injury at birth, they were neonates
admitted to the neonatal intensive care unit and could have
had subclinical brain injury to account for the elevated
tal Encephalopathy Severity and Neurodevelopmental 75
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GFAP and tau. Finally, there are multiple factors as previ-
ously discussed, including the influence of therapeutic hypo-
thermia and timing variation of sample collection that may
contribute to this observation.
The identification of early candidate biomarkers to

discriminate neonatal encephalopathy severity is becoming
increasingly important with potential adjuvant therapies to
therapeutic hypothermia, such as xenon, erythropoietin,
and stem cells.24,49-52 In our study, using adjusted analysis,
plasma tau, GFAP, NRGN, and BDNF differentiated between
mild and moderate-to-severe encephalopathy. The greater
tau, GFAP, and NRGN concentrations in moderate-to-
severe encephalopathy supported the hypothesis that these
CNS necrosis markers are indicators of acute and possibly
ongoing neuronal injury.11,17,23,35 Meanwhile, BDNF was
lower in moderate-to-severe encephalopathy. BDNF is a
neuronal survival factor, suggesting an inadequate concen-
tration to protect the brain in more severe injuries.53-55

CSF candidate biomarkers did not differentiate encephalop-
athy severity in our study, although others reported signifi-
cant results for CSF GFAP,56,57 CSF IL-6,29 and CSF
VEGF.32 This could possibly be due to availability of CSF
samples at a single time point compared with 0-7 days of life.
Seizures are a common sequelae of neonatal encephalopa-

thy, and infants with seizures are associated with worse neu-
rodevelopmental outcomes or death.7,8,36,58 Seizures were
common in our cohort, and neonates with seizures had pre-
dominately moderate-to-severe neonatal encephalopathy
(99% Sarnat score 2-3). We found lower plasma IL-6 concen-
trations could differentiate and were predictive of seizures in
neonates with neonatal encephalopathy. Conversely, Numis
et al showed greater IL-6 was associated with epilepsy in new-
borns with neonatal encephalopathy.59 This discrepancy
could reflect variation in the dynamic inflammatory process
and possible dysregulation in severely injured neonates.
Furthermore, our study did not control for infectious etiol-
ogies, due to limited sample size and availability of clinical
data. Further evaluation of inflammatory cytokines consid-
ering infectious etiologies is warranted in larger cohorts.
Candidate biomarkers in CSF were not able to differentiate
seizure occurrence.
Evidence of structural injury, especially the basal ganglia,

in neonatal encephalopathy is well described.38 We found
with adjusted analysis that plasma tau directly related to Bar-
kovich score for basal ganglia, watershed, and combined
basal ganglia/watershed area injury. Previous research sup-
ports our findings that plasma tau is associated with worse
brain injury severity on MRI.24 Tau is an axonal protein
and particularly enriched in the brain white matter.60,61

The presence of elevated tau suggests additional white matter
injury in neonatal encephalopathy, which has been suspected
based on clinical outcomes and MRI.62 However, MRI is not
diagnostic until 24 hours after the injury and for neonates
treated with therapeutic hypothermia, the therapeutic hypo-
thermia devices are not MRI-compatible, which delays MRI
use.10,63,64 Our data suggest that plasma tau, collected on
DOL 0-1, could be an effective predictor of brain injury
Dietrick et al
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Plasma and Cerebrospinal Fluid Candidate Biomarkers of Neona
Outcomes
and help to fill this crucial time gap for intervention. CSF
candidate biomarkers were not associated with brain injury
measured on MRI.
When evaluating neurodevelopmental outcomes related to

brain injury severity, we found with adjusted analysis, that
plasma tau and CSF GFAP, NRGN, IL-6, IL-8, and IL-10
were negatively associated with Bayley-III scores at 15-
30 months. Specifically, greater plasma tau collected on DOL
0-1 predicted abnormal cognitive and motor outcomes at 15-
30 months. Adding multiple candidate biomarkers to the
regression model did not significantly improve the association
of outcomes beyond that seen with tau. Other studies using
plasma and CSF also demonstrated greater levels of GFAP,
IL-6, IL-8, and tau were associated with abnormal neurodeve-
lopmental outcomes at 15-30 months.14,15,17,24,25,29,65,66

Previous research also supports that lower VEGF is associated
with abnormal neurodevelopmental outcomes.32 Our study
suggests that greater levels of CNS necrosis, especially tau,
and inflammatory markers could predict poor neurodevelop-
mental performance in the future.
Furthermore, we analyzed the baseline characteristics of

infants without reported neurodevelopmental assessments
to evaluate the impact of candidate biomarker association
with abnormal outcomes because the data from neonates
without MRI Barkovich scores (n = 38) and without
Bayley-III scores at 15-30 months (n = 56) were not included
in analysis. Those without reported MRI Barkovich scores
appeared to be healthier infants with greater gestational
age, higher proportion of vaginal deliveries, lower rates of
therapeutic hypothermia, and lower proportion of
moderate-to-severe Sarnat scores. Those without reported
Bayley-III scores importantly did not differ in degree of en-
cephalopathy and therefore should not affect our conclusions
about abnormal neurodevelopmental outcomes. Future
studies should include analyses of factors that can impact
follow-up rates and neurodevelopmental outcomes at
follow-up, including socioeconomic status.
Limitations of this study include small sample size, hetero-

geneity of neonatal encephalopathy cases, a single time point
for some samples, sample variation over 24 hours, and un-
availability of clinical data, which limited the ability to evaluate
some outcomes. The neonatal encephalopathy criteria for this
study included infants with neonatal encephalopathy identi-
fied <6 hours with therapeutic hypothermia, <48 hours
without therapeutic hypothermia, and postnatally with brain
injury on cranial ultrasound. This reflects a heterogeneity of
cases; however, all infants had perinatal asphyxia. Due to the
limited availability of samples and clinical data, the absence
of CSF samples from healthy neonates born at term precluded
any comparison of CSF candidate biomarkers in the neonatal
encephalopathy cohort compared with controls. In addition,
CSF candidate biomarker analysis of neurodevelopmental
outcomes was limited by a lack of CSF samples from neonates
with abnormal (<85) Bayley-III scores (n = 1). In addition, for
the CSF analysis, there was a small number of neonates with
mild encephalopathy (n = 4) compared with moderate-to-
severe encephalopathy (n = 26). Lastly, the inclusion of CSF
tal Encephalopathy Severity and Neurodevelopmental 77
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samples spanning DOL 0-7 (median DOL 3) may influence
the associations with clinical outcomes.

In conclusion, the ideal biomarker for identifying, strati-
fying, and monitoring neonatal encephalopathy would need
to be stable, measurable at a high sensitivity in an easy-to-
access biofluid, have peak concentrations early in life, and
have the ability to discriminate neonatal encephalopathy
severity and predict neurodevelopmental outcomes. Our study
provided novel insight into a selection of candidate biomarkers
that fit these optimal criteria for neonatal encephalopathy, with
tau as the best performer in multiple measures of brain injury
and outcomes. Furthermore, plasma candidate biomarkers
were able to identify neonates with neonatal encephalopathy,
discriminate clinical severity, and predict seizures, brain injury
by MRI, and neurodevelopmental outcomes at 15-30 months.
Our study also identified potential adjunctive therapies for
neonatal encephalopathy. Larger validation studies are needed
to further investigate this candidate biomarker panel and its
implementations into clinical settings. n
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Table III. Comparison of plasma candidate biomarker
concentrations in healthy neonates born at term and
neonates with neonatal encephalopathy

Biomarkers
Control cohort
median (IQR)

Neonatal
encephalopathy

cohort
Median (IQR) P value

GFAP 80 (31, 553) 221 (9.0, 1008) .75
NRGN 8 (8, 8) 34 (7, 374) .03
BDNF 1376.9 (867.8, 2629.0) 407.3 (152.5, 1161.0) <.001
IL-6 4.9 (2.6, 14.3) 28.4 (9.8, 119.9) <.001
IL-8 32.2 (24.4, 47.0) 113.5 (52.3, 394.9) <.001
IL-10 0.7 (0.3, 2.2) 8.5 (2.2, 48.8) <.001
VEGF 276.1 (142.3, 319.9) 12.9 (0.9, 60.7) <.001
Tau 111.4 (32.8, 182.3) 243.1 (115.1, 541.0) <.001

All analyses used the Mann–Whitney U test for comparisons of nonparametric data. Candidate
biomarker units are pg/mL. Duplex (GFAP and NRGN): control n = 24, neonatal encephalopathy
n = 141; multiplex (BDNF, IL-6, IL-8, IL-10, VEGF): control n = 29, neonatal encephalopathy
n = 141; tau: control n = 27, neonatal encephalopathy n = 123.
Bold values indicate statistical significance.

Table IV. Univariate analysis of plasma candidate
biomarker concentrations of neonates with neonatal
encephalopathy and clinical encephalopathy

Biomarkers
Mild (Sarnat 0-1)
Median (IQR)

Moderate-to-severe
(Sarnat 2-3)
Median (IQR) P value

GFAP 9 (9, 45) 251 (9, 1154) .05
NRGN 7 (7, 7) 40 (7, 403) .03
BDNF 1596.5 (1081.2, 2324.1) 387.2 (136.1, 1006.5) .002
IL-6 21.4 (7.2, 39.1) 29.7 (9.8, 148.5) .57
IL-8 64.7 (46.1, 104.4) 119.6 (52.6, 404.4) .11
IL-10 4.6 (1.3, 16.7) 9.2 (2.3, 59.5) .23
VEGF 87.0 (0.9, 330.2) 11.7 (0.9, 55.3) .05
Tau 45.8 (45.8, 103.6) 276.7 (135.5, 554.4) <.001

Univariate analyses used the Mann–Whitney U test for comparisons of nonparametric data.
Candidate biomarker units are pg/mL. Duplex (GFAP and NRGN): mild n = 11, moderate-to-
severe n = 130; multiplex (BDNF, IL-6, IL-8, IL-10, VEGF): mild n = 10, moderate-to-severe
n = 131; tau: mild n = 11, moderate-to-severe n = 112.
Bold values indicate statistical significance.
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Table VI. Association of CSF candidate biomarker concentrations of neonates with neonatal encephalopathy and
clinical encephalopathy

Biomarkers

Univariate analysis Adjusted logistic regression*

Mild (Sarnat 0-1)
Median (IQR)

Moderate-to-severe (Sarnat 2-3)
Median (IQR) P value Coefficient (95% CI) P value

GFAP 322 (220, 395) 247 (156, 415) .54 �0.118 (�0.953 to 0.716) .78
NRGN 7 (7, 24) 7 (7, 7) .50 �0.783 (�2.439 to 0.873) .35
BDNF 30.3 (30.3, 30.3) 30.3 (30.3, 30.3) .57 –
IL-6 4.0 (3.1, 142.6) 3.8 (0.2, 36.2) .46 �0.135 (�0.580 to 0.311) .55
IL-8 369.9 (160.4, 501.2) 203.5 (78.4, 606.1) .76 �0.122 (�0.777 to 0.532) .71
IL-10 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) .70 –
VEGF 4.5 (2.0, 6.6) 4.9 (3.3, 9.6) .46 0.603 (�0.784 to 1.990) .39
Tau 3223.9 (56.6, 2.8e+04) 2626.1 (56.6, 6721.5) .80 �0.016 (�0.446 to 0.415) .94

Univariate analyses used the Mann–Whitney U test for comparisons of non-parametric data. Candidate biomarker units are pg/mL. Duplex (GFAP and NRGN): mild n = 4, moderate-to-severe n = 26;
multiplex (BDNF, IL-6, IL-8, IL-10, VEGF): mild n = 4, moderate-to-severe n = 26; Tau: Mild n = 4, moderate-to-severe n = 23.
*Adjusted for gestational age and sex, the natural log of candidate biomarker concentrations were used in adjusted analyses.

Table VII. Univariate analysis of plasma candidate
biomarker concentrations of neonates with neonatal
encephalopathy and seizure occurrence

Biomarkers No median (IQR) Yes median (IQR) P value

GFAP 224 (9, 878) 153 (9, 1008) .96
NRGN 57 (7, 549) 17 (7, 313) .64
BDNF 373.2 (149.6, 1112.5) 480.5 (183.2, 1525.5) .52
IL-6 43.7 (13.4, 295.5) 22.7 (6.5, 66.8) .02
IL-8 100.8 (53.6, 341.6) 130.7 (47.5, 439.3) .75
IL-10 11.4 (2.9, 36.4) 7.6 (1.3, 59.5) .39
VEGF 10.0 (0.2, 76.5) 14.3 (0.9, 52.6) .79
Tau 251.9 (123.8, 528.2) 239.8 (119.2, 554.5) .90

Univariate analyses used the Mann–Whitney U test for comparisons of nonparametric data.
Candidate biomarker units are pg/mL. Duplex (GFAP and NRGN): no n = 58, yes n = 67; multi-
plex (BDNF, IL-6, IL-8, IL-10, VEGF): no n = 60, yes n = 65; tau: no n = 51, yes n = 58.
Bold values indicate statistical significance.
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Table VIII. Association of CSF candidate biomarker concentrations of neonates with neonatal encephalopathy and
seizure occurrence

Biomarkers

Univariate analysis Adjusted logistic regression*

No
Median (IQR)

Yes
Median (IQR) P value Coefficient (95% CI) P value

GFAP 258 (251, 345) 202 (156, 636) .57 �0.048 (�0.682 to 0.587) .88
NRGN 7 (7, 7) 7 (7, 7) .68 0.273 (�1.157 to 1.702) .71
BDNF 30.3 (30.3, 30.3) 30.3 (30.3, 30.3) .48 –
IL-6 3.1 (0.7, 196.2) 4.5 (0.2, 36.2) .68 �0.059 (�0.387 to 0.270) .73
IL-8 300.5 (81.3, 503.9) 203.5 (74.2, 606.1) .78 0.036 (�0.362 to 0.433) .86
IL-10 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) .48 –
VEGF 5.5 (2.8, 7.3) 3.8 (2.6, 6.9) .76 �0.008 (�0.770 to 0.754) .98
Tau 2337.5 (56.6, 6391.4) 5290.6 (56.6, 7552.7) .46 0.127 (�0.217 to 0.471) .47

Univariate analyses used the Mann–Whitney U test for comparisons of non-parametric data. Candidate biomarker units are pg/mL. Duplex (GFAP and NRGN): no n = 9, yes n = 18; multiplex (BDNF, IL-
6, IL-8, IL-10, VEGF): no n = 9, yes n = 18; tau: no n = 9, yes n = 15.
*Adjusted for gestational age and sex, the natural log of candidate biomarker concentrations was used in adjusted analyses.

Table IX. Association of CSF candidate biomarker concentrations of neonates with neonatal encephalopathy and
brain injury by MRI

Biomarkers

Basal ganglia Watershed Basal ganglia/Watershed

Coefficient (95% CI) P value Coefficient (95% CI) P value Coefficient (95% CI) P value

GFAP 0.53 (�0.58 t 1.63) .35 0.10 (�0.75 to 0.96) .82 1.46 (�0.43 to 3.346) .13
NRGN – 0.37 (�1.15 to 1.90) .63 –
BDNF – – –
IL-6 0.63 (�0.10 to 1.35) .09 0.04 (�0.34-0.41) .84 0.10 (�0.30 to 0.49) .63
IL-8 0.53 (�0.28 to 1.35) .20 �0.02 (�0.45 to 0.42) .95 0.07 (�0.43 to 0.57) .78
IL-10 – – –
VEGF �0.07 (�1.07 to 0.93) .89 0.00 (�0.79 to 0.79) .99 �0.03 (�0.82 to 0.76) .95
Tau 0.77 (�0.53 to 2.07) .25 0.11 (�0.34 to 0.55) .64 0.14 (�0.33 to 0.61) .55

All analyses used adjusted logistic regression, adjusted for gestational age and sex, the natural log of biomarker concentrations was used in adjusted analyses. Candidate biomarker units are pg/mL.
Duplex (GFAP and NRGN): n = 20; multiplex (BDNF, IL-6, IL-8, IL-10, VEGF): n = 20; tau: n = 18.
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Table X. Univariate analysis of plasma candidate
biomarker concentrations of neonates with neonatal
encephalopathy and Bayley-III scores at 15-30 months

Biomarkers

Cognitive Motor Language

rho P value rho P value rho P value

GFAP �0.04 .72 �0.09 .38 0.01 .95
NRGN �0.10 .36 �0.16 .12 �0.05 .67
BDNF 0.16 .14 0.13 .23 0.03 .76
IL-6 �0.21 .05 �0.23 .03 �0.15 .17
IL-8 �0.29 .005 �0.40 <.001 �0.25 .02
IL-10 �0.20 .06 �0.23 .03 �0.17 .11
VEGF 0.16 .13 0.23 .03 0.14 .20
Tau �0.27 .02 �0.26 .02 �0.16 .17

Univariate analyses used Spearman correlation for non-parametric data. Candidate biomarker
units are pg/mL. Duplex (GFAP and NRGN): Cognitive and Motor n = 93, Language n = 90;
multiplex (BDNF, IL-6, IL-8, IL-10, VEGF): Cognitive and Motor n = 92, Language n = 89;
tau: Cognitive and Motor n = 81, Language n = 80.
Bold values indicate statistical significance.

Table XI. Univariate analysis of CSF candidate
biomarker concentrations of neonates with neonatal
encephalopathy and Bayley-III scores at 15-30 months

Biomarkers

Cognitive Motor Language

rho P value rho P value rho P value

GFAP �0.31 .19 �0.27 .25 �0.12 .62
NRGN �0.46 .04 �0.48 .03 �0.39 .09
BDNF 0.12 .61 0.10 .69 0.03 .90
IL-6 �0.44 .05 �0.51 .02 �0.26 .26
IL-8 �0.40 .08 �0.50 .03 �0.25 .28
IL-10 �0.34 .14 �0.34 .14 �0.34 .14
VEGF �0.06 .80 �0.06 .79 �0.07 .78
Tau �0.23 .38 �0.25 .33 �0.07 .80

Univariate analyses used Spearman correlation for non-parametric data. Candidate biomarker
units are pg/mL. Duplex (GFAP and NRGN): n = 20; multiplex (BDNF, IL-6, IL-8, IL-10, VEGF):
n = 20; tau: n = 17.

November 2020 ORIGINAL ARTICLES

Plasma and Cerebrospinal Fluid Candidate Biomarkers of Neonatal Encephalopathy Severity and Neurodevelopmental
Outcomes

79.e4



Table XIII. Association of plasma candidate biomarker concentrations of neonates with neonatal encephalopathy and
binary outcomes of normal and abnormal Bayley-III scores at 15-30 months

Bayley-III scores

Univariate analysis Adjusted logistic regression*

Normal (‡85)
Median (IQR)

Abnormal (<85 or death)
Median (IQR) P value OR of SD (95% CI) P value

Cognitive
GFAP 300.4 (8.7, 1154.2) 284.6 (8.7, 821.8) .68 .88 (0.55-1.42) .59
NRGN 35.9 (7.1, 498.7) 49.9 (16.5, 243.2) .68 .94 (0.58-1.53) .81
BDNF 444.6 (134.6, 1802.3) 317.3 (77.0, 692.5) .18 0.75 (0.46-1.22) .25
IL-6 28.8 (11.5, 116.8) 35.1 (9.5, 2425.8) .31 1.32 (0.80-2.16) .28
IL-8 115.3 (59.6, 462.6) 324.8 (94.5, 2458.4) .05 1.26 (0.73-2.15) .41
IL-10 11.6 (1.7, 60.5) 13.6 (1.9, 111.8) .76 0.92 (0.55-1.54) .76
VEGF 11.7 (0.9, 82.2) 9.3 (0.5, 43.8) .35 0.89 (0.54-1.49) .66
Tau 218.0 (102.4, 541.6) 454.1 (210.8, 1410.2) .03 1.76 (1.02-3.06) .04

Motor
GFAP 281.9 (8.7, 1154.2) 429.1 (8.7, 1039.1) .87 0.91 (0.57-1.45) .69
NRGN 35.1 (7.1, 498.7) 59.4 (16.5, 314.2) .66 0.95 (0.59-1.52) .82
BDNF 434.6 (134.6, 1720.7) 414.6 (77.0, 868.7) .37 0.80 (0.50-1.28) .35
IL-6 28.8 (10.9, 116.8) 33.4 (10.9, 2365.0) .26 1.34 (0.83-2.14) .23
IL-8 108.9 (53.9, 398.7) 360.6 (106.8, 2458.4) .009 1.43 (0.83-2.48) .20
IL-10 10.9 (1.4, 37.0) 18.8 (2.8, 134.4) .34 1.08 (0.66-1.75) .77
VEGF 12.6 (0.9, 83.6) 10.5 (0.5, 43.8) .32 0.91 (0.56-1.48) .70
Tau 215.0 (95.4, 541.0) 412.8 (210.8, 1410.2) .01 1.82 (1.06-3.12) .03

Language
GFAP 300.4 (8.7, 1154.2) 99.1 (8.7, 902.6) .46 0.79 (0.49-1.26) .32
NRGN 34.3 (7.11, 498.7) 38.0 (16.5, 208.2) .98 0.83 (0.51-1.35) .45
BDNF 446.6 (136.1, 1808.5) 372.5 (77.0, 724.9) .19 0.76 (0.47-1.22) .25
IL-6 27.4 (10.8, 113.7) 35.1 (10.9, 2365.0) .21 1.39 (0.86-2.26) .18
IL-8 101.3 (49.9, 390.7) 360.6 (114.4, 1836.6) .005 1.51 (0.87-2.63) .15
IL-10 9.2 (1.3, 31.6) 22.1 (2.8 134.4) .19 1.23 (0.75-2.01) .42
VEGF 14.8 (0.9, 83.6) 7.2 (0.2, 43.8) .18 0.83 (0.51-1.36) .46
Tau 218.0 (102.4, 541.0) 412.8 (209.1, 1410.2) .04 1.71 (1.00-2.93) .05

Univariate analyses used the Mann–Whitney U test for comparisons of non-parametric data. Candidate biomarker units are pg/mL. Duplex (GFAP and NRGN): Cognitive: normal n = 69, abnormal
n = 24, Motor: normal n = 66, abnormal n = 27, Language: normal n = 63, abnormal n = 27; multiplex (BDNF, IL-6, IL-8, IL-10, VEGF): Cognitive: normal n = 68, abnormal n = 24, Motor: normal
n = 64, abnormal n = 28, Language: normal n = 61, abnormal n = 28; tau: Cognitive: normal n = 57, abnormal n = 19, Motor: normal n = 59, abnormal n = 22, Language: normal n = 55, abnormal
n = 22.
*Adjusted for gestational age and sex, the natural log of candidate biomarker concentrations was used in adjusted analyses.
Bold values indicate statistical significance.
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