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STATISTICS, EXPLAINED
The Use of Statistical Learning in Pediatric Research

Byron C. Jaeger, PhD
n a recent study published in The Journal of Pediatrics,
Scott et al1 reported findings from an analysis that
described the development and validation of a prediction

model that detects septic shock in children by leveraging
routine electronic health record data. The prediction model
See related article, J Pediatr

2020;217:145-51.e6
described in the authors’ analysis predicts
the probability of a pediatric patient with
suspected sepsis experiencing septic shock
during their medical encounter in urgent

care, thereby increasing the chance of early detection and sur-
vival. The authors developed this prediction model by
applying a statistical learning algorithm known as elastic
net regression. The authors intentionally chose their
approach to engage with electronic health records
comprising numerous potential predictor variables for septic
shock. Additionally, the authors applied core concepts from
statistical learning to ensure that their prediction model
would generalize to patients outside of their data.
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What Is a “Statistical Learning” Analysis?

Advances in data storage, data collection, and computational
resources have allowed statistical learning (aka machine
learning) to support clinical practice in certain settings.2

Statistical learning analyses can be categorized as supervised
or unsupervised learning.3 Supervised learning (the frame-
work applied by Scott et al) attempts to develop a function
that predicts an outcome based on one or more predictor
variables, whereas unsupervised learning attempts to uncover
relationships and structure in data. The framework of super-
vised learning (ie, outcome modeled as a function of predic-
tors) is similar to traditional statistical inference, for example
linear and logistic regression in introductory statistics and
biostatistics courses.4 However, the primary aims and
purposes of supervised learning usually differ from those of
statistical inference. Briefly, statistical inference aims to
determine whether an outcome (eg, survival) is associated
with a predictor (eg, treatment). In contrast, supervised
learning aims to optimize a model’s external prediction
accuracy (see Validation), with limited focus on individual
associations between predictor variables and the outcome
variable. Although some statistical learning algorithms create
interpretable prediction functions (eg, elastic regression; see
Learning Algorithms), others may be viewed as an uninter-
pretable “black box.”5 Others have previously argued that
black box predictions may have unintended negative
consequences in clinical practice (see Statistical Learning
and Statistical Inference).6 As such, methods to explain
predictions from black box algorithms have become an
important topic in statistical learning.7
Validation

The conceptual starting point of supervised learning is
measuring the generalization error of amodel. Generalization
error is measured by assessing how well a model predicts out-
comes for data that were not used to train it.8 A
limited analogy for model validation is teach-
ing students (ie, models) with examples (ie,
training data) and then performing a quiz (ie,
testing data). For example, a teacher may tell students that
1 + 1 = 2, and that 1 + 2 = 3. Some students memorize the an-
swers to their training examples, and others go further and
learn the concept of addition. Both groups of students
correctly answer their training examples, but only students
who learned the underlying concept are able to successfully
engage with testing examples such as 2 + 2 or 1 + 3. Similarly,
model validation separates the models that have memorized
(ie, overfitted) their training data from the models that
have successfully identified a generalizable mapping from
predictor variables to an outcome. In practice, it is recom-
mended that models undergo both “internal” and “external”
validation.
Internal Validation
Internal validation uses testing data from the same source as
the training data. The simplest form of internal validation
splits an initial dataset into 2 training and testing subsets.
Although this strategy is more effective than testing a model
using its own training data, there are a number of disadvan-
tages.9 A clear disadvantage is that holding a large sample out
from the training data decreases the amount of data available
to fit a prediction model. Another disadvantage is that split
and test validation may depend heavily on the particular
observations that were selected to be held out.
Resampling approaches have been developed to overcome

the disadvantages of data splitting.10 For example, Scott et al
apply a 10-fold “cross-validation.” This approach randomly
partitions the training data into 10 nonoverlapping subsets
(ie, folds) of roughly equal size. Next, 9 of the 10 folds are
used to develop a model, which is then validated using data
from the fold that was held-out. This process is replicated a
total of 10 times, holding out a different fold in each replicate.
A final estimate of model accuracy averages results from the
10 iterations. Notably, cross-validation does not validate a
single model, but instead validates the algorithm used to
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develop a model.11 Thus, cross-validation is often applied to
identify an ideal modeling algorithm using a set of training
data. The algorithm identified is then applied to the entire
training dataset, and the final model is externally validated
in downstream analyses.

External Validation
External validation involves testing data that are from a
different (1) location, (2) population, or (3) time. Addition-
ally, external data may be measured by a different set of in-
struments/technology or by a different research team.9

Valuable insights can be drawn from using multiple types
of validation data; for example, 1 validation set from a
different time and another set from a different location.
These analyses can diagnose specific ways that a model
does or does not generalize. External data that can accurately
test how a collection of models (some of which may leverage
different training sets) would perform in “real-world”
settings for a clinical prediction problem would be highly
valued, but there are several challenges. It takes substantial
effort and expertise to organize, label, de-identify, and safely
share data from real-world clinical examinations, especially
when follow-up is involved. Also, implicit or explicit biases
in external data (eg, under-representation of minority
groups) can lead to overly optimistic evaluation of a predic-
tion model.

Learning Algorithms

Statistical learning algorithms comprise a diverse set of
methods that leverage statistical principals and flexible
optimization processes to form prediction functions.
Well-known examples of statistical learning algorithms are
elastic net regression, random forests, boosted models, and
neural networks (ie, deep learning).12-14 Each of these
algorithms differs in technical detail, but has a consistent pri-
mary output: a prediction function that maps a set of inputs
into a predicted output. This commonality allows learning
algorithms to be objectively compared with one another
(often in the context of cross-validation or external valida-
tion) by comparing the accuracy of their prediction function.

Statistical Learning and Statistical Inference

Inference and prediction are separate analytic procedures
with different underlying assumptions and purposes. Clini-
cians should maintain awareness of these differences and
exercise extreme caution when a statistical learning algorithm
is used to conduct statistical inference. A common example is
using stepwise variable selection (a statistical learning algo-
rithm) to develop a model that is subsequently used to
conduct inference regarding the variables selected. Other
investigators have shown that standard errors and regression
coefficients from this model are biased, and this substantially
increases type I error rates.9,15 Invalid inference occurs in this
setting because of a failure to account for uncertainty in the
variable selection procedure. For example, consider a
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scenario with millions of “noise” variables that have no
association with an outcome of interest. By chance alone,
some noise variables will be associated with the outcome in
finite samples. Stepwise model selection select only these
variables and compute standard errors that do not account
for the millions of tests that were conducted to develop the
model, thereby presenting P values that are highly biased.
Selective inference procedures are a relatively new class of
techniques that are meant to facilitate valid statistical infer-
ences for this type of analysis.16 For example, elastic net
regression may provide valid statistical inference when the
uncertainty of variable selection is taken into account and
incorporated into standard errors of regression coefficients.17

Statistical Learning in Practice

The application of statistical learning algorithms in clinical
settings presents challenges and opportunities related to
interpretation and algorithmic bias. The guidelines for
Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis should naturally be
followed when the multivariable prediction model is based
on a statistical learning algorithm, but some additional mea-
sures may need to be considered if the developed algorithm
directly influences patient care.18 Specifically, the algorithm’s
prediction function should meet criteria for interpretability
and fairness. Regarding interpretability, the following infor-
mation should be accessible for every patient’s prediction:
the contribution of each input to a model’s prediction; the
impact of changing input(s) on the model’s prediction, hold-
ing other inputs fixed; and evidence quantifying the accuracy
of the prediction model with external data.
Although elastic net regression naturally meets the first 2

criteria, other statistical learning algorithms do not. Specif-
ically, the neural network can develop accurate prediction
functions based on imaging data, but the resulting prediction
function may contain thousands of parameters that are not
easily interpreted. Strategies are being developed to bridge
the gap between black box algorithms and interpretability.19

A recent study by Poplin et al used neural networks to predict
cardiovascular risk factors from photographs of the retina,
and the authors showed that their neural network model
could indicate which anatomic features (eg, the optic disc
or blood vessels) were used to generate its predictions.20

Statistical learning algorithms intended for use in clinical
practice should also be vetted for algorithmic bias and
practical usefulness. Algorithmic bias occurs when a model’s
training data contain systemic disparities between patient
groups that impact patient outcomes. The model’s authors
should also consider the practical costs of medical errors
(eg, implications of underdiagnosis or overdiagnosis) related
to the task that their model supports and, if possible, estimate
the impact of their model’s clinical implementation in
terms of those costs (eg, the number of adverse events
prevented).
To summarize, statistical learning analyses should include

details on the development and internal validation of a
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prediction function. Substantial effort should be taken to
collect widely applicable external data for model testing.
External validation should be performed to gauge the final
prediction function’s accuracy as well as diagnose biases in
the model’s prediction function. If statistical inference is
performed, it is critical to account for uncertainty in the
entire modeling process, and not just the final model.
Detailed exposition on how one may interpret and explain
individual results from the prediction function is critical if
clinical implementation is a primary aim. n
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