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Neonatal Hypoglycemia: GLOW at the End of the Tunnel?
N
early 50 years ago, The Journal published a landmark
review of hypoglycemia in children by Pagliara, Karl,
Haymond, and Kipnis from St. Louis Children’s Hos-

pital.1 This 2-part review focused on recent advances in the
ticle, p 34
physiology of fuel homeostasis during fast-
ing as the foundation for diagnosis and
treatment of the many metabolic and endo-
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crine hypoglycemia disorders of childhood. In a short section
devoted to neonatal hypoglycemia, the authors noted that
fetal glucose is provided by placental transfer from the
maternal circulation so that ambient glucose concentrations
in the fetus are similar to maternal levels. After delivery,
glucose levels decrease to values that would be considered
hypoglycemia in older infants and children and remain low
for the first few days of life. Pagliara et al considered it
unlikely that tissue glucose requirements were different
during this brief period of transitional neonatal hypoglyce-
mia and concluded that it was appropriate to use the same
glucose standards for treatment of hypoglycemia in new-
borns as for older infants and children. Their suggestion
generated heated letters to the editor from neonatology
experts arguing that statistical definitions of “clinically signif-
icant” neonatal hypoglycemia (mean – 2 SDs) had been es-
tablished a decade earlier as a blood glucose of <30 mg/dL
for normal birth-weight infants and <20 mg/dL for low-
birth-weight infants.2-4 This controversy rages on down to
the present day, owing to our many gaps in knowledge about
the mechanism of transitional neonatal hypoglycemia and is
reflected by the differences in guidelines from several
neonatology and pediatric organizations and by the recom-
mendations published in The Journal from the Pediatric
Endocrine Society, on which the authors of this editorial
were co-authors.5-8
At the time Pagliara et al wrote their re-
view, they believed that the mechanism of
transitional neonatal hypoglycemia might
reflect delays in development of one or more of the steps in
hepatic gluconeogenesis. Attention has recently focused
more on insulin as the culprit: evidence in human newborns
indicates that the glucose threshold for suppressing insulin
release from pancreatic beta-cells is lower in the fetus and
early newborn period.9 This low glucose threshold could be
important for maintaining insulin secretion to permit
normal fetal growth; it could also explain the stability of
low glucose levels during normal newborn transitional
neonatal hypoglycemia and its resemblance to hyperinsuline-
mic hypoglycemia caused by gain-of-function mutations of
glucokinase, the beta-cell glucose sensor.10 Consistent with
this finding, islets from fetal and newborn laboratory rodents
have been shown to have a lower glucose threshold for insulin
release.11 The mechanism responsible for the low glucose
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threshold of fetal and neonatal beta-cells remains unclear, but
suggested explanations include several candidates in the
pathways of fuel-mediated insulin secretion (eg, expression
of MCT1 and LDH, which are normally disallowed in beta-
cells to prevent pyruvate from stimulating insulin release)
to terminal steps controlling calcium-regulated release of in-
sulin granules.12,13 An important feature of hyperinsulinism
as the cause of neonatal hypoglycemia is that ketogenesis is
suppressed, which contradicts a commonly held presump-
tion that hypoglycemia in newborns can be compensated
for by increased supply of ketones as alternative fuel for the
brain.7

Much of the controversy around neonatal hypoglyce-
mia over the past half century has focused on continued
efforts to define hypoglycemia by a specific number.
This strategy contrasts with the approach suggested in
the Endocrine Society hypoglycemia guidelines for adults,
which was also adopted in the Pediatric Endocrine Society
recommendations: namely, that hypoglycemia cannot be
defined by any specific glucose value, because thresholds
for neurogenic (autonomic) and neuroglycopenic brain
responses to hypoglycemia occur across a range of glucose
concentrations and permanent injury to the brain reflects
not only the degree, but also the duration of hypoglyce-
mic insult.8,14 Recently, efforts have been made to link
specific neonatal glucose levels with subsequent neurode-
velopmental outcomes; however, such studies have recog-
nized limitations, including the fact that they are merely
association, not causation, studies and the fact that
neurodevelopmental delays may not be detectable until
late childhood.15-17

In this volume of The Journal, Harris et al present the re-
sults of the Glucose inWell Babies (GLOW) Study which rep-
resents the first accurate study of Transitional Neonatal
Hypoglycemia in normal newborn babies.18 Harris et al
meticulously tracked the changes in blood glucose levels of
normal babies after birth using both twice-daily laboratory
quality determinations of plasma glucose concentrations as
well as continuous interstitial glucose monitoring using an
indwelling glucose sensor. The GLOW results indicate that
the period of postnatal hypoglycemia in these mostly
breast-fed babies resolved by day 4 of life. Although consis-
tent with previous data in newborn infants, the GLOW Study
is a landmark in its efforts to combine accurate glucose mea-
surements with rigorous statistical analysis to describe the
transitional period of hypoglycemia in a well-defined, rela-
tively large group of 67 normal newborns and reflects previ-
ous studies by this group from Auckland, New Zealand, led
by Professor Jane Harding. The observation that the period
of transitional hypoglycemia can normally last until day 4
of life answers a major question faced when drafting recom-
mendations for the Pediatric Endocrine Society on when the
possibility of a persistent hypoglycemia disorder could be
excluded in an at-risk baby; the GLOW Study makes clear
that the current practice of earlier discharge may need modi-
fication for these at-risk neonates. The GLOW Study also
found that patterns of glucose concentrations in individual
babies varied widely. Thus, early measurements of glucose
did not predict later low or high plasma glucose concentra-
tions. This observation has important implications for
designing screening tests for persistent hypoglycemia disor-
ders, such as perinatal stress-induced hyperinsulinism or
children with genetic congenital hyperinsulinism, who are
at high risk of permanent brain injury if not identified
early.19,20 It is encouraging that careful scientific studies of
neonatal hypoglycemia, exemplified by the GLOW Study,
and, especially, of its mechanism(s) are beginning to emerge
that may finally resolve the many long-standing controversies
about neonatal hypoglycemia. n
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Realizing the Improvement Potential of the Value in Inpatient
Pediatrics Network
T
he gap between evidence-based practice and current
clinical care is seen across the spectrum of hospitalized
pediatric patients.1,2 The field of quality improvement

(QI) was born out of this gap. QI promotes the use of
improvement methodologies to both decrease variation
ticle, p 100
and improve the delivery of high-quality
care as measured by nationally endorsed
benchmarks. Part and parcel to improve-

ment methodologies is the dissemination of the local plan-
do-study-act cycle and the importance of starting small in
any implementation. In fact, the Institute for Healthcare Im-
provement’s Prioritization Matrix recommends starting with
at most a small-scale test for 9 of the 12 categories in their pri-
oritization matrix evaluating readiness to make change and
perceived benefit of change.3 This focus on small-scale testing
is a hallmark of QI and is undoubtedly a driver to the many
local improvement initiatives that we find throughout clin-
ical settings.

Although local improvements are encouraged to continue
in multiple settings, the implementation of interventions
found to be beneficial from local improvements across mul-
tiple sites is not as commonly seen. Dissemination of
evidence-based interventions across diverse sites is a goal of
multiple collaboratives, including the Value in Inpatient Pe-
diatrics (VIP) network.4

The VIP is a collaborative network that resides within the
American Academy of Pediatrics with the mission of
improving care to pediatric inpatients by supporting imple-
mentation of clinical practice guidelines by hospitalists who
might not otherwise have organizational resources to
conduct QI initiatives on their own.4 Since its initiation,
the VIP has supported 7 multisite collaboratives. The first
was the Quality Collaborative for Improving Hospitalist
Compliance with the AAP Bronchiolitis Guideline in 2013.
The current active collaborative on Standardization of Fluids
The author declar
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in Inpatient Settings is set to be completed
in 2020.4 Although the goal of these collab-
oratives has been to foster hospitalists’
adoption of evidence-based practice outlined in published
clinical practice guidelines, the structure of each of these col-
laboratives has varied. Elements that have been constant
throughout the VIP collaboratives are the dissemination of
a toolkit and a platform for data sharing. A toolkit is often
a collection of best practice interventions identified by the ev-
idence to support the change that is desired. This toolkit is
generally sent electronically to sites that are involved in col-
laboratives for their individual evaluation and potential
application. Data sharing across sites with the ability to
benchmark is a strong lever for many collaboratives because
it allows the measurement of both local and aggregate im-
provements over the timeline of the study on primary
outcome metrics carefully determined by collaborative lead-
ership.
One multisite collaborative, Pathways to Improve Pedi-

atric Asthma Care (PIPA), used a multifactorial support
structure: (1) A toolkit offering sites examples of pathways
and order sets pertaining to 3 predefined core pathway in-
terventions (asthma severity assessment tools for emer-
gency department triage, order sets and pathways at
emergency department triage to trigger administration of
es no conflicts of interest.
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