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Background/Purpose: In pediatric surgery research, the issue of multiple comparisons commonly arises when
there are multiple patient or experimental groups being compared two at a time on an outcome of interest.
Performing multiple statistical comparisons increases the likelihood of finding a false positive result when
there truly are no statistically significant group differences (falsely rejecting the null hypothesis when it is
true). In order to control for the risk of false positive results, there are several statistical approaches that surgeons
should consider in collaboration with a biostatistician when performing a study that is prone to the issue of false
discovery related tomultiple comparisons. It is becoming increasingly more common for high impact journals to
require authors to carefully consider multiplicity in their studies. Therefore, the objective of this primer is to
provide surgeons with a useful guide and recommendations on how to go about taking multiple comparisons
into account to keep false positive results at an acceptable level.
Methods:We provide background on the issue of multiple comparisons and risk of type I error and guidance on

statistical approaches (i.e. multiple comparisons procedures) that can be implemented to control the type I false
positive error rate based on the statistical analysis plan. These include, but are not limited to, the Bonferroni
correction, the False Discovery Rate (FDR) approach, Tukey's procedure, Scheffé's procedure, Holm's procedure,
and Dunnett's procedure.
Results: We present the results of the various approaches following one-way analysis of the variance (ANOVA)
using a hypothetical surgical research example of the comparison between three experimental groups of rats
on skin defect coverage for experimental spina bifida: the TRASCET group, sham control, and saline control.
The ultimate decision in accounting for multiple comparisons is situation-dependent and surgeons should
work with their statistical colleagues to ensure the best approach for controlling the type I error rate and
interpreting the evidence when making multiple inferences and comparisons.
Conclusions: The risk of rejecting the null hypothesis increases when multiple hypotheses are tested using the
same data. Surgeons should be aware of the available approaches and considerations to take into account multi-
plicity in the statistical plan or protocol of their clinical and basic science research studies. This strategy will
improve their study design and ensure the most appropriate analysis of their data. Not adjusting for multiple
comparisons can lead to misleading presentation of evidence to the surgical research community because of
exaggerating treatment differences or effects.
Type of study: Review article.
Level of evidence: N/A

© 2020 Elsevier Inc. All rights reserved.
The issues of multiple comparisons and multiple outcomes are
widespread in surgical research. For instance, an investigator may be
interested in comparing multiple groups of animals on a specific
outcome or two patients groups may be compared on multiple primary
outcome variables. Examples in surgical research include the comparison
oston Children's Hospital, 300
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S.J. Staffa).
of multiple surgical groups, such as laparoscopic, open, robotic and
transanal mesorectal excision for rectal cancer [1], the comparison of
multiple animal groups, such as treatment, active control and sham
control, or the comparison of two study groups on multiple primary
outcome variables such as mortality, readmission, and length of stay.

Traditionally, a two-tailed significance level of 0.05 (5% alpha level)
is specified and used as the criterion for determining statistical signifi-
cance for each hypothesis test or comparison. For a single statistical
test, this assumption means that conditional on there being no effect
(e.g. no treatment effect, no group difference, or no association), we
are allowing a 5% risk of getting a false positive result. In other words,
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there is a 5% chance that we will conclude there is a statistically signifi-
cant effect when in reality there truly is not (i.e. that we will incorrectly
reject the null hypothesis when in fact it is true). When more than one
independent comparison is made, the risk of obtaining at least one false
positive result is increased [2,3]. Under the condition that there truly is
no statistically significant effect (i.e. assuming the null hypothesis is
true), the chance that each comparison or test is not statistically signif-
icant is 95% (100% - alpha). Therefore, assuming that in reality there is
no significant effect, the probability that 2 independent comparisons
or hypothesis tests are both not statistically significant is 95% × 95%,
or 90.25% [4]. The risk of at least one false positive result in these 2 inde-
pendent comparisons is 100%− 90.25%=9.75%. As the number of com-
parisons or tests increases, so does the risk of a false positive result
which may lead to a false conclusion. The risk of obtaining at least one
false positive result when C independent comparisons or tests are
made follows the formula 1 − 0.95C. Fig. 1 shows the relationship be-
tween the number of hypothesis tests being performed in a study and
the risk of yielding at least one false positive result.

Statistical strategies to account formultiplicity are intended to preserve
the family-wise or study-wide type I error rate in a reasonable way. The
objective of this review article is to provide surgeons a framework and
some direction on how to take multiple comparisons into account when
planning their clinical or basic science research studies. We present the
key concepts and approaches for handling the problem of multiple
comparisons and multiple outcomes or endpoints, while explaining the
methods in the context of pediatric surgery research. To ensure appropri-
ate interpretation of statistical analyses, a provision needs to be made for
adjusting the significance level or P value criterion for multiple compari-
sons and multiple testing to minimize false positive results.

1. Multiple comparisons versus multiple outcome testing

Multiple comparisons and multiple outcome testing are similar is-
sues that refer to the inflated risk of falsely rejecting the null hypothesis
in the situation where no statistically significant differences truly exist.
However, multiple comparisons refer to the circumstance where there
are 3 or more separate groups being compared (two at a time) on a
given outcome variable. Multiple comparisonsmethods following anal-
ysis of the variance (ANOVA) have been developed and are discussed
further below. On the other hand,multiple testing refers to the situation
where multiple related statistical tests are being performed in a re-
search study, but they do not necessarily have to be between multiple
groups on a particular outcome variable. Rather, the situation could
arise where there are only two groups being compared in a surgical re-
search study, for instance patients undergoing two different surgical
Fig. 1. Curve showing relationship between number of comparisons and risk of at least one fa
observing one or more false positive results increases, which is why multiple comparisons pro
approaches such as laparoscopic or open, and these two groups are
being compared on multiple outcome variables, such as hospital length
of stay, mortality, and readmission. Multiple testing is at play in this sit-
uation since 3 statistical tests will be performed to compare the two pa-
tient groups on each of these 3 outcome variables. Similar to the setting
ofmultiple comparisons, considerations for an adjustment to control for
the chance of false positive results should be made when performing a
study involving the tests of multiple outcome variables.

1.1. Families of comparisons

Broadly, a family of comparisons is the set of related statistical com-
parisons being performed. Thismay be all or a subset of hypothesis tests
performed in a given research study or experiment. Whenmultiple sta-
tistical comparisons are beingmade using the same data, it is important
to consider controlling the family-wise error rate (the error rate for a set
of related hypothesis tests) or experimentwise or study-wide error rate
(the error rate for an entire study or experiment). The 5% alpha level
should not be used repeatedly for each separate hypothesis test, but
rather the entire family of tests should preserve the 5% risk of false pos-
itive results (type I error). When an alpha level of 0.05 is used for each
comparison, there will be greater than a 5% risk of observing at least
one false positive result when multiple comparisons are being per-
formed. The methods presented below are designed to protect against
the chance of false positive results (when no effect truly exists) by pre-
serving the experiment-wise error rate.

1.2. The Bonferroni adjustment

The Bonferroni correction is the most commonly used approach to
control for the risk of false positive results. The Bonferroni method en-
tails that a more conservative individual alpha level be used for each
comparison in a family of tests. This is intended to preserve the study-
wide error rate of 5% and in turn control the likelihood of false positive
results when in reality there are no real group differences. Rather than
using the traditional 5% alpha level, the Bonferroni adjustment requires
the alpha level for each individual comparison be equal to 5% divided by
the total number of those comparisons [5]. If C comparisons or tests are
planned, then each comparison uses the alpha/C threshold to determine
statistical significance. In a given study, the maximum number of possi-
ble group comparisons depends on the number of groups. If there are 3
groups, there are up to 3 possible pairwise comparisons. A “pairwise”
comparison means the comparison of two independent study groups.
If there are 4 groups, the number of possible comparisons rises to 6,
and if there are 5 groups, the maximum number of comparisons
lse positive result. As the number of hypothesis tests performed increases, the chance of
cedures need to be implemented to control for this risk.

Image of Fig. 1
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jumps up to 10. Generally, if k is the number of groups, then the possible
number of pairwise comparisons follows the formula k(k − 1)/2. Fig. 2
illustrates the relationship between the number of groups and themax-
imum possible number of comparisons that can be performed.

As an example of a Bonferroni adjustment, consider a surgeon
performing a comparison between 4 groups of mice being injected (ex-
perimental drug 1 treatment, experimental drug 2 treatment, saline-
injected control, and injection-free control) on the outcome of overall
survival. The surgeon is interested in comparing all combinations of
groups, meaning that there would be 6 statistical tests performed. The
Bonferroni approach would adjust the 0.05 alpha level or P value to
0.05/6 = 0.0083. Then, in the comparison of mortality rates between
each pair of treatment groups, the author would declare P values less
than 0.0083 as statistically significant. In this scenario, if the Bonferroni
correction was not applied, the risk of reporting at least one false posi-
tive result among the six group comparisons when there are truly no
statistically significant associations would be 1 − 0.956 = 0.265. Al-
though they are not independent, it must be noted that this calculation
is performed assuming independence among the six statistical tests.

However, if the surgeon has planned prior to the study to compare
each of the other 3 groups to the injection-free control group, then only
3 comparisons would be made (drug 1 treatment vs injection-free con-
trol, drug 2 treatment vs injection-free control, and saline-control vs
injection-free control). In this setting, the Bonferroni procedure would
suggest that a P value or significance level of 0.05/3 = 0.017 be consid-
ered “significant” for each of these three tests performed. The Bonferroni
correction is flexible in that it can be accomplished regardless of the dis-
tribution of the outcome of interest and the analytic procedure employed,
and for any number of specified group comparisons or tests. However, it
will be overly conservative in the setting of a large number of hypothesis
tests being performed and thus can decrease statistical power.

1.3. The false discovery rate (FDR)

The false discovery rate (FDR) approach sets a fraction of results that
are expected to be false positives assuming there truly is no association.
This is accomplished by setting a P value threshold, similarly to a signif-
icance level; however, the resultswith a P value under this threshold are
called “discoveries” instead of “significant results”. The FDRmay be held
as a constant threshold for all comparisons, or it may be adjusted using
themethod developed by Benjamini and Hochberg [6]. The FDRmay be
a suitable approach in studies with a very large number of comparisons
Fig. 2. Curve showing relationship between number of groups and possible number of
group comparisons that can be made. For k unique groups, the maximum possible
number of group comparisons follow the formula k(k − 1)/2. Investigators should
specify the number of planned comparisons in their study design.
or tests being performed, such as genomicmicroarray studies.While the
FDR may be a useful approach to take into account multiple compari-
sons in certain situations when evaluating the notion of “discoveries”,
the remainder of our primer focuses on specific multiple comparisons
procedures to control the risk of false positive results in the context of
statistical significance.

2. Multiple comparisons procedures following ANOVA

One-wayANOVA is used to test the global hypothesis that themeans
of a continuous outcome variable are equal across all of the groups (or
levels) being analyzed. It is therefore an overall test and the results do
not tell the investigator which specific groups differ from one another.
If the overall F-test yields a statistically significant P value, the authors
may be inclined to test groups in a pairwise fashion (two at a time).
The comparisons of interest may be determined a priori or they may
be determined following results of ANOVA as a global hypothesis test
in a post-hoc fashion. A subset or all possible pairwise comparisons
may be performed [7].

The followingmultiple comparisons procedures are designed to pre-
serve the experiment-wise type I error rate at 5%. However, since these
tests follow the parametric one-way ANOVA procedure, they rely on the
assumption that the data follow a normal bell-shaped (Gaussian) distri-
bution. These tests have been shown to be robust to deviation fromnor-
mality, especially when sample sizes are equal across the groups [8]. In
the presence of heavily skewed data, these tests may not be appropri-
ate; however, when normality is verified, these tests are useful for tak-
ing into account multiple comparisons.

As we discuss the advantages of each of the followingmultiple com-
parisons procedures below,wewill present the results of each approach
in controlling the family-wise error rate using a pediatric surgical re-
search example. In the example, a surgeon is evaluating the efficacy of
a transamniotic stem cell therapy (TRASCET), in particular amniotic
fluid-derivedmesenchymal stem cells (afMSCs), in promoting or induc-
ing skin defect coverage in a rat model of experimental spina bidifa [9].
Please note that the results presented are hypothetical and are intended
to illustrate amultiple comparisons scenario. In our hypothetical results,
defect coverage is a continuous variable ranging from 0% to 100% for
each animal. There are three experimental groups each with 12 rats in
each: the TRASCET group, sham control, and saline control. We will as-
sume that among the rats in the TRASCET group, themean defect cover-
age was 0.70 (standard deviation (SD) = 0.20), in the sham control
group themean defect coverage was 0.50 (SD= 0.22), and in the saline
control group the mean defect coverage was 0.40 (SD = 0.17). Table 1
presents the results on defect coverage of the 3 pairwise group com-
parisons when applying each of the approaches presented below.
Fig. 3 summarizes the guidelines and recommendations regarding
advantages of which approach to use to adjust formultiple comparisons.
A decision has to be made as to how conservative the surgeon wants
to be at protecting against type I error since there is a tradeoff as
this may lead to more false negative results with an overly conservative
adjustment.

2.1. Tukey's procedure

Tukey's procedure, also known as Tukey's honestly significant differ-
ence (HSD), is a methodology to perform all pairwise comparisons of
means between groups [10]. This method is developed for the situation
of a balanced design with equal sample sizes per group, and its results
will include adjusted 95% confidence intervals for the difference in
means alongwith adjusted P values. In the situationwhere there are un-
equal sample sizes per group, it has been shown that the Tukey–Kramer
procedure can be applied as amodification of Tukey's procedure [11,12].
In our surgical example, Tukey's procedure determines a statistically
significant difference comparing TRASCET vs saline control (difference
in means = 0.30; 95% CI: 0.10, 0.49; P = 0.002), and TRASCET vs

Image of Fig. 2


Table 1
Comparison of multiple comparison procedures following ANOVA in the surgical research example.

Procedure Group Comparison Difference in Mean Defect Coverage 95% CI P value

Tukey TRASCET vs Saline Control 0.30 (0.10, 0.49) 0.002⁎
TRASCET vs Sham Control 0.20 (0.01, 0.39) 0.047⁎
Sham Control vs Saline Control 0.10 (−0.09, 0.29) 0.438

Scheffé TRASCET vs Saline Control 0.30 (0.09, 0.51) 0.003⁎
TRASCET vs Sham Control 0.20 (−0.01, 0.41) 0.059
Sham Control vs Saline Control 0.10 (−0.11, 0.31) 0.471

Bonferroni TRASCET vs Saline Control 0.30 (0.09, 0.50) 0.002⁎
TRASCET vs Sham Control 0.20 (−0.01, 0.40) 0.055
Sham Control vs Saline Control 0.10 (−0.10, 0.30) 0.671

Holm TRASCET vs Saline Control 0.30 . b0.001⁎
TRASCET vs Sham Control 0.20 . 0.018⁎
Sham Control vs Saline Control 0.10 . 0.224

Dunnetta TRASCET vs Saline Control 0.30 (0.11, 0.49) 0.001⁎
Sham Control vs Saline Control 0.10 (−0.09, 0.28) 0.367

ANOVA, analysis of the variance; CI, confidence interval.
⁎ Statistically significant, after adjustment for multiple comparisons.
a Dunnett's procedure is shown for each group being compared to saline control. Another multiple comparisons procedure may be preferred because Dunnett's procedure does not

allow for the comparison of TRASCET to sham control, which may certainly be of major interest.
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sham control (difference in means = 0.20; 95% CI: 0.01, 0.39; P =
0.047), but not saline control vs sham control (P = 0.438). It should
be noted that the Student–Newman–Keuls procedure and Duncan's
procedure are methods related to Tukey's procedure [13,14].

2.2. Scheffé's procedure

Scheffé's procedure is flexible because it allows for the analysis of all
linear contrasts [15,16]. Scheffé's procedure may be a reasonable alter-
native to Tukey's procedure when there is an imbalanced study design
(i.e. there are unequal sample sizes in the groups), and the Tukey–
Kramer procedure is also reasonable in the scenario of imbalanced
study design. However, owing to its flexibility, Scheffé's procedure
may have less power than Dunnett's procedure (see below) or Tukey's
Fig. 3. Recommendations and guidelines for procedures to use to adjust for multiple comparis
approaches. The ultimate decision in accounting for multiple comparisons is situation-depen
colleagues to ensure the best approach for controlling the type I error rate and interpreting
positive results) may lead to an unwanted increase in the type II error rate (false negative resu
procedure in the settings where those tests are most appropriate.
Using themultiple comparison procedure of Scheffé's procedure, we ob-
serve a statistically significant difference between TRASCET and saline
control (difference in means = 0.30; 95% CI: 0.09, 0.51; P = 0.003).
The other pairwise comparisons are not statistically significant in the
hypothetical data.

2.3. Bonferroni's procedure

Among the approaches to performing multiple comparisons follow-
ing ANOVA, Bonferroni's procedure (also called the Bonferroni (Dunn)
procedure) is the most conservative, especially if the goal is perform
all pairwise group comparisons [17]. The results from Bonferroni's pro-
cedure following ANOVAwill include adjusted 95% confidence intervals
ons or multiple testing. Each approach may have certain advantages relative to the other
dent and can present challenges. However, surgeons should work with their statistical
the evidence. An overly conservative adjustment to protect against type I error (false
lts).

Image of Fig. 3
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and adjusted P values. Please see the Bonferroni Adjustment section
above for further information on the Bonferroni approach.When apply-
ing Bonferroni's procedure to our surgical research example, we find a
statistically significant difference in defect coverage only between
TRASCET and saline control (difference in means = 0.30; 95% CI: 0.09,
0.50; P = 0.002).

2.4. Holm's procedure

Holm's procedure (also known as the Bonferroni–Holm correction)
is a modified version of the Bonferroni correction which keeps the
experiment-wise error rate below alpha (the type I error rate) [18].
However, this method does not provide confidence intervals in its out-
put. In our TRASCET example, this results in statistically significant dif-
ferences between the TRASCET group and the saline control group
(P b 0.001) aswell as between the TRASCET group and the sham control
group (P = 0.018). It should be also noted that the Holm–Sidak proce-
dure has been developed as a more powerful modification of Holm's
procedure.

2.5. Dunnett's procedure

Dunnett's procedure following ANOVA is used to compare each group
with a single reference group, and provides themost power in this setting
[19]. However, this decision should be made prior to the study as to
whether all pairwise group comparisons will be performed or if the
only comparisons of interest are between each group to the control
group. In our example, this would mean the study was designed to com-
pare defect coverage between TRASCET and saline control, and between
saline and sham control. The results of Dunnett's procedure include ad-
justed confidence intervals and adjusted P values. Dunnett's procedure
finds a statistically significant difference in average skin defect coverage
for spina bifida between the TRASCET and saline control groups (differ-
ence in means = 0.30; 95% CI: 0.11, 0.48; P= 0.001) and no statistically
significant difference between shamand saline control (P=0.367). In our
hypothetical example, Dunnett's proceduremay not be desirable because
it does not allow for the statistical comparison of TRASCET versus sham
control. The comparison of TRASCET to sham control may certainly be of
major interest since the sham control group may differ from the saline
control group. Surgical investigators who are designing a similar study
with two control groupsmaywish to choose amultiple comparisons pro-
cedure other than Dunnett's procedure because it requires the specifica-
tion of one reference group to which all other groups are compared.
This illustrates the importance of careful and thoughtful selection of the
particular multiple comparison procedure.

In the analyses performed by themethods above in the hypothetical
data, all methods determined a statistically significant difference in
mean skin defect coverage for experimental spina bifida comparing
TRASCET and saline control; however, only Tukey's procedure and
Holm's procedure determined a statistically significant difference be-
tween TRASCET and sham control (Table 1).

3. Discussion

We have presented several useful statistical procedures for handling
multiple comparisons in surgical research studies. Thesemethods control
the likelihood of declaring false positive results which may lead to mis-
leading interpretations and inferences. It is debatable what the correct
approach for handling multiple comparisons may be in certain situations
[20,21]. Many of the approaches assume that the data conform to a nor-
mal (Gaussian) distribution. These approaches consider that parametric
testing, usually ANOVA and Student t-tests, is being performed to com-
pare multiple groups on an outcome variable. However, if the data are
not amenable to analysis by ANOVA because the data are not normally
distributed or if binary or count data are being considered, or if a
Bonferroni correction is not reasonable because it would be overly
conservative, then it may be difficult to determine how to proceed. It is
important to understand that multiple comparisons or testing may be
an issue, and therefore it is important for the reader to understand how
it was considered. One may argue that no statistical adjustment for mul-
tiple comparisons is needed if the reader understands that no correction
was done and interprets the results presented with that understanding
[5,22]. In the situation where the usual multiple comparison procedures
following ANOVA do not apply, and the Bonferroni correction or FDR ap-
proach may be considered overly conservative [23], authors can consider
setting a generally more conservative alpha level of 0.01 as an alternative
to the traditional 0.05 level, in order to control the type I error across the
set of comparisons or hypothesis tests. It is worth noting that while
P values are useful in surgical research, they should not stand alone but
should be accompanied by treatment effect estimates and corresponding
confidence interval.While it is beyond the scopeof this article, there is on-
going discussion regarding the usefulness of P values in the context of de-
riving a dichotomous test results [2,24] and in the context of multiplicity
adjustments [21–23].

The distinction needs to be drawn between statistical significance
and clinical significance when considering multiple comparisons. In a
highly powered study with large sample sizes, a statistical test may
obtain a very small (i.e. highly statistically significant) P value for a
relatively small difference between the groups. In this situation, the sur-
geon needs to make a decision regarding clinical significance of the dif-
ference when interpreting the evidence. A meaningful effect size based
on clinical or scientific ground should be decided prior to the analysis so
that interpretations of group differences are within the relevant clinical
setting.

Multiple comparison procedures provide more certainty that a statis-
tically significant result observed is not a false positive result. However,
adjusting the alpha level in order to be more conservative to account for
multiple comparisons will in turn have implications on the power and
sample size considerations for a study. For instance, when a smaller
(Bonferroni-adjusted) alpha level is specified, in order to preserve 80%
power for detecting a fixed clinically meaningful effect size, the sample
size requirements per groupwill be increased. Surgical researchers should
take the adjusted type I error rate (alpha level) into consideration in the
design phase of their study when performing power analysis and sample
size calculations. Practical consideration and thought should be put to-
wards specifying which comparisons are of interest a priori and power
calculations should be modified accordingly. Furthermore, investigators
should be cautious when applying conservative corrections for multiple
comparisons because this will provide a less powerful analysis and
increase the risk of false-negative results, or Type II errors [22].

It should be noted that there are specialized procedures and adjust-
ments designed specifically for randomized controlled trials (RCTs)
which feature sequential designs and interim analyses with stopping
rules [25]. Examples of suchmethods for controlling the type I error prob-
ability (also known as alpha spending functions) include the O'Brien and
Flemingmethod [26] and the Pocockmethod [27]. In this article, we focus
on the common issue ofmultiple group comparisons andmultiple testing
in cross-sectional observational and these specializedmethods pertaining
to sequential trials are beyond the scope of this review [28].

Investigatorsmay be inclined to perform all comparisons or hypoth-
esis tests and subsequently decidewhich to include in the family of tests
of multiplicity adjustment. The integrity of all statistical tests being
performed and presented is not upheld if this is done. Itmust be empha-
sized that surgeons need to uphold honesty and transparency when
performing an analysis that involves the adjustment for multiplicity or
multiple comparisons. All statistical results should be reported trans-
parently, allowing the reader to interpret and judge the findings.

4. Conclusions

Procedures for reducing the risk of false positive results and false dis-
covery owing to multiplicity are valuable. These procedures protect the
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study-wide or family-wise error rate when performing several group
comparisons between groups or analyzingmultiple endpoints. We pro-
vide guidance on strategies for how to handle multiplicity and multiple
significance testing in surgical research studies. Surgeons need to be
aware that multiple comparisons and multiple outcomes increase the
likelihood of false positive errors even in well-designed studies and ex-
periments. Appropriate adjustments are needed to control type I errors
and to ensure the most valid analyses, interpretations and reporting of
the results.

Appendix A. Glossary of statistical terms

Alpha level: Also known at the type I error rate orα, is the chance of
a false positive result in a family of comparisons that the investigator is
willing to accept. In a somewhat different sense, an alpha level is more
often the P value threshold belowwhich statistical significance for a sin-
gle test is determined, and it is traditionally set at 5%.

Alternative hypothesis: The alternative hypothesis states that there
is a difference between the groups or a significant association.

Beta level: Also known as the type II error rate, this is the chance of
false negative results. Beta is traditionally set to be 20%. Power is equal
to 1 − beta. Thus, when beta = 20%, power is 80%.

Bonferroni's adjustment: With a Bonferroni adjustment, if C com-
parisons or test are planned, then each comparisons uses alpha/C as the
threshold for determining statistical significance. This may be an overly
conservative adjustment, but it is commonly used and widely applied.

Bonferroni's procedure (following ANOVA): A multiple compari-
sons procedure which is themost conservative adjustment for reducing
the risk of type I error. Results of Bonferroni's procedure include confi-
dence intervals.

Conservative adjustment: An adjustment like the Bonferroni
correction is considered to be conservative when it very strongly mini-
mizes the alpha level. Any results determined as statistically significant
following a conservative adjustment have a very low likelihood of being
false positive results. Performing a conservative adjustment makes it
more difficult to observe significant results, and therefore it may not
be preferred in certain situations.

Dunnett's procedure: A multiple comparisons procedure following
ANOVA used to compare each group with a single reference group.
Dunnett's procedure provides the most power to detect group differ-
ence under this analysis plan. Results of Dunnett's procedure include
confidence intervals.

Experiment-wise error rate: The experiment-wise or study-wide
error rate is the type I error rate usually assumed to be 5%which is applied
to a set of comparisons or tests in a given study. When multiple compar-
isons or multiple testing occur, the experiment-wise error rate needs to
be adjusted in order to control for the risk of false positive results.

Family of comparisons: A family of comparisons is the general con-
ceptual framework of the set of related statistical comparisons or statis-
tical tests in an experiment or a clinical study. The family comparisons
share a family-wise error rate.

False positive result: A false positive result occurswhen the investiga-
tor finds a statistically significant result when there truly are no significant
associations or group differences. In statistical terminology, this is when an
investigator rejects the null hypothesis when in fact it is true (type I error).

False negative result: A false negative result occurs when the inves-
tigator does not find a statistically significant result when there truly
exist significant associations or group differences. Failing to reject the
null hypothesis when the alternative hypothesis is true constitutes a
false negative result (type II error).

Holm's procedure: A modified version of the Bonferroni correction
which keeps the experiment-wise error rate below alpha. The Holm–
Sidak procedure has been developed as a more powerful modification
of Holm's procedure. The results do not include confidence intervals.

Multiplicity: Multiplicity is the issue of an elevated risk of false pos-
itive results (type I error) owing to multiple group comparisons or
multiple testing. An adjustment of the experiment-wise error rate
(alpha) needs to bemade in order to correct for the issue ofmultiplicity.

Multiple comparisons: Multiple comparisons refer to the situation
where multiple groups are being compared two at a time, which lead
to an increased chance of false positive results when there truly are no
significant associations or group differences. An adjustment of the
experiment-wise error rate (alpha) needs to bemade in order to handle
the issue of multiple comparisons.

Multiple comparisons procedures: Multiple comparisons proce-
dures are statistical approaches designed to adjust the experiment-
wise error rate in order to control for the risk of false positive results
when no differences truly exist. These include but are not limited to
the Bonferroni correction, the False Discovery Rate approach, Tukey's
test, Scheffé's test, Holm's test, and Dunnett's test.

Multiple testing: Multiple testing refers to the general issue of mul-
tiple related statistical tests being performed (for example two groups
being compared on multiple outcome variables) which leads to an in-
creased risk of false positive results. An adjustment of the experiment-
wise error rate (alpha) needs to be made in order to take multiple test-
ing into account in study design and analysis.

Null hypothesis: The null hypothesis assumes no group differences
on the outcome or no significant associations.

One-way ANOVA: Also called one-factor analysis of the variance,
this statistical test is used as a global or omnibus test to determine any
differences in means of a continuous variable across 3 or more groups.

Power: Statistical power is the probability of detecting significant
group differences when differences truly exist. In other words, power
is the probability of rejecting the null hypothesis when it is false.
Power is equal to 1 − beta, and usually desired to be 80% or 90%.

P value: the probability that the observed effect is owing to chance
given that the null hypothesis is true. A small P value less than the
alpha level is determined as being statistically significant.

Scheffé's procedure: A multiple comparisons procedure following
ANOVA which allows of the analysis of any set of linear contrasts.
Scheffé's proceduremay be reasonable in the situation of an imbalanced
study design with unequal sample sizes per group. Results of Scheffé's
procedure include confidence intervals.

Tukey's procedure: A multiple comparisons procedure following
ANOVA developed for the situation of balanced design with equal sam-
ple sizes per group with results that include confidence intervals.

Type I error: Rejecting the null hypothesis when it is true (false pos-
itive result).

Type II error: Failing to reject the null hypothesis when it is false
(false negative result).
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