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Background:We determined whether in vitro potency assays inform which placental mesenchymal stromal cell
(PMSC) lines produce high rates of ambulation following in utero treatment of myelomeningocele in an ovine
model.
Methods: PMSC lines were created following explant culture of three early-gestation human placentas. In vitro neu-
roprotection was assessed with a neuronal apoptosis model. In vivo, myelomeningocele defects were created in 28
fetuses and repairedwith PMSCs at 3 × 105 cells/cm2 of scaffold from Line A (n=6), Line B (n=7) and Line C (n=
5) and compared to no PMSCs (n= 10). Ambulation was scored as ≥13 on the Sheep Locomotor Rating Scale.
Results: In vitro, Line A andB hadhigher neuroprotective capability than no PMSCs (1.7 and 1.8 respectively vs 1, p=
0.02, ANOVA). In vivo, Line A and B had higher large neuron densities than no PMSCs (25.2 and 27.9 respectively vs
4.8, p= 0.03, ANOVA). Line C did not have higher neuroprotection or larger neuron density than no PMSCs. In vivo,
Line A and B had ambulation rates of 83% and 71%, respectively, compared to 60% with Line C and 20% with no

PMSCs.
Conclusion: The in vitro neuroprotection assay will facilitate selection of optimal PMSC lines for clinical use.
Level of evidence: n/a.
Type of study: Basic science.

© 2019 Elsevier Inc. All rights reserved.
Myelomeningocele is a congenital open neural tube defect that results
in a constellation of symptoms including lower extremity paralysis, hind-
brain herniation, and bowel and bladder dysfunction [1]. Historically, ne-
onates were treated with postnatal skin closure to prevent infection.
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However, in 2011, the Management of Myelomeningocele Study
(MOMS) resulted in a paradigm shift toward fetal surgical repair. The
MOMS trial demonstrated a decreased need for ventriculoperitoneal
shunts for hydrocephalus and some improvement in lower extremity
function with fetal surgical repair [2]. Despite these improvements, 58%
of children were still unable to walk independently, leading to a search
for new therapies that could augment the fetal repair.

Ideally, a new therapy would be applied at the time of fetal repair to
reverse the cellular apoptosis in the spinal cord seen in children with
myelomeningocele (MMC) [3,4]. We developed a novel therapy that
utilizes the neuroprotective and immunomodulatory capabilities of
early gestation mesenchymal stromal cells (MSCs) to protect the devel-
oping spinal cord [5–13]. Early gestation humanplacentalmesenchymal
stromal cells (PMSCs) have superior neuroprotective and immunomod-
ulatory properties compared to later gestation PMSCs and other types of
MSCs [5,7–10,14–19]. In a large animalmodel, augmentation of the fetal
repair with PMSCs leads to ambulation in otherwise paralyzed animals
[11,20]. Further, we demonstrated that treatment with PMSCs results
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in preserved motor neurons in the spinal cord in a dose-dependent
manner [12,20]. In order to translate this therapy to clinical use, clinical
grade PMSCs must be manufactured from multiple placentas, and an
optimal PMSC cell line must be selected for use in clinical trials.

Various in vitro characterization metrics and potency assays have
been developed to compare the growth and immunomodulatory or tro-
phic capabilities of MSCs in order to select the cell lines with the best
clinical effects [21–24]. The ideal in vitro assays measure specific MSC
functions that correlate with in vivo effects. The ultimate goal of our
therapy is to restore neurons in the developing spinal cord, so we com-
pared both the in vitro secretion of known neurotrophic and angiogenic
growth factors and the antiapoptotic capability of three PMSC lines
[25,26]. We hypothesized that the antiapoptotic capability of cell lines,
measured with a neuroprotection assay, would correspond with
in vivo outcomes in the ovine MMC model.

1. Methods

1.1. Placenta-derived mesenchymal stromal cell isolation

We used three human PMSC lines (A, B and C) that were fully
characterized following explant culture of three early gestation
(14–21 weeks) placental donors as described in Lankford et al. as
Donor 1, 2 and 3 [27]. Cells were cultured in Dulbecco's Modified
Eagle Medium/High Glucose with the following additions: 5% fetal
bovine serum (Hyclone, Thermo Fisher Scientific), 100 U/ml penicil-
lin/100 μg/ml streptomycin (Thermo Fisher Scientific), 20 ng/ml re-
combinant human basic fibroblast growth factor (R & D Systems),
and 20 ng/ml recombinant human epidermal growth factor (R & D
Systems). Transduction of the PMSCs with green fluorescent protein
(GFP)-containing lentiviral vector (University of California, Davis
Stem Cell Center, California Institute of Regenerative Medicine, Sac-
ramento, CA) was performed at passage 4 to aid in cell tracking and
identification. Previous immunohistochemical evaluation has not
shown long-term engraftment of PMSCs into the spinal cord or sur-
rounding tissue [7].

The PMSCs were seeded at passage 6 onto a 6 cm × 2 cm piece of
small intestine submucosa-derived extracellular matrix (ECM)
(Biodesign® Dural graft, Cook Biotech, West Lafayette, IN) at a density
of 300,000 cells/cm2, which was determined to be optimal by both
in vitro studies and in vivo rodent and ovine studies [11,12,27]. Both
the combined product (PMSC-ECM) and control (ECM without
PMSCs) were incubated in culture medium overnight. On the day of
MMC repair, PMSC-ECMs were imaged using fluorescent microscopy,
verifying adherence of the PMSCs to the ECM.

1.2. Enzyme-linked immunosorbent assays

Enzyme-linked immunosorbent assays (ELISAs) were performed to
test for the levels of two neuroprotective growth factors: human
brain-derived neurotrophic factor (BDNF) andhepatocyte growth factor
(HGF), and one angiogenic growth factor: vascular endothelial growth
factor (VEGF). Supernatant from PMSCs at passage 5 seeded on tissue
culture-treated plastic at a density of 100,000 cells/cm2 was collected
at 24 h. BDNF, HGF and VEGF levels were detected with DuoSet ELISA
kits (DY248, DY294, DY293B respectively, R&D Systems) and measured
with a SpectraMaxi3 plate reader (Molecular Devices LLC). Protein
levels were normalized to 500,000 cells. ELISAs were repeated in tripli-
cate for each PMSC line.

1.3. In vitro neuroprotection assay by indirect coculture

The in vitro neuroprotection assay was performed by inducing apo-
ptosis in a human neuroblastoma cell line followed by indirect coculture
with PMSCs to rescue apoptosis as previously described [25]. The
human neuroblastoma cell line SH-SY5Y (American Type Culture
Collection, Manassas, VA) is a commonly used cell line in neurobiology
because the cells are able to display a neuronal phenotype and
propogate neurites, which can subsequently be quantified in the neuro-
protection assay [8,28]. The SH-SY5Y cells were seeded in 12-well tissue
culture-treated dishes at 100,000 cells/cm2 for 24 h. Next, SH-SY5Y cells
were treated with 1 μM staurosporine for 4 h to induce apoptosis.
PMSCs were seeded onto 12-well hanging 0.4 μm Millicell inserts
(MilliporeSigma) for 24 h at passage 5 before they were placed onto
the apoptotic SH-SY5Y cells and incubated for 96 h at 37 °C, 5% CO2.
The inserts were removed, and the SH-SY5Y cells were stained with
2 μM calcein AM (Thermo Fisher Scientific) to identify living cells. Im-
ages of 5 random positions per well were processed by WimNeuron
Image Analysis (Onimagin Technologies, Cordoba, Spain) for neurite
outgrowth analysis. The neuroprotective capability of each line was cal-
culated as the fold improvement in total neurite branch points in com-
parison to coculture without PMSCs. The neuroprotection assay was
repeated in triplicate for each PMSC line.

1.4. Ovine myelomeningocele defect creation and repair

Fetal MMC defects were created at a median gestational age of
76 days (interquartile range (IQR) 72–79) in time-mated Dorper ewes
as previously described [11]. The MMC defect was created by removing
the skin, paraspinal muscles, vertebral lamina, and dorsal portion of the
dura from L1 to L6. No myelotomy was performed because this study
targeted motor function rather than consequences of hindbrain hernia-
tion. Lost amniotic fluid was replaced with normal saline, and antibi-
otics (1 million units of penicillin and 100 mg of gentamicin) were
added to the amniotic fluid.

Fetuses were assigned to repair with no PMSCs (ECM only, n= 10),
Line A PMSC-ECM (n= 6), Line B PMSC-ECM (n = 7), or Line C PMSC-
ECM (n = 5). Repairs were performed at a median gestational age of
102 days (IQR 99–106). The fibrinous scar overlying the spinal cord
was removed as previously described [11,29]. The ECM was applied
over the exposed spinal cord so that animals receiving the PMSC-ECM
product had the cell-seeded side placed on the spinal cord. The corners
of the ECMwere sutured in place and the fetal skin was closed over the
ECM. Lost amniotic fluidwas replaced and antibioticswere added in the
same manner as the defect creation.

Animal workwas approved by the Institutional Animal Care and Use
Committee (IACUC) and care was in compliance with the Guide for the
Care and Use of Laboratory Animals. The facilities used to conduct this
study were accredited by the Association for the Assessment and Ac-
creditation of Laboratory Animal Care, International. Some animals in-
cluded in this study (8 lambs treated with ECM only and 5 lambs
treated with Line A) were reported in a previous publication regarding
PMSC seeding density [20]. They have been included here for appropri-
ate comparison among all tested lines.

1.5. Postnatal motor function

Followingbirth atmedian gestational age of 146days (IQR 145–147)
by spontaneous vaginal delivery or cesarean section (if delivery had not
occurred by the due date), motor functionwas assessed on the first and
second day of life as previously described using the sheep locomotor
rating scale (SLR) [11,30]. Hindlimb motor function was rated on a
scale of 0 to 15, with a score of 0 characterized by complete paraplegia
and 15 characterized by spontaneous ambulation and the ability to
clear an obstacle. A score of greater than or equal to 13 corresponded
to the ability to ambulate.

1.6. Postmortem magnetic resonance imaging and histologic examination
of the spinal cord

The study endpointwas two days after birth. Per the IACUC protocol,
lambs that were unable to walk and nurse normally had to be
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euthanized by the second day of life, which was then established as the
study endpoint for consistency across animals. Magnetic resonance im-
aging (MRI) of the lumbar spine was performed to assess the level and
degree of spinal angulation as previously described [20,31]. Lambswith
spinal angulation of greater than 60°weremarkedwith circles in figures
owing to potential confounding spinal deformation causing spinal cord
compression (no PMSCs (n=2), Line A (n=0), Line B (n=1) and Line
C (n = 2)). Tissues were fixed and the lumbar spine was dissected as
previously described [7]. The average number of large neurons
(30–70 μm in diameter) in 9 sections of the lumbar spinal cord was
counted to quantify surviving motor neurons at the area of greatest de-
formity, whichwas determined by dividing the height over thewidth of
the spinal cord [20]. Quantification of neurons at the lumbar segment
with greatest deformity allowed evaluation of the treatment effects at
the most injured portion of the spinal cord. Large neuron (LN) density
was calculated as the number of large neurons per mm2 of gray matter.
Fig. 1. Comparison of in vitroneuroprotective capability of PMSC lines.Compared to no
PMSCs, Lines A and B had significantly higher neuroprotection than no PMSCs (1.7 ± 0.2
and 1.8 ± 0.3, respectively, p = 0.01). Mean neuroprotection for Line C was not
significantly higher than no PMSCs (1.3 ± 0.3).
1.7. Statistical analysis

ELISA and neuroprotection results are reported as mean± standard
deviation (SD). Comparisons among groups for normally distributed
in vitro results were performed using one-way ANOVA with Tukey's
post-hoc test. Data from animals are reported asmedianwith IQR. Com-
parisons among treatment groups for in vivo results were performed
using Kruskal–Wallis test with Dunn's post-hoc comparison.
Spearman's correlation was calculated for SLR score and LN density.
Analysis was performed using PRISM 8 (GraphPad Software Inc) with
significance set at p b 0.05.
2. Results

2.1. In vitro neuroprotection

In vitro neuroprotective capability was significantly higher in Line A
and B than no PMSCs. Compared to no PMSCs (1.0), the neuroprotection
capability of Line A and Bwas 1.7± 0.2 and 1.8± 0.3, respectively (p=
0.01, Fig. 1). Line Cwas not significantly different from no PMSCs (1.3±
0.3). There was no significant difference among the lines.
2.2. ELISA

All lines secreted both neurotrophic growth factors BDNF and HGF
and angiogenic growth factor VEGF; however, therewere no differences
among cell lines (p= 0.99, p= 0.27 and p= 0.21, respectively, Fig. 2A,
B, C). Mean levels of BDNF and HGF for Line A were 290 ± 69.2 pg/ml
and 86.8 ± 29.2 ng/ml, levels for Line B were 304.8 ± 194.2 pg/ml
and 57.9 ± 14.2 ng/ml, and levels for Line C were 294.3 ± 186.8 pg/
ml and 75.9 ± 11.2 ng/ml, respectively. Mean VEGF level for Line A
was 2200 ± 373 pg/ml, level for Line B was 2170 ± 743 pg/ml, and
level for Line C was 2980 ± 466 pg/ml.
2.3. Large animal motor function

The median motor score for lambs treated with any PMSC line was
higher than no PMCSs (14.5 (IQR 8–15) vs 7.5 (IQR 4–12), p = 0.03).
The median SLR score following treatment with Line A was 15 (IQR
12–15), Line B was 14 (IQR 8–15), and Line C was 14 (IQR 6–15, p =
0.11) (Fig. 3). A majority of lambs treated with cells from each line
were able to ambulate independently (SLR score ≥ 13), but the percent-
age that ambulated varied by line. The rate of ambulation was 83% in
lambs treated with Line A (5/6), 71% with Line B (5/7), 60% with Line
C (3/5), and 20% with no PMSCs (2/10) (p = 0.06).
2.4. Large neuron density

Large neuron (LN) density in the spinal cord was significantly higher
following treatment with PMSCs versus no PMSCs (ECM only). On subset
analysis, Line A and B had significantly higher LN density compared to no
PMSCs; however, Line C was not significantly different (p = 0.04, Fig. 4).
Compared to an LN density of 4.7 (IQR 2.7–13.7) with no PMSCs, LN den-
sity in Line A was 25.2 (IQR 19.1–30.4), Line B was 27.6 (IQR 3.4–33.2),
and Line C was 24.8 (IQR 12.3–28.1). There was no significant difference
among the cell lines. There was a significant positive correlation between
motor function score and large neuron density (r = 0.79, p b 0.0001,
Fig. 5). All ambulatory animals had an LN density of at least 15.

3. Discussion

In utero treatment of MMC augmentedwith PMSCs rescued ambula-
tion in an ovine model following treatment with cell lines generated
from three different placental donors. Though rates of ambulation var-
ied by cell line, each line was capable of curing the paralysis associated
with theMMCmodel. The two lines (A and B) that had significantly bet-
ter neuroprotection than no PMSCs had high rates of ambulation (83%
and 71%) and significantly higher large neuron density than treatment
without PMSCs.

We identified an in vitro neuroprotection potency assay that corre-
sponds with the in vivo presence of large neurons, which correlates
with motor function in both this study and previous studies [20]. While
the true mechanism of action of our PMSC treatment remains unknown,
it is likely a combination of neuroprotection and immunomodulation
that exerts its effect through the reversal of existing observed apoptosis.
The in vitro neuroprotection assay appears to be a reasonable adjunct
for the screening of donor cell lines for future clinical trials.

The goal of comparing in vitro and in vivo outcomes was to identify
which assays could help reliably select donors that will generate a func-
tional improvement in vivo. Lines A and B were superior to line C based
on the higher motor neuron density they produced in vivo. We believe
this is a result of the superior paracrine secretion of cytokines, growth

Image of Fig. 1


Fig. 2. Growth factor secretion. There was no difference in BDNF (A) HGF (B) or VEGF (C) secretion among cell lines (p = 0.99, p = 0.27 and p = 0.21, respectively).
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factors, and exosomes by Line A and B. This superior secretion correlates
to superior performance in the neuroprotection assay, which was de-
signed to test in vitro function of the entire paracrine secretory milieu
rather than individual growth factors. While the motor function out-
comes (SLR score and percent ambulation) did not significantly differ
among cell lines, the study was not powered to detect this difference,
and the cost of using large animals as a screening mechanism is cost
prohibitive. Higher density of large neurons in vivo, which we have re-
peatedly shown to correlate with motor function, corresponds to im-
proved in vitro neuroprotection seen with Line A and B. Thus, the
in vitro neuroprotection assay provides some evidence of superiority
among the cell lines.

MSCs are promising regenerative therapeutic agents owing to their
trophic, angiogenic and immunomodulatory capabilities although
Fig. 3. Comparison of in vivomotor function.Median SLR score without PMSCs was 7.5
(IQR 4–13), score with Line A was 15 (IQR 12–15), score with Line B was 14 (IQR 8–15),
and score with Line C was 14 (IQR 6–15) (p = 0.10). Circled data points represent
animals with severe spinal angulation.
clinical outcomes have been variable and exact mechanisms of action
are unknown [32–34]. Minimal criteria for defining MSCs have been
proposed by the International Society for Cellular Therapy [35]; how-
ever, better and more rigorous criteria are needed to predict clinical
therapeutic outcomes [22]. Other groups have correlated growth capac-
ity, expression of certain growth factors, and/or gene expression with
functional outcomes in small animal models, but these are specific to
their therapeutic purposes and not widely generalizable [23,26]. The
ideal in vitro assays for a therapeutic agent must measure specific MSC
functions that match intended in vivo effects, which for our therapy
are neuroprotection and neuroregeneration.

The primary mechanism of action by which PMSCs exert their ef-
fects on tissue regeneration is thought to be paracrine secretion of
neuroprotective, angiogenic and immunomodulatory cytokines,
growth factors, and exosomes [14,25]. Other studies of MSCs have
demonstrated that trophic factors such as VEGF, HGF, insulin-like
growth factor (IGF-1) and epidermal growth factor (EGF) play im-
portant roles in wound healing and diseases such as multiple sclero-
sis and therefore represent therapeutic targets [36–38]. We
evaluated two known neurotrophic growth factors BDNF and HGF
Fig. 4. Large neuron density. LN density was significantly higher with treatment using
Lines A and B (25.2 [IQR 19.1–30.4] and 27.6 [IQR 3.4–33.2], respectively) compared to
no PMSCs (4.7 [IQR 2.7–13.7], p = 0.04). LN density in Line C was not significantly
higher than no PMSCs (24.8 [IQR 12.3–28.1]).

Image of Fig. 2
Image of Fig. 3
Image of Fig. 4


Fig. 5. Correlation of motor function and large neuron density. Motor function score
(SLR) was significantly correlated with large neuron density (r = 0.79, solid line,
p b 0.0001).
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and one angiogenic growth factor VEGF as possible predictors of
in vivo outcomes. HGF is neuroprotective, is involved in motor neu-
ron development, and promotes neuron survival [39]. BDNF plays a
significant role in neurogenesis and has shown potent survival ef-
fects on motor neurons [26,40]. VEGF is involved in cellular differen-
tiation and angiogenesis pathways [41]. Despite their potential role
in our therapy, we did not find differences in the secretion level of
these factors among the three lines and cannot confirm that they
are responsible for our therapeutic effect. However, we noted all
lines demonstrated robust secretion. As BDNF, HGF, and VEGF are
just a small part of the entire PMSC secretory milieu, it is not surpris-
ing that these individual factors did not directly correlate with in vivo
results. We plan to use the BDNF, HGF, and VEGF ELISAs for screening
duringmanufacturing to confirm that the cells lines have robust gen-
eral paracrine secretion capability.

The neuroprotection assaywas designed to test in vitro function of the
entire secretory milieu rather than individual growth factors [25]. The
assay tests the antiapoptotic effects of PMSCs to mimic the neuroprotec-
tive effect we see in vivo. Previous studies demonstrated that treatment
with PMSCs results in preservation of large (motor) neurons of the spinal
cord, which directly correlates with the motor function score [7,20].

One limitation of the study is the narrow scope of assayswe tested to
determine correspondence with in vivo outcomes. The growth factors
and neuroprotection assay both target the desired outcome of preserv-
ing motor neurons and the spinal cord; however, the immunomodula-
tory role of the PMSCs should not be dismissed. In the immune-
privileged environment of the fetus, PMSCs may play an important
role in the preservation and regeneration of supportive cells and neu-
rons in the spinal cord through immunomodulation [17–19]. This is an
area of ongoing investigation.

It is our intention to screen potential donor cell lines by using a com-
bination of cellular growth and proliferation kinetics, cytokine secretory
profiles, and performance in the in vitro neuroprotection assay.

Clinical-grade PMSC manufacturing is currently ongoing in our on-
site Good Manufacturing Process (GMP) facility in preparation for clin-
ical trials of the PMSC-ECM product. We plan to seed our selected cells
on the Cook Biodesign® Dural graft (ECM), which is an FDA-approved
dural graft replacement already utilized in MMC repairs in which the
dura cannot be closed primarily or requires reinforcement. The com-
bined PMSC-ECM product will be applied directly to the exposed spinal
placode during humanMMC repairs with incorporation into the water-
tight dural closure. A successful pre-Investigational New Device (IND)
meeting with the Food and Drug Administration (FDA) has already oc-
curred. Following final approval of the FDA IND application, a Phase I/
II safety and efficacy trial is planned.

4. Conclusion

In conclusion, in utero treatment of myelomeningocele with PMSCs
rescued ambulation in the ovinemodel following treatmentwithmulti-
ple different cell lines. The in vitro neuroprotection assay, in
combination with other assays, will facilitate selection of optimal
PMSC lines for clinical use.
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