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Background: Eighty percent of caustic ingestions occur in children and esophageal neoplasms may develop as a
late complication of such injury. The identification of biomarkers is a promising strategy to improve early diag-
nosis of esophageal cancer or caustic lesions that are at an increased risk of progression.
Study design/aims: This study aimed at identifying global microRNA (miRNA) expression changes in esophageal
mucosa from children with caustic stenosis. The study included 27 biopsy samples from 15 patients. Samples
were divided into two groups, according to the time elapsed after injury (N = 15 in Group A, with less than
five years of follow-up and N = 12 in Group B, with more than five years of follow-up). miRNA expression pro-
files were determined in each lesion, compared with normal esophageal tissues from control group. We used the
TagMan Human MicroRNA Arrays (Thermo Fisher) platform. Furthermore, bioinformatic algorithms were used
to identify miRNA target genes and biological pathways including miRNAs and their target genes potentially as-
sociated with esophageal disease.
Results: Thirteen miRNAs were significantly deregulated (9 over- and 4 underexpressed) in patients from Group
A. In patients from Group B, two miRNAs were over- and two were underexpressed. Of note, miR-374 and
miR-574 were deregulated in Group B patients and have been linked to esophageal tumorigenesis. We identified
signal transduction and transcription factor networks with genes strongly related to development and progres-
sion of esophageal cancer.
Conclusion: miRNAs identified here contribute to a better understanding of pathways associated with malignant
transformation from caustic stenosis to neoplastic lesions. This study may serve as a basis for validation of
miRNAs, including miR-374 and miR-574, as potential biomarkers of early cancer detection.

© 2020 Elsevier Inc. All rights reserved.

Key words:
Esophageal cancer
Caustic ingestion
miRNA profiling
Caustic stenosis
Pediatric surgery

Caustic esophageal injury remains a serious public health problem in
the pediatric population, especially in developing countries. Approxi-
mately 80% of the documented caustic injuries occur in children [1-3].
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Caustic soda is responsible for 1/3 of all esophageal strictures related
to caustic ingestion [4].

Esophageal neoplasms may develop as a late complication of caustic
injury [1-10]. Approximately 1% to 4% of cases of esophageal squamous
cell carcinoma (ESCC) are thought to be associated with previous caus-
tic ingestion [11].

Therefore, the identification of tissue-specific biomarkers is ideal for
early diagnosis of ESCC associated with caustic injuries [12]. microRNAs
(miRNAs) are potent gene expression regulators and key players in
cancer-related mechanisms [13]. Multiple studies have shown that
miRNA expression levels in tumor tissues are up- or downregulated to
various degrees [ 14-18]. The major biological function of miRNAs is post-
transcriptional mRNA regulation, which can significantly impact disease
pathways [13,19-21].
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miRNAs are stable molecules, resistant to RNAse degradation, and
easily detected in small tissue samples, making them suitable for profil-
ing studies. By searching for miRNA alterations, it is possible to identify
target genes as well as pathways modulated by miRNAs and potentially
associated with disease [22]. Therefore, identification of deregulated
miRNA expression and target genes is a potential step towards better
characterization of cancer biology and to better understand the process
of carcinogenesis. Global miRNA expression analysis on esophageal tis-
sues from individuals with a history of caustic ingestion in childhood
may lead to the identification of miRNAs as biomarkers for early detec-
tion of esophageal cancer.

To the best of our knowledge, there are no previous reports on mo-
lecular, genetic or epigenetic changes on caustic lesions leading to
esophageal cancer. A recent (December 30th, 2019) PubMed search
was performed using the keywords: [esophageal cancer AND caustic in-
jury], and resulted in 99 publications, of which none included any type
of genetic or epigenetic molecular analysis.

Therefore, the main goal of this study was to identify miRNA expres-
sion changes in esophageal mucosa tissues of children following caustic
stenosis, and to identify miRNA target genes and biological pathways
relevant to tumorigenesis.

1. Materials and methods
1.1. Ethics statement

This study was performed in accordance with the ethical standards
of the Declaration of Helsinki and according to national and interna-
tional guidelines. Our study has been approved by the Research Ethics
Boards of the Faculty of Medicine (FMB), UNESP, Botucatu, SP (REB
#1089452/2015).

1.2. Patient samples

Patients who met inclusion criteria were those who were less than
15 years of age and with a history of hospital admission owing to an
esophageal lesion induced by caustic ingestion, who have been sub-
jected to upper digestive endoscopy followed or not by esophageal dila-
tation, or esophagectomy. Participants were selected over a 17-year
period. Patients were excluded if they did not have endoscopic biopsies
performed at any time during follow-up, or if there were no surgical
specimens of the esophagus.

Formalin fixed, paraffin embedded (FFPE) esophageal samples
from patients were retrospectively collected from the Department
of Pathology, FMB, UNESP. Regarding the use of FFPE samples for
miRNA expression analysis, Azzalini et al. [23] have shown that miRNAs
are analyzable in tissues fixed with different procedures, including
buffered formalin, a procedure widely used in pathology laboratories,
worldwide.

Samples were divided into two groups according to the time elapsed
after the injury; Group A consisted of samples from children with
less than five years of follow-up after caustic injury, and Group B
included samples from patients with more than five years of follow-
up after injury. Samples from a total of 15 patients were obtained.
These samples were paired by age, gender, and year of biopsy with
macroscopically and histopathologically normal esophageal tissues
(Control Group). These control tissues were obtained from children
who have been subjected to routine endoscopy. Our pediatric surgery
service follows the recommendations from the American Society
for Gastrointestinal Endoscopy [24] for obtaining biopsy specimens
from at least the duodenum, stomach, and esophagus during pediatric
endoscopy.

Histological analysis of biopsies was performed before RNA extrac-
tion, to ensure the epithelial predominance of tissues collected.
Macrodissected areas used for miRNA expression analysis did not con-
tain inflammatory cells.

1.3. RNA extraction

Prior to RNA extraction, we performed needle macrodissection on
formalin fixed paraffin embedded (FFPE) tissue blocks using the stereo
microscope Leica EZ4 (Leica Microsystems, Wetzlar, Germany). RNA
was isolated using the RecoverAll Total Nucleic Acid Isolation Kit
(Ambion/Life Technologies, Carlsbad, CA, USA), following a previously
reported protocol [25]. RNA samples were quantified using NanoDrop
8000, following the manufacturer's instructions (Thermo Fisher Scien-
tific, Waltham, MA, USA).

1.4. Quantification of miRNA expression

miRNA expression levels were quantified using the TagMan®
Human MicroRNA Array Card (TLDA) assay (card A v3.0) (Thermo
Fisher, Waltham, MA, USA), as previously described [26,27] according
to the manufacturer's protocol. Global data normalization was per-
formed using Expression Suite software (Thermo Fisher, Waltham,
MA, USA), and miRNA expression profiles were determined using RQ
Manager v.1.2 software (Thermo Fisher, Waltham, MA, USA).

Original, raw data are available on Gene Expression Omnibus (GEO),
under accession number GSE134360. Data may be accessed using the
token: gdgpwagqifboxnmf.

1.5. Statistical analyses

Statistical analyses were performed to correlate deregulated miRNA
expression of Groups A and B versus Control. Categorical variables were
described using frequencies and percentages, and continuous variables
were summarized using mean (range) and median values. Statistical
analyses were performed using SAS software version 9.3 for Windows
(SAS Institute Inc., Cary, NC, USA). A statistically significant difference
was defined as p < 0.05.

1.6. miRNA target prediction analysis

Significantly deregulated (Fold Change [FC] > 1.5 and p < 0.05)
miRNAs in both groups vs. the corresponding control esophageal tissues
were subjected to target prediction analysis using the computational
tool microRNA Data Integration Portal (http://ophid.utoronto.ca/
mirDIP/) v.4.1.11.1, database version 4.1.0.3 [28,29]. mirDIP analysis
used as criteria for target selection results with “very high” (top 1%)
scores for interaction probability. miRNA-mRNA interactions were
validated using Integrated Interactions Database version 2018-11
(http://iid.ophid.utoronto.ca/) [30]. In addition, pathway analysis was
performed using ToppGene Suite (https://toppgene.cchmc.org/) [31]
to identify statistically enriched pathways.

2. Results
2.1. Patient demographic and clinical data

We analyzed 27 biopsies from 15 patients with esophageal caustic
lesions. These samples were divided into two groups, 15 in Group A
(less than five years of follow-up since injury) and 12 in Group B
(more than five years of follow-up since injury). Given that patient
follow-up was >17 years, some of them have samples included in
both groups. Demographic data and information on clinical features
are shown in Table 1.

2.2. Deregulated miRNA expression in esophageal samples exposed to caus-
tic ingestion

miRNA expression analysis of Group A cases showed that 13 signifi-
cantly deregulated (FC > 1.5 and p < 0.05) miRNAs (9 over- and 4
underexpressed) compared with corresponding macroscopically and
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Table 1
Patient demographics and clinical features.
Patient Age Sex  Follow-up Dilatation Esophagitis at biopsy
ID (months) (years) (n) (number of biopsies)
1 16 M 7 11 2 (4)
2 28 M 6 18 1(2)
3 40 M 3 17 2(2)
4 36 F 5 2 1(2)
5 17 M 10 30 1% (1)
6 28 F 4 0 4 (4)
7 13 F 13 9 1(2)?
8 37 F 2 0 0(1)
9 24 M 3 0 0(1)
10 43 F 14 3 0(3)
11 180 F 1 4 1% (1)
12 20 M 3 0 0(1)
13 25 M 1 7 1(1)
14 172 M 1 1 1(1)
15 31 M 2 14 1(1)

M: male; F: female. All patients suffered from accidental caustic ingestion, except patients
11 and 14 whose ingestion was intentional. Caustic substance was sodium hydroxide
(NaOH) in all patients, except patient 2, who was exposed to sulfonic and hydrofluoric
acid. Group A samples (less than 5 years of follow-up) included 15 biopsies from 11 pa-
tients (patient IDs 1, 2, 3,4, 5,6, 7,9, 11, 14 and 15) and Group B samples (more than
five years of follow-up) included 12 biopsies from 7 patients (patient IDs 1, 6, 7, 8, 10,
12 and 13). Three patients were restudied (patient IDs 1, 6, 7), since biopsies from these
3 patients were investigated in Group A and Group B.
2 Indicates patient subjected to esophagectomy.

histologically normal esophageal tissues. In Group B, four miRNAs were
significantly deregulated (FC > 1.5 and p < 0.05) (2 over- and 2
underexpressed) in the caustic samples compared with normal esopha-
geal tissues. Results are shown in Table 2.

2.3. Predicted miRNA target genes and biological pathways

miRDIP analysis of the 13 miRNAs deregulated in Group A samples
resulted in a total of 14,565 predicted interactions and 7521 miRNA tar-
get genes (S1 Table). In Group B samples, the four deregulated miRNAs
were predicted to have 2449 interactions and 2277 target genes (S2
Table). Pathways analysis for target genes in Group A samples showed
352 pathways (FDR p < 0.01) with 69 most enriched pathways, based
on the number of genes (at least 100 genes targeted by deregulated
miRNAs) (S3 Table). In Group B samples, pathway analysis showed
121 pathways (FDR p < 0.01) with five most enriched pathways with
over 100 genes targeted by deregulated miRNAs (S4 Table). Among

Table 2
miRNA expression in esophageal tissue with caustic stenosis (Groups A and B) compared
with normal tissue in children (Control group).

miRNA log FC p value
Group A (<5 years after caustic ingestion)

hsa-miR-886-5p 4.05 0.016
hsa-miR-205-5p 4.03 0.024
hsa-miR-29a-3p 3.87 0.011
hsa-miR-320a 3.70 0.042
hsa-miR-145-5p —0.54 0.01
hsa-miR-126-3p —0.55 0.034
hsa-miR-143-3p —0.74 0.003
hsa-miR-125a-5p —0.82 0.006
hsa-miR-141-3p —1.09 0.003
hsa-miR-133a-3p —1.24 0.002
hsa-miR-103a-3p —1.47 0.011
hsa-miR-139-5p —1.47 0.016
hsa-miR-95-3p —1.59 0.012
Group B (>5 years after caustic ingestion)

hsa-miR-342-3p 3.36 0.043
hsa-miR-374b-5p 331 0.022
hsa-miR-574-3p —0.51 0.019
hsa-miR-744-5p —0.74 0.037

FC: fold change.

the pathways identified, axon guidance, vesicle-mediated transport,
membrane trafficking, EGFR signaling, and pathways in cancer were
enriched with a large number of miRNA-regulated genes in lesions
from both groups A and B. Interestingly, adaptive immune response
as enriched in group A lesions and signaling by interleukins were
enriched in group B lesions. Enriched pathways in both groups are
shown in Fig. 1.

3. Discussion

Changes in miRNA expression are known to contribute to cancer de-
velopment and progression, with different miRNA expression profiles
associated with distinct biological tumor behavior [33]. The pathophys-
iologic mechanism of esophageal cancer related to caustic ingestion is
not well understood [11]. Pathological findings have shown that the
epithelium overlying an injured area is vulnerable to neoplastic trans-
formation, especially if subjected to chemical, physical, or thermal
aggression for prolonged periods. Malignant transformation is a com-
plex process, resulting from a multistep process of dedifferentiation
from native esophageal mucosa to cancer [34].

Our results showed specific changes in caustic lesions from both
Groups A and B, as well as miRNA changes compatible with miRNA ex-
pression in primary tumors or cell lines established from ESCC, indicat-
ing a role of miRNA regulation and implying that common pathways
may complement each other in promoting malignant transformation.
Pathways of axon guidance, vesicle-mediated transport, membrane
trafficking, EGFR signaling, and pathways in cancer were commonly
enriched with a large number of miRNA-regulated genes in lesions
with less and more than 5 years of caustic exposure. An interesting find-
ing was the identification of adaptive immune system regulation as an
enriched pathway in lesions with less than 5 years of caustic ingestion,
and signaling by interleukins in lesions after 5 years of caustic ingestion.
Deregulated pathways of immune response may occur in lesions after a
short time of caustic exposure, and over time being observed in lesions
after 5 years of exposure; the latter being more often associated with
tumor development and progression [35].

Indeed, some miRNAs identified have been related to esophageal
cancer. Liu et al. (2013) [36] analyzed the expression of 770 miRNAs
from ESCC samples and found that 60 miRNAs were significantly
deregulated (FC > 2 and p < 0.05), with 51 miRNAs over- and nine
underexpressed in cancer tissue compared with normal tissue. Our
study showed that hsa-miR-126 and hsa-miR-574-3p were downregu-
lated in Group A and B, respectively, which is consistent with the results
of Liu et al. [36]. However, our study also showed that hsa-miR-143 and
hsa-miR-145 were markedly downregulated in Group A, which conflicts
with their findings. This inconsistency may be owing to the nonmalig-
nant (or premalignant) state of caustic-affected esophageal cells when
compared with the ESCC cells used in their study.

Decreased miR-886 expression has been previously identified in
several cancer types, such as lung carcinoma [37], leukemia [38], and
esophageal cancers [39], and this miRNA has been proposed to function
as a tumor suppressor by inhibition of PKR (protein kinase RNA-
activated) [38]. Lee et al. (2014) [39] demonstrated miR-886 underex-
pression in cancer samples compared with normal tissues. However,
they found overexpression of miR-886 in samples from metaplastic or
Barrett's esophagus, considered a premalignant condition. In this
study, in Group A, miR-886 was overexpressed 11 fold as compared
with normal samples, comparable to the previously reported results
from Lee et al. [39]. This miRNA deregulation may represent an organis-
mal response to a variety of tissue aggressions, which can occur both in
patients with caustic ingestion as well as those with Barrett's esophagus
and may promote oncogenesis.

Among the underexpressed deregulated (FC > 1.5 and p < 0.05)
miRNAs identified in patients from Group A, miR-133a and miR-139-
5p are both related to tumor suppression. miR-133a downregulation
has been detected in esophageal [40], ovarian [41], bladder [42] 8),
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Fig. 1. Enriched pathways regulated by miRNA target genes in Group A and Group B samples. Each figure panel includes a description of the pathways (left), and which miRNAs modulate
genes in each pathway (right). The percentage of genes in each pathway is shown at the bottom of each panel. Pathways are organized by statistical significance with corrected p-values
(Benjamini-Hochberg procedure, to reduce the false discovery rate). Databases used are indicated. The results show that miRNAs regulate a wide range of genes with roles in mechanisms
related to tumorigenesis; some pathways were commonly identified in Group A and Group B samples.

and gastric cancers [43]. The role of miR-133 in the regulation of genes
that control cell migration and invasion, such as FSCN1 (fascin homolog 1
gene) [44] and SOX4 (SRY-related HMG-box 4) [40] has been demon-
strated in ESCC cell lines. The deregulation of miR-139-5p is also a fre-
quent event reported in ESCC and other types of cancer [45]. Liu et al.
(2013) [46] showed a 14-fold decrease in the expression of miR-139-
5p in ESCC samples compared with normal tissues, significantly associ-
ated with an increased risk for esophageal cancer. This suggests that the
altered miR-139-5p levels in ESCC cells may trigger major downstream
events in carcinogenesis, as this miRNA can suppress the cell's prolifer-
ative capability and participate in the delay of the G1/S phase transition
during cell cycle progression.

Overexpression of miR-374 is found in many types of cancer, such as
head and neck squamous cell carcinoma [47], T-cell lymphoblastic lym-
phoma [48], osteosarcoma [49], and bladder urothelial carcinoma [50].
This deregulation has been associated with tumorigenesis, including the
development and progression of esophageal cancer [51,52]. Wang et al.
(2015) [53] found that overexpression of miR-374 significantly increased
cellular proliferation in ESCC cell lines and demonstrated a possible role
for this miRNA in esophageal cancer by suppressing the transcriptional ac-
tivity, as well as the expression, of Axin2 (Axis inhibition protein 2), a tumor
suppressor. We showed that miR-374 had markedly increased expression
in patient samples taken more than five years after the initial occurrence of
caustic lesions, suggesting a possible role in malignant transformation.

Decreased miR-574 expression was found in the Group B samples.
Deregulated miR-574 expression has been previously identified in sev-
eral cancer types, including gastric, bladder, prostate, and esophageal
cancers; and this miRNA may function as a tumor suppressor by control-
ling cell proliferation, migration, and invasion ability [15,18,54]. In pros-
tate cancer, miR-574 was shown to be involved in the regulation of WNT
signaling, reducing proliferation by targeting EGFR [55]. Okumura et al.
(2016) [56] showed an association between decreased expression of
miR-574 and tumor relapse and poor overall survival rate, providing
further evidence for tumor suppressor effects of miR-574 in ESCC.

Some miRNAs have been found to be consistently deregulated in
both types of esophageal cancer, and this histologically independent

molecular aberration suggests an association with a major oncogenic
function, starting early in various signaling pathways [14,18]. Altered
signaling pathways may result in phenotypes of uncontrolled growth
and an increased capability to invade the surrounding tissue [57]. The
WNT signaling pathway, found in the protein-protein interaction map
(PPI) for Groups A and B, is well-known in regulating self-renewal and
oncogenesis in many systems, and it has been reported to play an im-
portant role in progression, metastasis, and invasion in ESCC [58,59].

Among the limitations of our work is the lack of validation of target
genes in the same biopsy tissues. We were unable to perform gene ex-
pression analysis owing to sample unavailability, since biopsies were
too small and not of adequate amount to perform further studies. In ad-
dition, there is a need for additional studies using larger sample sizes, in
order to establish a panel of miRNAs that may be candidates for diag-
nostic applications, such as early detection of cancer.

Our findings build upon recent evidence in the scientific literature
demonstrating the regulatory role of miRNAs expressed in esophageal
cancer samples on esophageal tissue tumorigenesis. Our results high-
light the influence of caustic lesions in the esophagus, beginning during
the first years following injury, on the possibility of malignant transfor-
mation mediated by miRNA alterations. Based on our findings and the
literature data, we hypothesize that malignant transformation of caustic
esophageal lesions may occur through multiple pathways, particularly
those involving mTOR /PIK3/AKT signaling.

4. Conclusions

miRNAs identified here may be associated with malignant transfor-
mation from caustic stenosis to esophageal cancer and may serve as fu-
ture novel biomarkers of malignant progression. This study provides a
theoretical basis for future research in this field with this specific pedi-
atric population suffering from caustic exposure. Further investigation
is needed to elucidate the mechanisms underlying malignant transfor-
mation associated with caustic stenosis. High-risk patients with caustic
lesions may benefit from prevention and intervention strategies, includ-
ing more frequent periodic screening tests to improve early detection of
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cancer and treatment; such strategies will ultimately lead to better
outcomes.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jpedsurg.2020.02.009.
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