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Abstract
Aims  Morphological recognition of red blood cells 
infected with malaria parasites is an important task in 
the laboratory practice. Nowadays, there is a lack of 
specific automated systems able to differentiate malaria 
with respect to other red blood cell inclusions. This study 
aims to develop a machine learning approach able 
to discriminate parasitised erythrocytes not only from 
normal, but also from other erythrocyte inclusions, such 
as Howell-Jolly and Pappenheimer bodies, basophilic 
stippling as well as platelets overlying red blood cells.
Methods  A total of 15 660 erythrocyte images from 87 
smears were segmented using histogram thresholding 
and watershed techniques, which allowed the extraction 
of 2852 colour and texture features. Dataset was 
split into a training and assessment sets. Training 
set was used to develop the whole system, in which 
several classification approaches were compared with 
obtain the most accurate recognition. Afterwards, the 
recognition system was evaluated with the assessment 
set, performing two steps: (1) classifying each individual 
cell image to assess the system’s recognition ability and 
(2) analysing whole smears to obtain a malaria infection 
diagnosis.
Results  The selection of the best classification approach 
resulted in a final sequential system with an accuracy 
of 97.7% for the six groups of red blood cell inclusions. 
The ability of the system to detect patients infected with 
malaria showed a sensitivity and specificity of 100% and 
90%, respectively.
Conclusions  The proposed method achieves a high 
diagnostic performance in the recognition of red blood 
cell infected with malaria, along with other frequent 
erythrocyte inclusions.

Introduction
Malaria is among the most important parasitic 
diseases in the world caused by different species of 
Plasmodium parasites. WHO reported 219 million 
cases of malaria in 2017, and over 435 000 deaths.1 
An early diagnosis is essential for effective disease 
management.2 Thin peripheral blood smear (PBS) 
microscopic examination is a low-expensive and 
easily accessible tool for malaria diagnosis being the 
gold standard for species identification,3 for para-
site quantification and it is essential to detect cell 
abnormalities.4 5 However, PBS examination is time 
consuming, needs expert professionals and is prone 
to interobserver variability.6 Moreover, external 
quality programmes show that the presence of 
malaria in PBS samples is overlooked by some labo-
ratories.7 These drawbacks have contributed to 

develop image processing techniques that help to 
preclassify blood cells8 9 contributing to more stan-
dardised morphological analysis.10–12

Machine learning methods have been proposed 
for malaria recognition.13 Segmentation is the first 
step in machine learning approaches. Usually, it is 
done from the green component of RGB images, 
using histogram thresholding techniques14–16 
and applying watershed algorithm.17–19 In other 
works, segmentation is based on granulometry 
analysis20 or in the use of thresholding from the 
HSV colour space.21 Segmentation is followed by 
feature extraction, which uses colour, textural and 
geometric morphological information.22 Features 
are used to train classifiers, which in most cases 
are based on support vector machine (SVM),19 23–25 
k-nearest neighbours (KNN)16 17 21 26 or decision 
trees algorithms.27 Latest trends in classification of 
red blood cells (RBC) infected with malaria propose 
the use of deep learning approaches.14 17 18 25 28 
Literature reveals that the automatic recognition of 
malaria has been addressed: (1) to discern between 
infected versus non-infected RBC, (2) to differen-
tiate between Plasmodium species or (3) to discrim-
inate among different parasite stages. It is striking 
that none of the studies have considered other RBC 
inclusions such as Howell-Jolly (HJ) and Pappen-
heimer (PP) bodies, basophilic stippling (BS) or 
platelets (PLT) overlying RBC, which can confuse 
machine learning tools.

Evaluations of the Advanced RBC Application, 
a CellaVision software that performs RBC classi-
fication and recognises inclusions, reported sensi-
tivity and specificity values of 23.5% and 81.1%, 
respectively.29 30 Furthermore, malaria parasites are 
commonly misinterpreted as HJ bodies, PP bodies 
or BS. ARBC algorithms need further improve-
ments, and require postclassification by clinical 
pathologist.

The objective of this work is to design a new 
system for the automatic recognition of malaria 
using digital image analysis and machine learning 
tools, which must be highly sensitive and specific 
for clinical application. This methodology aims to 
discriminate parasitised RBC not only from normal 
RBC, but also from other RBC inclusions, such as 
HJ bodies, PP bodies, BS as well as PLT overlying 
RBC.

Materials and methods
The proposed system is illustrated in figure  1. 
Inputs are digital RBC images acquired from PBS. 
After preprocessing, RBC are segmented and 
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Figure 1  Illustration of the proposed system for the automatic 
classification of malaria and inclusions in red blood cells (RBC). The 
left track starts with the acquisition of images and ends up with the 
segmentation of the regions of interest, which are the inputs to the 
recognition system.The automatic recognition system includes three 
sequential modules. The first module recognises normal RBC with 
respect to those containing inclusions (including malaria). The second 
identifies whether the inclusions correspond to malaria parasites or not. 
In a third step, non-malaria inclusions are recognised individually as 
Howell-Jolly bodies (HJ), pappenheimer bodies (PP), basophilic stippling 
(BS) or platelets (PLT) overlying RBC.

Figure 2  Example of different types of red blood cells (RBC) 
considered in the study. (A) Normal RBC. (B) RBC infected with malaria 
parasites. (C) RBC containing Howell-Jolly bodies. (D) RBC with 
basophilic stippling. (E) RBC with platelets allocated on its surphace. (F) 
RBC containing Pappenheimer bodies.

represented by individual masks. Images and masks are the 
inputs to the automatic recognition system, which has a hierar-
chical architecture with three modules working sequentially: (1) 
the first recognises normal RBC with respect to RBC containing 
inclusions (including malaria); (2) the second identifies whether 
the inclusion corresponds to malaria or not and (3) the third 
discriminates among HJ, PP, BS or PLT. The output of the overall 
system is the automatic classification of the RBC images in one 
of the six classes under study.

The core of each module is a set of quantitative features along 
with a machine-learning classification algorithm. The study is 
designed in three steps: (1) datasets and image processing; (2) 
development, where classifiers are trained with selected features 
and (3) assessment of the overall system performance. Algo-
rithms were developed in the programming environment Python 
3.6, with the exception of RBC labelling that was performed in 
the scientific software MATLAB R2017b.

Datasets and image processing
Image acquisition and labelling
Blood samples, collected in Ethylenediaminetetraacetic acid 
(EDTA) anticoagulant, from 87 patients were stained with 
May Grünwald-Giemsa using the slide maker-stainer SP1000i 
(Sysmex, Kobe, Japan).31 32 Field images were acquired using the 
Olympus BX43 microscope and Olympus DP73 camera. Images 

were taken at 1000 magnifications, 12 bits of colour depth and 
2400×1800 pixels. Images were split into two sets of different 
smears: a training set, to develop the whole system and an assess-
ment set to evaluate the system. This split was made ensuring 
that both datasets contained images from different patients.

Image labelling was performed by clinical pathologists, using 
Image Labeller app from MATLAB. It allows to select erythro-
cytes from field images, providing a marked area that associ-
ates the ground truth (true class) and location of every RBC. We 
considered the following types of images: (1) normal RBC; (2) 
RBC showing malaria parasites and (3) RBC containing other 
inclusions (HJ, PP, BS or PLT overlying them). Examples are 
shown in figure 2.

Image preprocessing and segmentation
Preprocessing aims to enhance image properties to facilitate 
further operations over the regions of interest (ROIs). The green 
component was selected from the original RGB image. Contrast 
between RBC and background was improved using contrast local 
adaptive histogram equalisation. Gaussian and median filter 
were used to smooth the image and decrease background noise.

Segmentation was the next step, which gives a separation of 
the ROIs. Since nucleus is absent in RBC, segmentation is simpler 
compared with leukocytes.33 Image was binarised by thresh-
olding using Otsu’s method. Post-processing techniques were 
applied, such as removing noise and PLT, filling holes to deal 
with the RBC central pallor and clearing borders to select the 
complete RBC. Watershed method was used to separate adjacent 
cells, allowing to identify each RBC as an individual element.

Using coordinates stored in the previous labelling step, it was 
possible to crop individual RBC images and its mask from the 
original and segmented images.

Feature extraction
Feature extraction from the segmented images of the training set 
was done using PyRadiomics 2.2.0,34 an open source platform 
which calculates different types of features: shape, colour (first 
order statistics) and texture (grey-level co-ocurrence matrix, 
grey-level run-length matrix, grey-level size zone matrix, neigh-
bouring grey tone difference matrix and grey-level dependence 
matrix features). Features give quantitative information to char-
acterise each ROI, facilitating the subsequent learning and clas-
sification steps. Since inclusions are found in RBC with different 
shapes, extraction was based on the calculation of colour and 
texture features. They were extracted from each component 
of different colour spaces included in the python library scikit-
image: RGB (red,green,blue), HSV (hue, saturation, value), XYZ 
(tristimulus values), LAB (lightness from black to white, from 
green to red, and from blue to yellow), HED (haematoxylin, 
eosin, dab), YIQ (luminance, in-phase quadrature), LCH (lumi-
nance, chroma, hue), YUV (luminance, blue chroma projection, 
red chroma projection), YCbCr (luminance, blue-difference 
chroma, red-difference chroma)and CMYK (cyan, magenta, 
yellow, black), resulting in 2852 features calculated from each 
RBC.

System development
For each one of the three modules we followed the same proce-
dure. The purpose was to train separately each classifier (see 
figure 1) to be highly specific for its particular recognition task. 
Essentially, a classifier uses a set of selected features to predict 
the class to which the image belongs. Several well-known 
machine learning algorithms were evaluated: SVM, KNN, linear 
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Figure 3  Illustration of the processing methodology used for the 
automatic classification of red blood cells (RBC), starting from the 
acquisiton of images and ending up with the obtention of individual 
RBC images and their binary masks.

Table 1  Total number of red blood cell (RBC) images and smears 
used in this work

Image dataset

Training

Assessment

TotalTest Diagnostic

No of smears 51 18 18 87

No of 
images

nRBC 1276 733 8443 10 452

MAL 933 187 71 1191

HJ 578 539 76 1193

PP 698 256 72 1026

BS 701 359 65 1125

PLT 447 162 64 673

Total 4633 2236 8791 15 660

Images are grouped by class for each dataset (training set, test set, and diagnostic 
set).
BS, basophilic stippling; HJ, Howell-Jolly bodies; MAL, malaria parasites; nRBC, RBCs 
without inclusions; PLT, platelets; PP, Pappenheimer bodies.

Table 2  Confusion matrix of the classification results (in percentage 
and absolute values in brackets) using red blood cell (RBC) images of 
the test set

Predicted class

nRBC MAL HJ PP BS PLT

True 
class

nRBC 98.9 (725) 0 0 0 0.3 (2) 0.8 (6)

MAL 0 100 (187) 0 0 0 0

HJ 0 0.4 (2) 97.4 (525) 2.2 (12) 0 0

PP 0 0.4 (1) 2 (5) 97.7 (250) 0 0

BS 0.3 (1) 5.3 (19) 0 0 94.4 (339) 0

PLT 0.6 (1) 1.2 (2) 0 0 0 98.1 (159)

Rows indicate the true class and columns represent the predicted class provided by the 
system. Diagonal values are the true positive rates.
BS, basophilic stippling; HJ, Howell-Jolly bodies; MAL, malaria parasites; nRBC, RBCs without 
inclusions; PLT, platelets; PP, Pappenheimer bodies.

discriminant analysis (LDA), random forest and Gaussian Naive 
Bayes. For each classifier, all images of the training set were 
used to perform successive tests of fivefold cross-validation for 
different increasing numbers of features. Features obtained were 
ordered by relevance according to the conditional mutual infor-
mation maximisation algorithm.35 Selection of the best classifi-
cation algorithm and the appropriate number of features was 
made according to highest overall accuracy, which is defined as 
the percentage of images well classified over the total number 
of images.

System assessment
The assessment set was divided into two sets (test and diagnostic) 
to perform an evaluation of the final trained recognition system 
through two approaches:
1.	 The test set was used to evaluate the performance to classify 

individual images. This set included images from 18 smears 
that were not used to develop the model.

2.	 The diagnostic set was used to assess the ability of the system 
to identify patients infected with malaria from the analysis 
of a whole PBS. A number of 18 new smears of different 
patients (not previously used) were included, eight of them 
corresponding to malaria patients showing different parasi-
taemia percentages. The remaining 10 were obtained from 
patients free of malaria, in which other RBC inclusions were 
observed.

Results
Image processing and segmentation
Preprocessing and segmentation stages allowed to obtain images 
of individual RBC from microscopic field images. As an example, 
the different stages are illustrated in figure  3. The method-
ology used in this work showed a segmentation performance of 
97.4%, considering a correct segmentation when the resulting 
mask preserved the original shape of its RBC. As a result, a total 
of 15 660 RBC images were obtained: 4633 RBC images for the 

training set and 11 027 RBC images for the assessment set (test 
and diagnostic sets). The total number of images for each RBC 
type is shown in table 1.

System training
The final system combines three individual modules that work 
sequentially. Considering the discrimination among normal RBC 
and RBC containing any type of inclusion, we observed high 
accuracies with all methods along with low number of features. 
SVM, together with the seven most relevant features, exhibited 
the best accuracy (99.12%) using the training set. Regarding the 
second module, which recognises whether the RBC inclusions 
correspond to malaria parasites or not, LDA and SVM were 
the methods with highest accuracies. The combination of LDA 
with the 610 most relevant features showed accuracy values of 
96.52%. LDA and SVM were the methods showing the highest 
accuracies for the third module to discriminate among HJ or 
PP bodies, BS and PLT overlying them. The highest accuracy 
(96.91%) was obtained for LDA along with the 700 most rele-
vant features. Online supplementary figure 1 plots the accuracies 
with the five machine learning methods mentioned above as a 
function of different increasing numbers of features.

System assessment using the test set
Classification performance using the test set is summarised by 
the confusion matrix shown in table 2, which gives the sight of 
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Table 3  System evaluation of the diagnostic assessment set using individual smears from eight malaria-infected patients and 10 non-infected 
patients

A

Predicted class

B Predicted classnRBC MAL INC

True class nRBC 8439 0 4 Infected Non-infected

MAL 0 71 0 True class Infected 8 0

INC 0 1 276 Non-infected 1 9

A: confusion matrix of the classification results (in absolute number of images) for the diagnostic assessment of the recognition system. Rows indicate the true class and columns 
represent the predicted class provided by the system. Diagonal values are the true positive rates. B: confusion matrix for true and predicted diagnosis of individual smears tested. 
Smears are diagnosed as infected if the model recognises at least one single RBC image containing parasites.
INC, inclusions; MAL, malaria parasites; nRBC, normal red blood cells.

predicted vs true classes, in percentage and in absolute number 
of images. The main diagonal shows the sensitivity or true posi-
tive rate for each cell class (percentage of images predicted as 
positive over the total number of images that truly belong to 
the class): 98.9% for normal RBC, 100% for RBC infected with 
malaria parasites, 97.4% for HJ bodies, 97.7% for PP bodies, 
94.4% for BS and 98.1% for PLT overlying RBC. The mean 
of these values (97.7%) is the overall accuracy, which is the 
percentage of single images that have been correctly recognised.

It is remarkable the 100% sensitivity achieved for the recog-
nition of RBC infected with malaria versus all the non-infected 
RBC types. For this case, we may calculate the specificity as the 
ratio of images predicted as non-malaria (the sum of all columns 
in table 2 excluding malaria: 2025) over the number of images 
that truly belong to any of the non-malaria classes (the sum of 
all the rows in table 2 except for malaria: 2049). This gave a 
remarkable specificity of 98.8%.

System assessment for malaria infection using the diagnostic 
set
This evaluation was focused on the automatic recognition 
of malaria diagnosis using 18 smears corresponding to new 
patients whose images were not previously used. Table 3 pres-
ents the results for the 18 smears belonging to 8 patients with 
malaria, with different parasitaemia percentages (from 0.10% to 
14.16%); and 10 non-malaria infected patients, but containing 
inclusions in some of their RBC. For each smear, the system 
classifies all the images in three classes: normal RBC, malaria 
or RBC containing other inclusions. The confusion matrices are 
shown in table 3A. Parasites were detected in all eight smears 
(71 RBC images with parasites), including those with low parasi-
taemia percentages. A patient was considered infected (predicted 
diagnosis) when at least one single RBC containing parasites was 
detected in the corresponding smear. Table 3B shows that sensi-
tivity of the classification by smear was 100%.

We only found in one smear a single RBC image (with presence 
of an HJ inclusion) that was misidentified as malaria. According 
to the established diagnostic criterion, this smear was the only 
one (over 10) misdiagnosed as infected (90% of specificity). 
But considering individual RBC images, only one non-infected 
RBC image over a total of 8720 was misidentified as infected by 
malaria. Classification rates considering individual RBC images 
of the diagnostic set resulted into a sensitivity and a specificity 
of 100% and 99.98%, respectively. Online supplementary tables 
1 and 2 show confusion matrices and diagnostic prediction for 
each specific smear.

Discussion
Previous publications have addressed the malaria recognition 
problem.13 Some of these works described machine learning 

approaches to recognise among different species of malaria or 
among different parasite stages.22 However, these systems have 
only been designed to address the recognition between infected 
and non-infected RBC. In real practice, there are other inclu-
sions that should be considered to obtain a sensitive and specific 
support tool. This remark is important because the recognition of 
infected samples is a critical result of urgent notification, since it 
can condition the patient's immediate treatment and prognosis.36

In this study, we developed a recognition system which is able 
to differentiate not only RBC infected with malaria, but also 
RBC containing other inclusions. To the authors’ knowledge, 
it is the first time in the literature that this approach has been 
considered.

With respect to the segmentation of RBC and parasites, other 
works have used the histogram thresholding, euclidean distance 
transform,37 edge detection algorithms38 or fuzzy C means.39 
Those works that assess the segmentation performance show 
accuracies over 95%. We have obtained an overall segmentation 
accuracy of 97.4%. Our approach is based on Otsu’s thresh-
olding, which shows a good balance between implementation 
simplicity and performance.13

We evaluated different machine learning approaches for the 
design of three sequential classification modules, which showed 
high accuracy rates. Results showed that only a small number 
of features was required for the first classifier to discriminate 
between normal and RBC containing inclusions (including 
malaria). However, a higher number of features was necessary 
when addressing the recognition between malaria parasites and 
other inclusions (module two), or among different types of 
inclusions (module three). This is understandable because of the 
morphological similarities between the RBC images showing any 
type of inclusion.

SVM19 23–25 and KNN16 17 21 26 are among the most frequently 
used approaches to address the recognition of malaria parasites. In 
our work, SVM was also the best classifier for the first module. For 
modules two and three, LDA showed the best performance, while 
KNN showed lower accuracies. The methodological differences in 
the segmentation approach with respect to other publications, as 
well as the different techniques used for the extraction and anal-
ysis of features, may give the advantage of some models over the 
others. LDA has also been reported by our group to have a high 
accuracy in a machine learning system for the automatic recogni-
tion of different types of acute leukaemia.40 Previous papers have 
reported accuracies ranging from 86% to 99%. However, they 
have not considered other RBC inclusions different from malaria. 
In our work, an overall accuracy of 97.7% was achieved in the 
assessment of the system by individual images, but addressing the 
recognition of malaria along with several other inclusions. This 
more complete differentiation is important in daily practice to 
ensure higher specificity in the automatic recognition of malaria.
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Take home messages

►► Thin blood smear microscopic examination is a low-expensive 
and easily accessible tool very valuable for malaria diagnosis. 
Image processing techniques may help to preclassify blood 
cells contributing to more standardised morphological 
analysis.

►► The contribution of this paper is to provide an automatic 
recognition system able to discriminate parasitised RBC 
not only from normal RBC, but also from other erythrocyte 
inclusions, such as Howell-Jolly bodies, Pappenheimer bodies, 
basophilic stippling as well as platelets overlying RBC.

►► The proposed system showed high sensitivity and specificity 
and it would be a practical tool to assist the pathologist in 
the diagnosis of malaria during the morphological peripheral 
blood examination.

It is important to consider individual patients when organising 
datasets for training and assessing the classifier. Using different 
images from the same smear in both training and assessment 
could result in an accuracy overestimation. To avoid this issue, 
we split the initial dataset into two sets of different smears. We 
only found two previous publications that followed this proce-
dure when performing training/assessment splitting.14 24 The 
classification of the test set images showed a very high perfor-
mance: none of the normal RBC was classified as containing 
malaria and none of the infected RBC was classified as normal 
(sensitivity 100%). This ensures that patients with malaria do 
not go unnoticed. Besides, it is important to remark that the 
specificity of the proposed system is 98.8% in spite of the simi-
larity of most of the RBC inclusions under study with respect to 
malaria parasites, which can easily confuse the classifier.

We also evaluated the ability of the system for the diagnosis of 
malaria infection on a different set of smears from new patients. 
The results showed that all the smears from the eight new patients 
containing RBC parasites were identified as infected. Although 
a single smear showing other RBC inclusions (due to a HJ body) 
was identified as infected, in practice, there was only one RBC 
image misclassified out of 8720 images well recognised as non-
infected. These results showed that the approach proposed 
in this work could be suitable for clinical laboratory practice. 
The diagnosis by smear showed sensitivity of 100% and spec-
ificity of 90%, but considering the classification of individual 
RBC images, the specificity raised up to 99.98%. This work was 
performed acquiring images using a camera attached to a micro-
scope. The proposed approach could be also integrated in an 
automated image acquisition system, which would require an 
algorithm to find a suitable area of the smear for the proper 
assessment of RBC morphology. Furthermore, since some cases 
of malaria show very low levels of parasitaemia, the identifica-
tion of infected RBC would be conditioned to the number of 
field images taken. Our system proved to be able to recognise 
malaria infection with parasitaemia values of 0.1% or higher.

Machine learning tools are becoming increasingly important 
in the field of laboratory medicine. This work developed a 
framework for the recognition of malaria in thin PBS digital 
images that improved specificity of previous approaches, being 
able to recognise other inclusions in RBC which are not related 
to malaria infection. The high sensitivity and specificity of our 
system reduces the number of smears to be reviewed by the 
clinical pathologist, improving the efficiency of the laboratory 
workflow.
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