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Abstract
Aims  Intravascular NK/T-cell lymphoma (IVNKTCL) is a 
rare disease, which is characterised by exclusive growth 
of large cells within the lumen of small vessels, Epstein–
Barr virus infection and somatic mutations in epigenetic 
regulator genes. Here, we elucidate the transcriptomic 
complexity of IVNKTCL.
Methods  IVNKTCL cases were retrieved from a single-
centre cohort of 25 intravascular lymphomas. RNA-seq 
and whole exome sequencing (WES) were performed to 
analyse transcriptomic abnormalities and mutations in 
splicing factors.
Results  Approximately 88% of the total reads from the 
RNA-seq were considered exonic, while the remaining 
reads (12%) were mapped to intronic or intergenic 
regions. We detected 28,941 alternative splicing events, 
some of which would produce abnormal proteins rarely 
found in normal cells. The detected events also included 
tumour-specific splicing alterations in oncogenes and 
tumour suppressors (e.g., HRAS, MDM2 and VEGFA). 
WES identified premature termination mutations or copy 
number losses in a total of 15 splicing regulator genes, 
including SF3B5, SRSF12 and TNPO3.
Conclusions  This study raises the possibility that 
IVNKTCL may be driven by multiple complex regulatory 
loops, including non-exonic expression and aberrant 
splicing, in addition to defects in epigenetic regulation.

Introduction
Intravascular lymphoma (IVL) is a rare form of 
non-Hodgkin’s lymphoma characterised by almost-
exclusive growth of neoplastic cells within the lumina 
of small-sized or medium-sized blood vessels.1 Most 
cases of IVL have a B-cell phenotype (intravascular 
large B-cell lymphoma, IVLBCL),2–5 but extremely 
rare cases with an NK/T-cell phenotype (i.e., intra-
vascular NK/T-cell lymphoma, IVNKTCL) have 
also been identified.6–11 IVNKTCL has been first 
described in 2003, and only 20 cases have been 
reported in the literature. IVNKTCL is aggressive 
and has a poor overall prognosis, especially in 
patients with multisystem involvement (e.g., skin, 
liver and central nervous system). The pathobiology 
of IVNKTCL has been linked to infection with the 
Epstein–Barr virus (EBV), which is considered to be 
a cause of tumourigenesis and responsible for the 
aggressive features of this lymphoma.6–11

We have recently investigated the somatic muta-
tions, mutation signatures and copy number alter-
ations (CNAs) in IVNKTCL at whole-genome 
levels using exome sequencing.11 Results obtained 
from this first genetic study not only identified 
frequent alterations in epigenetic regulators such as 

histone genes, histone deacetylase, DNA/RNA heli-
cases and methylation-related enzymes, but it also 
revealed the intricate interwoven relationships that 
govern the biological behaviour of this aggressive 
lymphoma. More importantly, this result reinforced 
the concept that multiple genetic events are required 
to unleash the malignant progression of IVL, and 
that only a genome-wide approach could interpret 
the complicated scenarios in the biology of this 
hematopoietic neoplasm. Although our previous 
study contained promising results, the focus was on 
somatic alterations occurring at the DNA level. A 
systematic analysis of variation in transcript archi-
tecture has not yet been reported in IVLs.

While the human genome is estimated to contain 
about 20,000 protein-coding genes, their transcrip-
tome is tremendously more complex, with 83,666 
distinct mRNA sequences indexed on the current 
version (V.31) of GENCODE.12 This remarkable 
discrepancy between the number of protein-coding 
genes can be explained by alternative splicing (AS), 
the process by which a single mRNA precursor can 
be spliced in different arrangements to produce 
functionally and structurally distinct protein vari-
ants.13 AS has a profound effect on the biologic 
characteristics of the final protein, as AS can add 
or delete functional domains, change the stability 
of the protein and modify protein–protein inter-
actions (PPI). Growing evidence has also demon-
strated that AS is frequently modified in malignant 
neoplasms and is associated with tumour initiation 
and progression.14–20

Here, we comprehensively investigate the 
gene expression and AS patterns in IVNKTCL by 
running MISO (mixture of isoforms), a probabilistic 
framework that quantitates the expression level of 
alternatively spliced genes from high-throughput 
RNA-seq data.21 Our study reveals the complicated 
regulatory loops driving this rare haematologic 
malignancy. To the best of our knowledge, this is 
the first study addressing the complexity of the IVL 
transcriptome.

Materials and methods
Case selection
IVNKTCL cases were retrieved from the surgical 
pathology files (2000–2017) of the Kobe City 
Medical Center General Hospital. IVNKTCL was 
defined as an extranodal NK/T-cell lymphoma 
selectively growing within the lumina of vessels, 
particularly capillaries, while larger arteries and 
veins were spared. Patient background is shown in 
online supplementary table 1.
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Figure 1  Gene expression analysis. (A) Study design and histology 
of intravascular NK/T-cell lymphoma (IVNKTCL). (B) Statistics for the 
distribution of reads on the genome. Reads are mapped to exons 
(green), introns (blue) or intergenic regions (orange). (C) Distribution 
of mapped reads on chromosomes. (D) Scatter plot representation of 
gene expression levels of all genes in two IVNKTCL cases. One blue 
dot corresponds to one gene. Pierson’s r is indicated at the left upper 
corner. (E) Overview of differentially expressed genes displayed as a 
volcano diagram. The threshold for differential expression of genes was 
a |log2(foldchange)|> 1 and a Q-value < 0.005.

Figure 2  Alternative splicing analysis. (A) One representative example 
of the Sashimi plot of an alternative exon skipping event. Junction 
reads in the ZNF207 gene are visualised as arcs connecting the pair of 
exons that the junction borders. The thickness of the arc is found to be 
in proportion to the number of junction reads present in the sample, 
but the actual number of junction reads is plotted. (B) Aberrant splice 
variants and oncogenic consequences for p21HRAS and VEGFA-165. HRAS 
pre-mRNA can be alternatively spliced to include the intron D exon 
(IDX) before exon 4, yielding the p19 and p21 proteins, respectively. 
Anti-angiogenic VEGFA-165b and pro-angiogenic VEGFA-165 are 
generated from the same transcript. (C) Box plot depicting the 
frequency of alternative exon skipping in cases #1 and #2. (D) Heatmap 
displaying the result of differential alternative splicing events between 
the two cases. Differently expressed AS events were identified based 
on PSI value. (E) The protein–protein interaction network analysis of 
somatically altered genes displayed using the STRING database. Broad 
defects in splicing factors were detected in this analysis. PSI, percent-
spliced-in.

RNA sequencing
Five 10 µm sections were cut from formalin-fixed paraffin-
embedded (FFPE) tissue blocks, and areas with >60% tumour 
content were microdissected for RNA extraction. Total RNA 
was extracted from the tumour samples using the RNeasy FFPE 
Kit (Qiagen, Madison, WI). RNA-seq libraries were constructed 
using the NEBNext Ultra RNA Library Prep Kit (New England 
Biolabs, Ipswich, MA) according to the manufacturer’s instruc-
tions. The quality-checked RNA-seq libraries were sequenced 
on a HiSeq X (Illumina, San Diego, CA). The raw image data 
file from the high-throughput sequencing was transformed to 
sequence data by CASAVA V.1.8. The sequence data were stored 
as FASTQ format files. TopHat2 was used to map quality-filtered 
reads onto the human genome build 19 (hg19), and sequencing 
reads were ultimately mapped to exonic, intronic or intergenic 
regions. Gene expression analysis was performed using the 
DESeq2 R package. Raw sequence data are available on request.

Quantification of alternative splicing events
The MISO Bayesian inference model was applied for the quanti-
fication of AS events. AS events were classified into the following 
five patterns: alternative 5′ splice site (A5SS), alternative 3′ 
splice site (A3SS), mutually exclusive exon (MXE), intron reten-
tion (IR) and exon skipping (ES). ‘Percent Spliced In (Ψ)’ (PSI) 
was used to denote the fraction of mRNAs that represent the 

inclusion isoform, and the MISO model was used to calculate 
the posterior probability distributions of Ψ and ΔΨ for the two 
samples. The latter distribution was used to calculate the Bayes 
factor (BF), defined as the ratio of the posterior probability of 
the alternative hypothesis, ΔΨ ≠ 0, to that of the null hypoth-
esis, ΔΨ=0; thus, higher values of the BF indicate increased 
confidence in differential regulation.

The significant differentially spliced events were determined 
by the following two parameters:
1.	 BF ≥ 10.
2.	 PSI values (percent-spliced-in, Ψ) ≥ 0.2.

Whole exome sequencing data
Information regarding somatic mutations and CNAs was 
retrieved from our previous whole exome sequencing (WES) 
data.11 In brief, WES libraries were prepared from tumour 
and non-tumour tissues with a SureSelect Human Exon V6 
enrichment system (Agilent, Santa Clara, CA), and paired-end 
sequencing was performed on a HiSeq X (Illumina) according 
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to the previous study.22 BWA (http://​bio-​bwa.​sourceforge.​net/) 
and SAMtools (http://​samtools.​sourceforge.​net/) were used 
for reading alignments and single nucleotide variant calling. 
Control-FREEC (http://​boevalab.​com/​FREEC/) was applied to 
analyse somatic CNAs. Deleteriousness prediction scores were 
obtained using the SIFT, PolyPhen-2, MutationTaster and CADD 
algorithms. The functional interactome of the proteins was 
explored utilising STRING software V.11.0.

Results
Study design
Two IVNKTCL cases were retrieved from a single-centre 
cohort of 25 IVLs. IVNKTCLs were characterised by aggre-
gates of large atypical lymphoid cells occluding the lumina of 
small-sized blood vessels (figure  1A). RNA-seq and WES of 
these cases were performed to analyse gene expression, splicing 
abnormalities and somatic mutations in splicing factors. The 
data were finally integrated to uncover the pathogenesis of 
IVNKTCL.

Gene expression and alternative splicing in IVNKTCL
RNA-seq was successfully performed for both cases, and 7.8 Gb 
and 8.6 Gb of clean reads were produced for cases #1 and #2, 
respectively. Exonic reads provided 93.2% and 82.9% of the 
total reads from RNA-seq in cases #1 and #2, respectively, 
while the remaining reads (6.8% and 17.1%) were mapped to 
intron or intergenic regions, which highlighted the widespread 
occurrence of non-exonic transcription (figure  1B). Genomic 
location biases at the chromosome level were not detected in 
the mapping data (figure 1C). Gene expression analysis showed 
that two cases had a similar range of expression values (Pearson’s 
r=0.91; figure 1D), although a small proportion of genes were 
differentially expressed (figure 1E).

RNA-seq was then analyzed by MISO software. We detected 
a total of 28,941 AS events in the form of five types of splicing 
events (A5SS, A3SS, MXE, IR and ES) (figure 2A; representa-
tive example of ES in ZNF207). Some AS events were tumour-
specific alterations in oncogenes and tumour suppressors (e.g., 
HRAS,23 MDM2,24 VEGFA,25 FGFR2,26 BCL2L1,27 FAS,28 and 
AIMP229), most of which had been previously reported in epithe-
lial neoplasms (figure 2B and table 1). In addition, the ES patterns 
were largely different between the two cases (median frequency 
of alternative ES: case #1, 0.43; case #2, 0.08) (figure 2C). In 
total, 932 AS events were statistically designated as differentially 
expressed isoforms between the two cases (figure  2D). These 
results suggested that RNA splicing was highly perturbed at the 
whole genome level, while the gene expression levels remained 
relatively similar.

Somatic alterations in splicing factors
We retrieved our previous annotation of WES data11 and 
constructed PPI maps of mutated or deleted genes with higher 
degrees of connectivity based on STRING networks. This PPI 
map revealed broad defects in splicing factors, comprising 
premature termination mutations in two splicing factors and 
copy number loss of 13 splicing factors (for a total of 15 affected 
splicing factors) (figure 2E and table 2). No somatic mutations 
were detected in the well-known cancer oncogenes and tumour 
suppressors described above (e.g., HRAS, MDM2 and VEGFA) 
even though tumour-specific AS events were identified in these 
genes.
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Table 2  Identification of somatic mutations and copy number alterations in mRNA splicing factors in IVNKTCL patients

Gene name Gene ID Exonic function AA change SIFT Polyphen2 MutationTaster CADD

Case #1 TNPO3 NM_012470 Frameshift p.Tyr843fs* N/A N/A N/A N/A

Case #2 RBPMS NM_001008712 Stop-gain p.Glu214* N/A N/A Disease_causing 7.73

 �   �   �   �   �   �   �   �   �

 �  Gene name Chromosome Type Copy number Cytoband Size (bp)  �

Case #2 SRSF12, PNISR 6 Loss 1 6q16.2-q16.3 22,895,517  �

 �  SF3B5, WTAP, QKI 6 Loss 1 6q27-q25.2 31,197,821  �

 �  ESRP1, KIAA1429 8 Loss 1 8q21.12-q21.2 21,422,296  �

 �  KHDRBS3 8 Loss 1 8q24.23 3,236,255  �

 �  CELF6, SNRPA1, CLK3 15 Loss 1 15q23-q24.1 33,151,892  �

 �  CELF4 18 Loss 1 18q21.1-q12.3 16,064,221  �

 �  TXNL4A 18 Loss 1 18q22.3-q21.32 26,113,240  �

SIFT predictors: deleterious, tolerated.
Polyphen2 predictors: probably_damaging, possibly_damaging, benign.
MutationTaster predictors: disease_causing, polymorphism.
CADD: A CADD score of 10 corresponds to the top 10% deleterious variants in the genome. The score of 7.73 for case #2 is in the top 7.73% of deleterious variants.
IVNKTCL, intravascular NK/T-cell lymphoma.

Figure 3  Schematic diagram of the pathogenesis of intravascular 
NK/T-cell lymphoma.

Discussion
The present study thoroughly investigated the transcriptomic 
landscape of two rare IVNKTCL cases. Twenty cases of IVNKTCL 
have been reported to date.6–10 Our cases comprise the 21st 
and 22nd, and this is the first study focusing on transcriptomic 
modifications in IVNKTCL patients. The high-throughput RNA 
sequencing analysis allowed us to explore the tumour-related 
changes that occurred at the stage of transcription and splicing 
and to identify transcript isoforms that are specific to IVNKTCL.

We demonstrated that a subset of sequencing reads mapped to 
introns and intergenic regions. This subset was not a negligible 
portion, accounting for >10% of reads, on average. What are 
the possible causes of these intronic or intergenic mapped reads 
in RNA-seq? There are several possibilities for reads aligned to 
intergenic regions: (1) sequencing errors, (2) mapping errors, (3) 
unannotated genes or (4) true intergenic transcription. Intronic 
reads could be due to (1) immature transcripts with introns not 
yet spliced out, or (2) unannotated exons which might represent 
AS, if the sequence and mapping quality are reliable. Previous 
systematic studies on mammalian transcriptomes have suggested 
that more than 70% of the genome undergoes transcription, 
and that most of these transcripts are weakly expressed non-
coding RNA.30 31 In addition, although mRNA processing is a 
stringently regulated mechanism that enables the generation of 
multiple functional variants of an individual gene, many of these 
mechanisms are highly perturbed and can be seized to favour the 
malignant state of tumours.14–20 As the RNA sequence quality 
was reliable in our study, it is reasonable to interpret the intronic 
and intergenic transcriptions as true reads.

AS perturbations have been recently recognised as important 
signatures for tumour progression and therapy.14–20 Some AS 
changes recapitulate tumour-associated phenotypes by regu-
lating cell proliferation, DNA damage, invasion and apop-
tosis. In addition, tumour-specific splice variants of genes that 
control cell proliferation and apoptosis have been reported in 
the last decade.23–29 32 33 These processes are influenced both by 
genetic factors and environmental factors, for example, immune 
responses,34 35 age,36 heat stress37 and DNA damage.38 CNAs 
have also been described as having a particular association with 
AS.16 19 In this study, we identified previously known tumour-
specific AS in cancer driver genes involved in disease pathogen-
esis (e.g., HRAS, MDM2, FGFR2 and VEGFA). AS changes could 
partly originate from somatic mutations in splicing factors, as 
well as through mutations that disrupt splicing regulatory motifs 
in exon–intron boundaries, both of which could impact the 
splicing of cancer-related genes. Future functional studies will 
be necessary to determine the consequences of the genetic alter-
ations and AS changes identified in this study.

The pathogenesis of IVNKTCL is summarised in figure 3. In 
our latest research, we identified frequent alterations in genes 
encoding epigenetic regulators, such as histone clusters, TET2, 
HDAC5, ARID1A, ARID1B, DDX3X and WRN,11 which suggest 
that IVNKTCL is an epigenetic disease with EBV infection-
associated etiopathogenesis. Along with theses previous data, 
the current whole transcriptome analysis further raises the possi-
bility that IVNKTCL may be driven by multiple complex regu-
latory loops, including defects in epigenetic regulators and AS. 
This self-amplifying malignant loop is genome-wide, and could 
induce ever-worsening abnormalities during tumourigenesis of 
IVNKTCL.

Targeting the tumour-associated AS events or non-exonic tran-
scriptions could be possible therapeutic approaches for treating 
IVL patients. Several strategies using small-molecule compounds 
and antisense oligonucleotides have already been proposed 
for modulating the core spliceosome machinery or eliminating 
tumour-specific transcripts.15 32 33 39 These drugs have been devel-
oped for other solid tumours and are already shown to poten-
tially inhibit excessive aberrant AS activities in limited types of 
cancer cells. They may be applicable to IVNKTCL in the future.

We are currently investigating the cause of the intravascular 
growth pattern in IVL, but it is proving difficult to elucidate. The 
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intravascular feature has been hypothesised to be secondary to 
defects in homing receptors present on the neoplastic cells, such 
as a lack of ICAM-1 (CD54) or ITGB1 (CD29).40 41 However, in 
our genetic studies, we could not detect clear evidence of genetic 
and/or transcriptomic alterations in these adhesion molecules. 
Further genetic and functional characterisation of molecular 
defects will contribute to our understanding of the cause of the 
intravascular growth pattern in IVL.

This study has revealed the widespread transcriptomic abnor-
malities in IVNKTCL. This rare and aggressive disease could be 
driven by multiple complex regulatory loops; including non-
exonic transcription, AS and defects in epigenetic regulators. 
Our observations may provide new insights into tumourigenesis 
and management of this aggressive entity.

Take home messages

►► RNA-seq analysis revealed that non-exonic transcription and 
aberrant alternative splicing are prevalent in intravascular 
NK/T-cell lymphoma (IVNKTCL).

►► Tumour-specific alternative splicing in oncogenes and tumour 
suppressors was detected in IVNKTCL.

►► Premature termination mutations or copy number losses of 
splicing factors were identified in IVNKTCL.
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