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ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a public
health problem, affecting up to a third of the world's
adult population. Several cohort studies have consistently
documented that NAFLD (especially in its more advanced
forms) is associated with a higher risk of all-cause
mortality and that the leading causes of death among
patients with NAFLD are cardiovascular diseases (CVDs),
followed by extrahepatic malignancies and liver-related
complications. A growing body of evidence also indicates
that NAFLD is strongly associated with an increased risk
of major CVD events and other cardiac complications (ie,
cardiomyopathy, cardiac valvular calcification and cardiac
arrhythmias), independently of traditional cardiovascular
risk factors. This narrative review provides an overview
of the literature on: (1) the evidence for an association
between NAFLD and increased risk of cardiovascular,
cardiac and arrhythmic complications, (2) the putative
pathophysiological mechanisms linking NAFLD to CVD
and other cardiac complications and (3) the current
pharmacological treatments for NAFLD that might also
benefit or adversely affect risk of CVD.

INTRODUCTION

The 2017 Global Burden of Disease Study showed
that there were 2.14 million liver-related deaths
(2.06-2.30 million) that year, representing a 11.5%
increase since 2012. Liver cancer and cirrhosis
accounted for most of these deaths and, although
chronic viral hepatitis remains the most common
cause of liver-related death worldwide, these data
show that non-alcoholic fatty liver disease (NAFLD)
is the most rapidly growing contributor to liver-
related mortality and morbidity.! In 2016, it was
estimated that in the USA, over 64 million people
had NAFLD, with annual direct medical costs of
about US$103 billion (US$1613 per patient), and
in four European countries (France, Germany,
Italy and UK), it was estimated that there were ~52
million people with NAFLD with an annual cost of
about €35 billion (from €354 to €1163 per patient).
Costs of NAFLD were highest in patients aged
45-65 years and it was in this working age group
where the economic costs of cardiovascular disease
(CVD) were also much higher.*

CVDs, which include ischaemic heart disease and
stroke, are the most common non-communicable
diseases globally, responsible for an estimated 17.8
million deaths in 2017, of which more than three
quarters were in low-income and middle-income
countries.” At the global scale, total deaths from
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CVD increased by nearly 21% between 2007 and
2017, and were greater for men than for women at
most ages in 2017, except for ages=85 years where
there was the largest female-to-male ratio of CVD
deaths.’

NAFLD occurs in at least 25%-30% of adults in
high-income countries and in up to 70%-90% of
individuals with obesity or type 2 diabetes mellitus
(T2DM).* NAFLD is also an important contributor
to morbidity in other organs beyond the liver and,
specifically, NAFLD is closely associated with an
increased risk of developing extrahepatic compli-
cations, such as CVD, T2DM and chronic kidney
disease, with fibrosis stage being the strongest
disease-specific risk factor.’™

This review article focuses on the rapidly
expanding body of clinical evidence that supports a
strong association between NAFLD and the risk of
CVD, discusses the pathophysiological mechanisms
that link these two conditions and summarises the
pharmacological treatments for NAFLD that might
also benefit or adversely affect risk of CVD.

Risk of CVD and other cardiac complications

That NAFLD is associated with an increased risk
of CVD is perhaps not surprising, given the close
associations of NAFLD with cardiometabolic risk
factors encapsulated by the metabolic syndrome,
including abdominal obesity, atherogenic dyslip-
idaemia, hypertension and dysglycaemia.” '°
However, the nature and extent of the associations
between NAFLD and CVD is not clear. Whether
liver disease in NAFLD confers any additional CVD
risk, or whether an increase in CVD risk in NAFLD
is due to associated CVD risk factors, is uncer-
tain. Elucidating whether liver disease in NAFLD
contributes additional CVD risk is important, as
it is plausible that treatment of liver disease may
ameliorate risk of CVD, over and above treatment
of NAFLD-associated risk factors.

Strong evidence links NAFLD with objectively
assessed subclinical atherosclerosis (including also
increased coronary artery calcium score) in adults
and adolescents, as well as with an increased preva-
lence of clinically manifest CVD both in the general
population and in different patient groups.''™?
Recently, in a large cohort of South Korean middle-
aged individuals without pre-existing CVD, Lee et
al also showed that imaging-defined NAFLD was
independently associated with a higher risk of
having non-calcified, ‘vulnerable’ coronary athero-
sclerotic plaques (as detected by coronary CT
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Figure 1 Random-effects meta-analysis on the risk of incident CVD
events (fatal, non-fatal or both) associated with NAFLD. Forest plot of
comparison of patients with NAFLD versus those without NAFLD. Data
are derived from Targher et al’ (reproduced with permission). CVD,
cardiovascular disease; NAFLD, non-alcoholic fatty liver disease.

angiography), thereby highlighting an increased NAFLD-related
CVD risk among these asymptomatic individuals."* Several
cohort studies have consistently documented that NAFLD is asso-
ciated with a higher risk of all-cause mortality and that patients
with NAFLD are more likely to experience a CVD-related death
than a liver-related death.” ®? ** Using mortality data from the
National Vital Statistics System multiple-cause mortality data in
the USA, Paik et al recently confirmed that CVD was one of the
most important causes of death among people with NAFLD."
Several cohort studies have also shown that NAFLD (defined
radiologically or histologically) is predictive of incident CVD
events. Many of these studies were also included in a compre-
hensive meta-analysis that incorporated a total of 16 observa-
tional studies with 34 043 individuals and captured nearly 2600
major CVD events over a median follow-up of 6.9 years.” This
meta-analysis concluded that NAFLD (diagnosed by liver biopsy
or imaging methods) conferred an OR of 1.64 for fatal and/or
non-fatal CVD events (random-effects OR 1.64, 95% CI 1.26
to 2.13) (figure 1).” Furthermore, risk of incident CVD events
appeared to increase further with greater severity of NAFLD
(random-effects OR 2.58; 95% CI 1.78 to 3.75) (figure 2), and
remained statistically significant in those studies where analysis
was fully adjusted for established CVD risk factors.”

Although further studies in patients with biopsy-characterised
NAFLD are needed to address this issue, some prospective
studies with sufficiently long follow-ups have confirmed that
the magnitude of risk of incident CVD paralleled the underlying
severity of NAFLD and that fibrosis stage, rather than other
histological features of NAFLD, were independently associated
with adverse CVD and liver-related outcomes.'® '’ Recently, in a
multinational cohort study of 458 adults with biopsy-confirmed
NAFLD with advanced fibrosis or compensated cirrhosis, Vilar-
Gomez et al found that patients with advanced fibrosis had
predominantly CVD events and extrahepatic malignancies, and
those with NAFLD-cirrhosis had predominantly liver-related
events, over a mean follow-up of 5.5 years."® In a cohort of

285 US adults with biopsy-proven NAFLD without pre-existing
CVD, Henson et al found that advanced fibrosis, but no other
histological features of NAFLD, were associated with increased
CVD incidence over a median of 5.2 years, even after adjusting
for traditional risk factors and CVD risk scores.'” Conversely,
in a large case—control study, Hagstrém et al found that 603
Swedish individuals with biopsy-proven NAFLD free of baseline
CVD were at higher risk of incident CVD events compared with
age-matched and sex-matched controls, although histological
features of NAFLD did not significantly predict risk of CVD
events over a mean follow-up of 18.6 years.”

Other large studies recently showed that NAFLD was inde-
pendently associated with an increased incidence of acute
myocardial infarction, even in primary care populations.®! *
However, this latter finding has recently been questioned in
a population-based case—control study that failed to find any
significant association between a recorded diagnosis of NAFLD
and risk of developing myocardial infarction and stroke, after
adjustment for traditional CVD risk factors, using electronic
records from four large European primary healthcare data-
bases.”> However, the lack of any independent association
between NAFLD and risk of acute myocardial infarction and
stroke reported in this study*’ may not be because such an asso-
ciation does not exist; but it is probably due to misclassification
bias of NAFLD cases and other important methodological issues
within the study design.**

It is worth noting that some observational cohort studies,
mostly performed in Asian populations, have also reported
that there is a significant and independent association between
NAFLD and long-term risk of progression of subclinical coro-
nary or carotid atherosclerosis, and, most importantly, that
regression of NAFLD on ultrasonography over time is associated
with a lower risk of carotid atherosclerosis development.* ¢

Finally, convincing evidence indicates that NAFLD is strongly
associated with valvular heart disease (mainly aortic valve scle-
rosis and mitral annulus calcification), increased risk of cardio-
myopathy (mainly left ventricular dysfunction and hypertrophy,
leading to the development of heart failure), arrhythmias
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Figure 2 Random-effects meta-analysis on the risk of fatal and non-
fatal CVD events associated with more ‘severe’ NAFLD (defined either
by presence of hepatic steatosis on imaging plus either increased serum
gamma-glutamyltransferase levels or high NAFLD fibrosis score or high
"8F-fluoro-deoxyglucose uptake on positron emission tomography, or by
increasing fibrosis stage on histology). Data are derived from Targher et
al’ (reproduced with permission). CVD, cardiovascular disease; NAFLD,
non-alcoholic fatty liver disease.
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(mainly permanent atrial fibrillation and increased QTc interval
prolongation) and some cardiac conduction defects (mainly
persistent first-degree atrioventricular block and left anterior
hemiblock).”” 2

Collectively, the available evidence not only demonstrates the
strong association between NAFLD and CVD but also supports
the view that NAFLD may increase risk of incident CVD events.
These findings may have important implications for decision
making in public health and clinical practice, and highlight the
urgency of developing effective treatments for NAFLD. On this
background of evidence, the European and American (published
by the American Association for the Study for Liver Diseases
(AASLD)) society guidelines for the management of NAFLD
strongly recommended that all patients with NAFLD should
undergo careful cardiovascular surveillance.”” *° To this end,
a possible strategy at least in adults with NAFLD on primary
CVD prevention might be to rely on the use of the Framingham
risk score or other risk charts for CVD risk assessment.”’3*
Although the Framingham risk score has been validated for use
in NAFLD patients® **, it remains to be demonstrated whether
addition of NAFLD improves the accuracy of risk score systems
to predict CVD events. Moreover, large randomised controlled
trials (RCTs) with CVD outcomes that focus on treatments for
liver disease in NAFLD are also needed to better establish a
causal relationship between treatment of NAFLD and effects of
improvements in liver disease on incident CVD events. Despite
tremendous research advancements in NAFLD, our under-
standing of sex differences in NAFLD remains insufficient.”” Tt is
known that CVD and NAFLD are both modulated by advancing
age, sex, reproductive stage (ie, menopausal status) and synthetic
hormone use.’ 3*° Recent evidence also suggests that women
with NAFLD lose the CVD protection conferred by the female
sex, and their global risk is underestimated by current CVD risk

score systems.*® An adequate consideration of age, sex differ-
ences, sex hormones/menopausal status and other reproductive
information in clinical investigation and gene association studies
of NAFLD will be required to fill current gaps and implement
precision medicine for NAFLD patients.* In the meantime, also
in accord with the AASLD clinical guidelines, we strongly recom-
mend that aggressive modification of coexisting cardiometabolic
risk factors should be considered in all patients with NAFLD as
these patients are at high risk for CVD mortality and morbidity.*’

Mechanisms linking NAFLD to CVD and other cardiac
complications

The pathophysiology behind the association of NAFLD with
CVD and other cardiac complications is incompletely under-
stood and may involve other pathways besides insulin resistance,
for example, low-grade inflammation, oxidative stress and the
effects of perturbations in the gut microbiota. (figure 3)** Low-
grade systemic inflammation is a key feature of many metabolic
diseases, such as T2DM, obesity and related disorders including
NAFLD. NAFLD is not only linked to CVD and T2DM, but
also to chronic kidney disease.'” Importantly, these associations
are especially relevant in patients with NASH, suggesting that
liver inflammation may directly contribute to the development
of these extrahepatic diseases.

Multiple sources of cytokines drive liver inflammation and
extrahepatic complications

Whereas it is recognised that liver fibrosis determines long-term
liver prognosis in NAFLD, it is generally accepted that liver
inflammation precedes fibrosis in most instances. However,
hepatic fat accumulation may also lead to liver damage, that
is, fibrosis, independent from inflammation.*” In addition, it
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Figure 3  Putative mechanisms linking NAFLD to ischaemic heart disease and other cardiac complications. Low-grade systemic inflammation
plays a crucial role in the pathophysiology of cardiomyopathy and arrhythmias associated with NAFLD, and may also contribute to the development
of ischaemic heart disease. In NAFLD, low-grade systemic inflammation is generated by complex inter-relationships between diet/food, the
gastrointestinal tract, host factors such as genetics, the visceral adipose tissue and the liver. the liver is a major cytokine producer in NAFLD. NAFLD,

non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis.
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Figure 4 The figure schematically summarises the inter-relationships
between each condition (ie, NAFLD, T2DM and CVD) from the results
of prospective cohort studies and also illustrates where randomised
controlled trials have shown pioglitazone treatment acts to decrease
risk of clinical outcomes. CVD, cardiovascular disease; Mets, metabolic
syndrome; MI, myocardial infarction; NAFLD, non-alcoholic fatty liver
disease; NASH, non-alcoholic steatohepatitis; T2DM, type 2 diabetes
mellitus.

is well recognised that advanced disease (ie, fibrosis stage 3-4)
is characterised by hepatic fat loss and less inflammation but
increased adiponectin levels potentially contributing to this
phenotype.* Importantly, liver inflammation is accompanied by
hepatic accumulation of inflammatory leukocytes and increased
hepatic and extrahepatic cytokine production.** ** It has also
to be acknowledged that inflammation might be present in the
liver intermittently and/or in a chronic-relapsing manner. This
could also explain why liver fibrosis might play a role in CVD
development.*® Many preclinical and clinical studies have shown
that blockade of proinflammatory cytokines, such as interleukin
(IL)-11, not only attenuates steatosis but also liver inflamma-
tion and fibrosis development®. Although various sites of cyto-
kine production are assumed, such as the liver, adipose tissue
and gastrointestinal tract, it remains unclear how much each
compartment contributes to overall inflammation observed in
NAFLD. The ‘multiple-hits’ hypothesis proposed a decade ago
highlighted these different compartments as sources of cytokine
production.**

Various lipid-related pathways may ‘drive’ hepatic inflam-
matory pathways in NAFLD.* * Whereas it had been initially
believed that mainly intrahepatic triglyceride accumulation
might contribute to liver inflammation, several studies have
highlighted other pathways that may increase inflammation.
These include enzymes involved in fatty acid synthesis, certain
sphingolipids and polyunsaturated-derived eicosanoids, and
specialised proresolving lipid mediators.’® Saturated fat induces
more pronounced increases in intrahepatic triglyceride content
and insulin resistance compared with unsaturated fat and simple
sugars.’’ Plasma lipids might also be disease relevant as shown
for certain ceramides which concentrations were independently
associated with greater severity of coronary artery stenosis in
the left anterior descending artery.’> Mitochondrial dysfunction
and endoplasmic reticulum stress activation are also key factors
contributing to NAFLD and insulin resistance.”® Reducing endo-
plasmic reticulum stress by lipid chaperones reduces atheroscle-
rosis, a key component in the clinical presentation of NAFLD.**

A link between dyslipidaemia and hepatic inflammation has
also been suggested by recent data showing that proprotein
convertase subtilisin/kexin type-7 gene variations correlate with
severity of liver disease in human NAFLD.** Furthermore, the
presence of liver fat has also been linked to plasma inflamma-
tory biomarkers in the Framingham Heart Study.’® Extracellular

vesicles released by steatotic hepatocytes are also able to drive
endothelial inflammation and atherogenesis.”” These vesicles
are characterised by altered miRNA expression profiles facil-
itating vascular inflammation by miR-1 release and nuclear
factor (NF)-kB activation.’” Besides the importance of pathways
in adipose tissue, plasma lipids appear to be of crucial relevance
in the association between NAFLD and CVD risk.”® Certain
genetic variants associated with NAFLD, such as the patatin-
like phospholipase domain-containing protein 3 (PNPLA3) and
the transmembrane 6 superfamily 2 (TM6SF2) gene variants
may protect against CVD risk and variants in glucokinase regu-
latory protein (GCKR) may be associated with increased CVD
risk, perhaps mediated by a decrease in the atherogenic dyslip-
idaemic lipid profile in both PNPLA3 and TM6SF2 carriers
and increase in the atherogenic dyslipidaemic profile in GCKR
carriers.”® However, further research is needed to better under-
stand whether ‘genetic-related NAFLD’ and ‘metabolic-related
NAFLD’ may exert differential effects on risk of incident CVD
events.'?%’

Expanded visceral adipose tissue is a major site of low-grade
systemic inflammation in NAFLD. Increased plasma IL-6
concentrations have also been associated with subclinical athero-
sclerosis in population-based studies®’, and earlier studies have
shown that visceral adipose tissue contributes at least 35% of
circulating levels of IL-6, a major proinflammatory cytokine in
obesity-related disorders that is mainly responsible for increased
plasma C reactive protein levels.®' Visceral adipose tissue also
expresses much higher concentrations of IL-6, IL-1p and tumour
necrosis factor (TNF)-o. compared with the liver and profound
weight loss almost eliminates this expression, especially in
adipose tissue.®? © Expanded visceral adipose tissue might also
affect NAFLD not only via the secretion of proinflammatory
mediators as pharmacological inhibition of adipose triglyceride
lipase by atglistatin inhibits high-fat diet induced insulin resis-
tance and NAFLD®, establishing also a non-inflammatory
‘adipose tissue-liver’ axis.

Proinflammatory pathways targeting vessels and the heart in
NAFLD

Ectopic fat depots in the epicardium, pericardium and myocar-
dium are associated with NAFLD and characterised by distinct
metabolic signatures as demonstrated by magnetic resonance
spectroscopy.”’ To date, it is not known whether proinflam-
matory pathways in ectopic fat directly affect cardiac function
and atherosclerosis development. In systemic inflammatory
diseases such as rheumatoid arthritis, there is an increased risk
of sudden cardiac death and arrhythmias®®, and macrophage-
derived IL-1B induces arrhythmias in diabetic mice.®” A meta-
analysis has shown that increased proinflammatory biomarkers,
such as plasma IL-6 and C reactive protein levels, are associated
with an increased incidence of atrial fibrillation®®, and whether
decreasing pro-inflammatory biomarkers with a targeted anti-
inflammatory agent reduces risk of CVD events has been tested
in the Canakinumab Antiinflammatory Thrombosis Outcome
Study (CANTOS) trial.®” In this proof-of-concept RCT, treat-
ment with canakinumab (ie, an anti-IL-1B monoclonal antibody)
led to a lower rate of recurrent CVD events than placebo, inde-
pendent of lipid-level lowering.®” Also other proinflammatory
cytokines, such as TNF-a and IL-17, have the capability, at least
in preclinical studies, to induce cardiac arrhythmias.”® Intense
physical endurance induced atrial arrhythmia susceptibility
in rats, via a TNFo-dependent mechanism.”’ IL-17, another
proinflammatory cytokine, contributes to ischaemia-induced
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Table 1 Principal phase two placebo-controlled or head-to-head RCTs testing the efficacy and safety of antihyperglycaemic drugs in patients with
NAFLD or NASH

Liver Liver Liver NASH Major adverse

Liver enzymes fat* inflammationt  fibrosist resolutiont effects
Metformin Improved Improved No effect No effect No effect Gastrointestinal
Glitazones Improved Improved Improved Improved Improved Weight gain (mild),
(pioglitazone, rosiglitazone) oedema, heart failure,
bone fractures

GLP-1 receptor agonists Improved Improved Improved No effect Improved Gastrointestinal
(liraglutide, exenatide)
DPP-4 inhibitors Improved No effect Unknown Unknown Unknown Pancreatic, joint pain
(sitagliptin, vildagliptin)
SGLT-2 inhibitors Improved Improved Unknown Unknown Unknown Genitourinary infections,

(dapaglifozin, empagliflozin, canaglifozin)

dehydration

NB: The aforementioned data are derived by an updated systematic review [104] that included phase 2 head-to-head or placebo-controlled RCTs of adults or children with
NAFLD or NASH, which used an European Medicines Agency-approved antihyperglycaemic drug for treatment of NAFLD or NASH. Only RCTs that had at least 20 patients per

treatment arms of interest were included in the systematic review.

Metformin, n=6 RCTs involving a total of 573 individuals, most of whom (>90%) did not have T2DM, who were treated for a median of 9 months. Four RCTs had liver biopsy

data.

Glitazones, n=8 (6 pioglitazone and 2 rosiglitazone) RCTs involving a total of 828 individuals, most of whom (85%) did not have T2DM, who were treated for a median of 12

months. Seven RCTs had liver biopsy data.

GLP-1 RAs, n= 6 randomised controlled trials involving a total of 396 individuals, most of whom (73%) had T2DM, who were treated for a median of 6 months. Only one RCT

had liver biopsy data (ie, the LEAN trial).

DPP-4 inhibitors, n=4 RCTs involving a total of 241 individuals with T2DM or pre-diabetes, who were treated for a median of 6 months. No RCTs with liver biopsy data.

SGLT-2 inhibitors, n=7 RCTs involving a total of 579 individuals (100% had T2DM), who were treated for a median of 6 months. No RCTs with liver biopsy data.

*RCTs where liver fat was determined either by imaging methods (ie, ultrasound and MRI or spectroscopy) or by histology.

tRCTs where liver inflammation, fibrosis and resolution of NASH was determined by liver biopsy.

DPP-4, dipeptidyl peptidase 4 inhibitors; GLP-1RAs, glucagon-like peptide-1 receptor agonists; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; RCT,
randomised controlled trial; SGLT-2, sodium-glucose cotransporter 2 inhibitors; T2DM, type 2 diabetes mellitus.

arrhythmias in rabbits’?, and IL-1B, TNFo and IL-6 contribute
to arrhythmias in rats.”

NAFLD, microbiome and low-grade inflammation

There is an increasing evidence that the gut microbiota controls
metabolic functions and is involved in NAFLD pathogenesis.
Early animal experiments suggested that the gut microbiota
is crucial for development of adipose tissue’* and evolution
of NAFLD.” A potential role for the intestinal microbiota in
human NAFLD has been recently presented.”® Advanced liver
fibrosis was associated with an increased abundance of Proteo-
bacteria and Escherichia coli and a decrease in Firmicutes.
Interestingly, a gut microbiome-specific signature has been
demonstrated in NAFLD-related cirrhosis.”” Also in children
an inflammation-related and fibrosis-related gut microbiome
signature was observed with high presence of Prevotella copri.”
At a species level, concentrations of Ruminococcus, Blautia and
Dorea were increased in NASH patients.”” A profound intestinal
dysbiosis has also been observed in NAFLD that is independent
of obesity and insulin resistance.*’ Faecalibacterium prausnitzii,
a well-defined anti-inflammatory bacterial strain, was substan-
tially decreased in NAFLD patients®! and substantial changes in
the gut microbiome with a decrease in Collinsella and Parabacte-
roides have been observed in NAFLD-associated coronary heart
disease.®*

The gut microbiota affects substantially circulating metabolites
in NAFLD.* Phenylacetate is associated with hepatic steatosis
and faecal transfer from obese women with high-grade steatosis
into mice resulted in hepatic steatosis, as did feeding phenylace-
tate to mice.’? Other gut-derived metabolites might be involved
in NAFLD pathogenesis.** 3-(4-hydroxyphenyl)-lactate, mainly
derived from Proteobacteria, was associated (in two independent
patient cohorts) with hepatic steatosis and degree of fibrosis.**
Bacterial components may also be present in the livers in NAFLD,

as a meta-taxonomic signature and also increased endotoxin
has been detected in the livers.% #. All these studies support a
role for intestinal microbiota in NAFLD pathogenesis and hold
the promise that manipulation at this level might improve liver
disease phenotype. That said, to date, it remains uncertain what
prebiotics, probiotics or synbiotics should be used to change the
gut microbiota. Moreover, it is not known which gut microbiota
need to be modified, both in type and in quantity, in order to
benefit the liver and/or CVD risk in NAFLD. A recent phase
2 RCT tested whether 1-year administration of a synbiotic
combination of probiotic and prebiotic agents affected hepatic
fat content (assessed by magnetic resonance spectroscopy), non-
invasive fibrosis biomarkers, and the composition of the faecal
microbiome in 104 UK patients with NAFLD. The results of this
RCT showed that the synbiotic altered the faecal microbiome,
but did not reduce hepatic fat content or biomarkers of liver
fibrosis. Faecal samples from patients, who received the synbi-
otic, had higher proportions of Bifidobacterium and Faecalibac-
terium, and reductions in Oscillibacter and Alistipes, compared
with baseline (changes were not observed in the placebo group).®”

Trimethylamine N-oxide: prototypic microbiota-derived
metabolite contributing to CVD

Gut microbes and related metabolites have been recently
discovered as potentially important players in CVD. Commen-
sals convert certain nutrients such as choline or carnitine into
trimethylamine (TMA), which is metabolised in the liver by
flavin mono-oxygenases to TMA N-oxide (TMAO). L-carni-
tine enriched diet in humans is converted into TMAQ, an effect
which was less pronounced in vegans/vegetarians.®® This has also
been observed after chronic red meat consumption and, interest-
ingly, discontinuation of red meat consumption reduced TMAO
levels within 4 weeks.®

Targher G, et al. Gut 2020;69:1691-1705. doi:10.1136/gutjnl-2020-320622
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Recent advances in clinical practice

Many studies have shown that higher circulating TMAO
levels are associated with adverse CVD outcomes.”® *! Further-
more, some meta-analyses have also confirmed a strong asso-
ciation between circulating TMAO levels and risk of fatal
and non-fatal CVD events.”> ** Patients with ischaemic stroke
also exhibit higher TMAO levels than healthy controls™, and
increased TMAO levels also predict CVD mortality in patients
with existing peripheral arterial disease.” Interestingly, so far
only a very few reports exist investigating circulating TMAO
levels in NAFLD cohorts. In a study assessing 60 biopsy-proven
NAFLD subjects, a greater severity of NAFLD was associated
with higher TMAO levels but lower betaine and betaine/choline
ratio.”® Despite the shortage of reports on TMAO in NAFLD,
it is increasingly accepted that circulating TMAO levels are a
prominent biomarker of CVD, which is the most common
cause of mortality in NAFLD patients. In addition, an associ-
ation with thrombosis events was both shown clinically and
experimentally as TMAO alters calcium signalling in platelets,
and enhances responsiveness and in vivo thrombosis poten-
tial in various animal models.””. Inhibitors of TMA-generating
enzymes significantly reduced plasma TMAO levels for up to 3
days and rescued diet-induced enhanced platelet responsiveness
and thrombus formation.”® Another study observed a U-shaped
association between TMAO levels and mortality risk in patients
with acute venous thromboembolism, but it was not associated
with recurrent venous thromboembolism.”

The explanation as to how elevated TMAO levels might
increase risk of CVD/cardiac complications is uncertain. A recent
study found that TMAO affects the cardiac autonomic nervous
system, promoting ischaemia-induced ventricular arrhyth-
mias.'® Another mode of action might involve the endoplasmic
reticulum stress kinase PERK (ie protein kinase RNA-like endo-
plasmic reticulum kinase). PERK is a receptor for TMAO, and
its binding results in PERK activation and induction of the tran-
scription factor FoxO1, a key factor in metabolic disorders.'"!
Interestingly, TMAO may directly activate pro-inflammatory
pathways as it upregulates NLRP3 and NF-xB and thereby
promotes vascular calcification.' Thus, TMAO reflects a crucial
microbiota-derived biomarker of atherosclerosis and potentially
of NAFLD-associated CVD.

Pharmacological treatment
The cornerstone of NAFLD management remains lifestyle modi-
fication. Weight loss, increased physical activity and reductions
in coexisting cardiometabolic risk factors may all have benefi-
cial effects in NAFLD. Weight loss of approximately 5%-7% is
able to decrease hepatic steatosis; however, an approximate 10%
wt loss is required to reverse NASH and weight loss of =10%
may also improve or reverse hepatic fibrosis.”” *° Additionally,
bariatric or weight loss surgery has been shown to ameliorate
many CVD risk factors and may also be directly beneficial in
patients with early liver disease. However, it is beyond the remit
of this review to discuss the metabolic and vascular benefits of
bariatric surgery in NAFLD and the reader is referred to recent
clinical practice guidelines for the perioperative nutrition, meta-
bolic and non-surgical support of patients undergoing bariatric
procedures.'®

Presently, there are no approved pharmacological treatments
for NAFLD or NASH. From a recent systematic review, it clearly
emerges that the major issue in this field is the scarcity of high
quality, adequately powered RCTs of sufficient duration that
include clinically relevant hepatic endpoints (ie, liver histolog-
ical data).'® However, there are several novel therapeutic agents

under active investigation, and a variety of other drugs will also
likely emerge over the next few years, allowing a more staged
approach to the management of NAFLD that is likely to vary
from patient to patient. That said, in selecting a specific drug
for the treatment of NAFLD, we believe that pharmacological
treatments should be chosen that target not only liver-related
complications (cirrhosis and hepatocellular carcinoma (HCC))
but also the increased CVD risk in NAFLD.'® Additionally, since
NAFLD is a risk factor for incident T2DM % (which is also a risk
factor for CVD), the ideal treatment for NAFLD would not only
ameliorate liver disease, but also attenuate risk of developing
T2DM'”, and thereby consequently lessen the risk of CVD.

It is beyond the scope of this review to discuss the evidence
for all drugs that have been tested in the treatment of NAFLD.
Therefore, we have focused on drug treatment options that might
benefit not only the liver but also have beneficial (or adverse
effects) on NAFLD-associated CVD risk. As discussed above,
there is also a growing interest in the role of dysbiosis in both
the pathogenesis of NAFLD and CVD. Whether faecal trans-
plantation'®® to improve the gut microbiota profile and drugs
relevant to the treatment of NASH, can favourably affect: gut
microbiota; modify intestinal permeability and intestinal func-
tions; and thereby treat NAFLD and CVD, remains uncertain.
Presently, it is not known whether faecal transplantion benefits
NAFLD. However, a recent pilot in which 20 men with meta-
bolic syndrome were randomised to single lean vegan-donor
or autologous faecal microbiota transplantation, caused detect-
able changes in intestinal microbiota composition, but failed to
induce changes in TMAO production capacity or parameters
related to vascular inflammation.'%’

We have also briefly discussed below the evidence to date
showing whether (or not) drugs relevant to the treatment
of NAFLD and CVD can affect the gut microbiota, or gut
microbiota-related mechanisms relevant to liver and vascular
diseases.

Pioglitazone

The discovery of peroxisome proliferator-activated receptor
gamma (PPAR-y) in adipose tissue produced a step change in
adipose tissue research.''” PPARs are a group of nuclear receptor
proteins that function as transcription regulators and PPAR-y
heterodimerises with retinoid X receptor and binds to specific
DNA sequences to regulate adipocyte differentiation and func-
tion, lipid metabolism and inflammation.""" Glitazones (eg,
rosiglitazone and pioglitazone) are selective activators of PPAR-y
and pioglitazone is a potent insulin sensitizer that is currently
licensed for treatment of T2DM. Although there are well-
recognised side effects of pioglitazone, such as a mild increase in
body weight (especially subcutaneous fat depots), fluid retention
(oedema and heart failure) and an increase in fragility fractures,
there are also many benefits of pioglitazone besides its very
durable effect to reduce plasma glucose concentrations in people
with T2DM.

Since NAFLD independently increases risk of incident T2DM
by ~2.2-fold'® and pioglitazone decreases risk of incident
T2DM in individuals with pre-diabetes''?, it is reasonable to
assume that pioglitazone may also decrease risk of incident
T2DM in patients with NAFLD. Moreover, NAFLD increases
risk of hypertension'”, a recognised CVD risk factor, and
pioglitazone lowers blood pressure.''* NAFLD is an indepen-
dent risk factor for CVD” and both ischaemic heart disease and
stroke are two of the leading causes of death worldwide. T2DM
also increases risk of major CVD events ~twofold'* ! and
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pioglitazone has been shown in the PROactive trial (PROspective
pioglitAzone Clinical Trial In macroVascular Events) to decrease
the composite of all-cause mortality, non-fatal myocardial infarc-
tion or stroke in T2DM patients with macrovascular disease.'"’
In this RCT, pioglitazone use was also associated with a 28%
decrease in myocardial infarction’'® and a 47% decrease in isch-
aemic stroke.'”” In support of these findings, a meta-analysis of
19 RCTs enrolling ~16 500 patients showed a summary esti-
mate of an 18% decrease in the composite of all-cause mortality,
myocardial infarction or stroke (HR (HR) 0.82; 95% CI 0.72
to 0.94) with pioglitazone treatment.'”® Another meta-analysis
investigating the effect of pioglitazone on risk of CVD events
showed a benefit with pioglitazone in both patients with pre-
diabetes (or insulin resistance) and those with T2DM.'?*! Recent
evidence also showed that pioglitazone decreased risk of stroke
or myocardial infarction in patients without T2DM but with
insulin resistance after previous stroke or transient ischaemic
attack.'?? 12 A large umbrella review recently confirmed that
pioglitazone significantly decreased risk of major CVD events
but increased risk of heart failure.'**

Pioglitazone treatment has been tested in several placebo-
controlled RCTs in patients with biopsy-confirmed NASH and
pioglitazone treatment resulted in improvement in histologic
features of NAFLD and resolution of NASH in ~50% of patients;
regardless of diabetes status.'~'*® Interestingly, a recent meta-
analysis of eight RCTs (including a total of 516 adults with
biopsy-confirmed NASH) showed that pioglitazone improved
advanced fibrosis in NASH, even in patients without diabetes.'?’
Although the PPAR-}2 isoform is highly expressed in adipocytes,
PPAR- v1 isoform is also expressed in both hepatic stellate cells
and Kupffer cells. Pioglitazone effects on the liver are likely
mediated by a combination of indirect effects on the adipose
tissue to decrease free fatty acid flux to the liver and increase
adiponectin levels (resulting in improved hepatic steatosis); and
a direct effect of the drug on both Kupffer cells and stellate cells
to decrease hepatic inflammation and fibrogenesis. Based on the
available evidence, three sets of guidelines from the UK, Europe
and USA have strongly recommended pioglitazone for treatment
of NASH.2? 30 130

Although presently it is not possible to predict which patients
with NASH are going to achieve NASH resolution with piogl-
itazone use, a recent post hoc analysis of the Pioglitazone vs
Vitamin E vs Placebo for Treatment of Non-Diabetic Patients
with Nonalcoholic Steatohepatitis (PIVENS) trial'*® suggested
that after treatment with pioglitazone, patients with histo-
logical resolution of NASH had favourable changes in plasma
lipoprotein subfractions compared with those without NASH
resolution. In fact, individuals with NASH resolution had a
significantly increased mean peak low-density lipoprotein (LDL)
diameter and a higher frequency of LDL phenotype A (ie, large
buoyant LDL particles) at week 96, even after adjustment for
relevant confounding factors, including treatment group.'*!

To date, there is limited data regarding whether pioglita-
zone use may affect the gut microbiota. However, the PPAR-y
receptor is a butyrate sensor in the colonic lumen'?, and
microbiota-activated PPAR-y signalling has been reported to
prevent dysbiotic expansion of pathogenic bacteria by driving
the energy metabolism of colonic epithelial cells.”** In a mouse
model of dietary fructose-driven gut dysbiosis that caused
intestinal epithelial barrier impairment'**, the authors showed
that pioglitazone repaired intestinal epithelial barrier damage
by activating the NOD-like receptor family pyrin domain-
containing 6 (NLRP6) inflammasome. Thus, it is possible that
pioglitazone use could decrease the inflammatory stimulus from

lipopolysaccaride breaching the intestinal epithelial barrier, and
gaining access to the portal circulation.

Such is the wealth of evidence supporting its effectiveness in
decreasing risk of incident T2DM, treating hyperglycaemia in
T2DM and decreasing risk of major CVD events, pioglitazone
has been recently described as the ‘forgotten, cost-effective,
cardio-protective’ drug for T2DM."’ Given the evidence
described above supporting its use in the treatment of liver
disease in NASH, the overall evidence supports its use in NASH
assuming there are no contradictions to treatment with piogl-
itazone. Few drugs are free of side effects and clinicians need
to weigh up the balance of risk and benefits of prescribing this
drug in their individual patients with NASH. Figure 4 schemati-
cally shows the inter-relationships between NAFLD, T2DM and
CVD and where RCTs have shown pioglitazone treatment acts to
significantly decrease risk of clinical outcomes in each condition.
Were it not for the fact that pioglitazone treatment is associated
with an increased risk of weight gain, and a small increase in
bone fracture risk, pioglitazone treatment would be much more
widely used in treating patients with NASH.

Statins

There is limited high-quality data with histological liver
endpoints showing that statin use improves NASH."® There
is also limited data regarding whether statin use affects the gut
microbiota. That said, it has been suggested that the modulation
of gut microbiota by statins has an important role in the thera-
peutic actions of these drugs'?’, and these authors also suggested
that faecal microbiota transplantation also improved plasma
glucose concentrations. In this study using a mouse model of
high-fat diet-induced obesity, the association between gut micro-
biota and immune responses was investigated. Both atorvastatin
and rosuvastatin increased the abundance of the genera Bacte-
roides, Butyricimonas and Mucispirillum. The abundance of
these genera was correlated with the inflammatory response,
including levels of IL-1f and transforming growth factor-f1 in
the ileum. In addition, oral faecal microbiota transplantation
with faecal material collected from rosuvastatin-treated mouse
groups improved hyperglycaemia. Additionally, a proof-of-
concept study in individuals with dyslipidaemia showed that
4-8 weeks of rosuvastatin treatment significantly altered the gut
microbiome and the abundance of specific bacterial taxa, which
was correlated with the LDL-cholesterol-lowering response of
the drug."*® In this study, both Firmicutes and Fusobacteria were
inversely associated with plasma LDL-cholesterol concentra-
tions, while Cyanobacteria and Lentisphaerae were positively
associated with LDL-cholesterol concentrations. However, it is
important to note that this study lacked a control group, and the
bacterial sequencing was performed only after rosuvastatin treat-
ment. Consequently, the authors did not investigate the changes
in the gut microbiome. Finally, it has also been suggested that gut
microbiota may interact with statin treatments to both modify
farnesoid X receptor signalling and decrease statin bioavail-
ability, thereby potentially producing physiologically relevant
effects on liver lipid and glucose metabolism.'*’

A recent Expert Panel Statement concluded that the evidence
from: animal studies, five post hoc analyses of prospective
long-term survival studies, and five rather small biopsy-proven
NASH studies that investigated the effect of statins on the liver
in NAFLD, was not good enough to recommend statin treatment
specifically for treating liver disease in NAFLD.'*’ Notably, these
studies provided data that suggested biochemical and histolog-
ical improvement of NAFLD/NASH with statins and, in the
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clinical studies, large reductions in CVD events in patients with
NAFLD compared with those who did not have NAFLD.'
Recently, there has also been interest in whether statins specifi-
cally decrease risk of liver fibrosis. In a cross-sectional study of
346 individuals with T2DM of which 45% were taking statins,
multivariate analyses showed that statin use was inversely associ-
ated with significant liver fibrosis, despite statin-treated patients
being older, more frequently male and with poorer glycaemic
control than those without statins.'*' However, it should be
noted that to date, none of the available evidence is from RCTs
that have tested the prior hypothesis that statins decrease liver
fibrosis. Thus, the evidence is currently not good enough to
recommend statin usage in order to specifically treat NAFLD
or NASH. Nevertheless, pending forthcoming RCTs, clinicians
should consider combining statins and pioglitazone in those
patients with NAFLD or NASH, who are at high risk of CVD,
for the primary and secondary prevention of CVD.'*

Currently, the American College of Cardiology/American
Heart Association guidelines for primary CVD prevention recom-
mend statin use as a first-line treatment in patients with increased
plasma LDL-cholesterol concentrations (LDL-cholesterol =5
mmol/L); those with T2DM, who are 40-75 years of age; and
those determined to be at ‘sufficient’ CVD risk.'** Presently,
there is disagreement between different professional societies as
to what constitutes ‘sufficient’” CVD risk (to prescribe statins),
but in the above guidelines ‘sufficient’” CVD risk is defined as
=>7.5% risk of developing a CVD event over 10 years. Although
the CVD risk threshold that is required to advocate statin treat-
ment has been lowered considerably over the last 20 years, most
professional societies would endorse statin treatment when the
patient’s 10 year CVD risk estimation was =10%.

For estimating CVD risk in NAFLD patients, there are no
specific CVD risk prediction tools that take into account the
presence or severity of NAFLD. To date, there is insufficient
evidence to gauge whether knowing the patient has a diag-
nosis of NAFLD (with or without accompanying fibrosis) adds
to existing risk factors in CVD risk estimation. Consequently,
rather than recommending any specific CVD risk calculator, for
example, the Framingham risk score or the SCORE (System-
atic Coronary Risk Estimation) charts, it is better that a clini-
cian uses a risk calculator than not. Given that the evidence
discussed above suggests that NAFLD is a risk factor for CVD, it
is highly likely that prediction of 10-year CVD risk in NAFLD is
an underestimate of true CVD risk. Consequently, since statins
are safe in patients with NAFLD'*, it would seem logical to err
on the side of caution, and advocate use of statins to decrease
CVD risk when the 10-year CVD risk is =7.5%. There is also
some, more limited, evidence that statin treatment is associated
with a reduced risk of HCC, most strongly in Asian but also in
Western populations.'** However, RCTs with statin treatment
are required in populations at high risk of HCC, before advo-
cating this treatment specifically to attenuate risk of HCC.

Metformin and other newer antihyperglycaemic agents

Metformin represents the first-line choice for treatment of
T2DM worldwide. However, metformin is not currently recom-
mended as a specific treatment for NAFLD or NASH, mostly
due to its lack of efficacy on hepatic histological endpoints in
both adults and adolescents with biopsy-confirmed NASH,
irrespective of diabetes status.”” ** '%* To date, there remains
uncertainty about whether metformin reduces risk of major
CVD events."”* ' Interestingly, however, several preclinical
and observational studies and recent meta-analyses suggest that

metformin reduces risk of developing some types of cancer,
especially HCC.'® ' It has also become well accepted that
metformin has favourable effects on the intestinal microbiome.
Metformin treatment increases microbial diversity and specifi-
cally increases mucin-degrading Akkermansia muciniphila, as
well as several short-chain fatty acid-producing microbiota,
increasing levels of butyrate and propionate that are involved
in both glucose homoeostasis and maintaining colonic epithelial
integrity."** 1*°

Similar to metformin, no robust RCT data exist with histo-
logical liver endpoints as a primary outcome to formally
comment on the effectiveness of the use of the newer antihy-
perglycaemic agents, such as dipeptidyl peptidase-4 (DPP-4)
inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1
RAs) or sodium glucose cotransporter 2 (SGLT-2) inhibitors as
a treatment for NAFLD or NASH?’ *° 1% a5 shown in table 1.
Among these newer anti-hyperglycaemic drugs, GLP-1 RAs
seem to exert the most promising beneficial effects on NAFLD
or NASH. A recent systematic review examining the efficacy
of antihyperglycaemic drugs in patients with biopsy-proven or
imaging-defined NAFLD with or without T2DM has supported
the capability of GLP-1 RAs to reduce serum liver enzyme levels
and improve NAFLD as detected by imaging techniques or
liver histology.'® In particular, a phase 2 RCT involving 55 UK
obese patients with biopsy-proven NASH, it has been shown
that patients who were randomly assigned to liraglutide 1.8 mg/
day for 48 weeks had a greater histological resolution of NASH
and significant improvements in individual histologic scores of
NASH compared with those receiving placebo.”*® The authors
suggested that the beneficial effects of liraglutide on the histo-
logical liver endpoints were due both to its direct hepatic effect
and to concomitant weight loss as liraglutide is a potent treat-
ment to effect weight loss.”’” Importantly, liraglutide and other
long-acting GLP-1 RAs have also been shown to reduce risk of
adverse CVD and renal outcomes in patients with T2DM.'** 15!
For such reasons, if larger phase 3 RCTs confirm the prom-
ising findings of this RCT, it would be reasonable to assume
that GLP-1RAs will become a treatment option in NASH, espe-
cially in those patients who are obese or have T2DM. A recent
comparison of the effects of treatment with metformin vs the
GLP-1 agonist liraglutide on the gut microbiota in patients with
T2DM showed that patients taking metformin had a signifi-
cant increase in the relative abundance of the bacterial genus
Sutterella, whereas those taking liraglutide had a significant
increase in the genus Akkermansia. Thus, these preliminary
data suggest that these two anti-hyperglycaemic drugs have
differential effects on the microbiome, despite the fact that
both drugs are similarly effective in lowering plasma glucose
concentrations. >

A systematic review also supported the possibility that SGLT-2
inhibitors may improve liver fat content (as assessed by imaging
techniques) and serum liver enzymes.'®* However, most of the
RCTs testing these novel drugs are small with a short period
of follow-up, and importantly, to date, there are no placebo-
controlled RCTs examining the long-term effects of SGLT-2
inhibitors on histologic features of NAFLD.'™ Additionally,
there is also very limited data as to the effects of this class of drugs
on the gut microbiome. SGLT-2 inhibitors have been shown to
consistently reduce risk of major CVD events, heart failure and
renal outcomes in patients with T2DM.'** 1* Moreover, among
patients with systolic heart failure, the risk of worsening heart
failure or of CVD mortality was lower among those patients who
received the SGLT-2 inhibitor dapagliflozin than among those
who received placebo; regardless of the presence or absence of
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T2DM.'5* Thus, this effect may represent an attractive bonus for
the use of SGLT-2 inhibitors in NAFLD.

Obeticholic acid and other drugs
A number of phase 2 and phase 3 head-to-head or placebo-
controlled RCTs have tested the efficacy and safety of novel drug
treatments in NAFLD or NASH (table 2). Of these, obeticholic
acid is one of the more promising new agents for NASH treat-
ment. Obeticholic acid is a selective farnesoid X receptor agonist
that regulates bile acid and lipid metabolism. Obeticholic acid at a
dose of 25 mg/day has effected significant improvements in liver
histology in the phase 2 FLINT (Farnesoid X Receptor Ligand
Obeticholic Acid in NASH Treatment) trial'*®, as well as well
as positive ad interim results in the ongoing phase 3 REGEN-
ERATE trial."*® Obeticholic acid was also associated with a mild
decrease in body weight. However, in both trials, obeticholic
acid caused marked increases in plasma LDL-cholesterol levels
(nearly a 40 mg/dL increase) within 1 month of treatment (and
more than half of patients treated with obeticholic acid started
statin therapy in the REGENERATE trial).'”* ¢ Recently, it
has been suggested that obeticholic may also modify the gut
microbiota and produce a favourable effect on the gut micro-
biome."” In this experimental study, treatment with antibiotic
(that removed normal commensal bacteria) attenuated the effect
of obeticholic acid in mice. Obeticholic acid treatment mark-
edly increased abundance of Blautia and the concentration of
taurine-bound bile acid induced by the high fat diet was reduced
in liver."”” In a phase 1 RCT in man, treatment with obeticholic
acid for 17 days, that suppressed bile acid synthesis, produced a
reversible induction of Gram-positive bacteria that are found in
the small intestine. There was also an increase in the representa-
tion of microbial genomic pathways involved in DNA synthesis
and amino acid metabolism with obeticholic acid treatment."®
In a two phase RCT, a 1-year treatment with elafibranor
120 mg/day (ie, a dual agonist of peroxisome-proliferator acti-
vated receptor [PPAR]-o. and PPAR-3) was significantly asso-
ciated with a higher rate of NASH resolution than occurred
in the placebo arm. Elafibranor also improved plasma LDL-
cholesterol, triglyceride and glucose levels."”” Tt is uncertain
whether elafibranor modifies the gut microbiome, and longer-
term phase 3 RCTs are also required to confirm the positive
effects of elafibranor on the liver in NASH.

CONCLUSIONS

This review supports the notion that CVD is the leading cause
of death in NAFLD patients and that NAFLD is closely asso-
ciated with an increased risk of CVD events and other cardiac
complications (ie, cardiomyopathy, cardiac valvular calcifica-
tion and arrhythmias) independent of traditional cardiovas-
cular risk factors and metabolic syndrome features. Although
further research is needed to draw a definitive conclusion,
these observations raise the possibility that NAFLD, especially
its more advanced forms, is directly involved in the patho-
genesis of CVD. Recent evidence discussed here suggests that
this process is mediated not only via the atherogenic dyslip-
idaemia occurring with features of the metabolic syndrome
and NAFLD, but also through the systemic release of multiple
proinflammatory and proatherogenic mediators from both
the steatotic and inflamed/fibrotic liver and the intestine via
changes in gut microbiota. The existing evidence to date rein-
forces the notion that NAFLD is a multisystem disease affecting
many extrahepatic organ systems, including the cardiovascular
system. Thus, we believe that a purely ‘liver-centric’ approach

to NAFLD is not sufficient and treatment of this burdensome
liver disease needs to shift to a more patient-centred, multi-
disciplinary team-based approach. Since more patients with
NAFLD will die from CVD than from the consequences of
their liver disease, we strongly believe that a careful assess-
ment of the 10-year CVD risk is mandatory in all persons with
NAFLD, together with early and aggressive treatment of all
coexisting cardiometabolic risk factors.

Correction notice This article has been corrected since it published Online First.
The ORCID ID's have been added and table 2 has been corrected.
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