Risk of severe illness from COVID-19 in patients with metabolic dysfunctionassociated fatty liver disease and increased fibrosis scores

A recent study reported that patients with severe COVID-19 were more likely to have non-alcoholic fatty liver disease (NAFLD) compared with those with non-severe COVID-19 illness. However, the prognosis of NAFLD (recently renamed metabolic dysfunction-associated fatty liver disease (MAFLD)²) is determined by the severity of liver fibrosis. Herefore postulated that patients with MAFLD with increased non-invasive liver fibrosis scores are at higher risk of severe illness from COVID-19.

We studied 310 patients with laboratoryconfirmed COVID-19 who were consecutively hospitalised at four sites in Zhejiang Province, China, between January and February 2020. Some of these patients (n=150) have been included in a prior study examining the association between obesity and COVID-19 severity.5 Patients with viral hepatitis, excessive alcohol consumption, chronic pulmonary diseases or active cancers were excluded. Clinical and laboratory data were collected at hospital admission. All patients were screened for hepatic steatosis by computed tomography and subsequently diagnosed as MAFLD.6 The originally validated cut-points for fibrosis-4 (FIB-4) index and NAFLD fibrosis score (NFS) were used to categorise liver fibrosis probability as low, intermediate or high.7 COVID-19 severity was classified as severe and non-severe.8 The study protocol was approved by the local ethics committees of the four hospitals.

In our cohort of 310 confirmed cases of COVID-19, 94 (30.3%) patients had MAFLD. As shown in table 1, patients with MAFLD with intermediate or high FIB-4 scores were more likely to be older, obese, have diabetes and have higher NFS, higher liver enzymes, higher C reactive protein, as well as lower levels of lymphocyte count, platelet count, triglycerides and high-density lipoprotein cholesterol compared with their counterparts with low FIB-4 score or those without MAFLD. Notably, the severity

Gut August 2020 Vol 69 No 8 1545

Table 1 Main clinical and biochemical characteristics of patients with laboratory-confirmed COVID-19, stratified by the presence or absence of imaging-defined MAFLD with increasing levels of FIB-4 score

	No MAFLD	MAFLD with low FIB-4 (≤1.3)	MAFLD with intermediate FIB-4 (1.3–2.67)	MAFLD with high FIB-4 (>2.67)	P value
N	216	44	36	14	
Age (years)	45.9±15.4	41.2±14.2	54.2±10.8	59.9±9.1	<0.001
Male sex (%)	43.5	54.6	63.9	57.1	0.086
BMI (kg/m²)	23.0±3.2	26.5±4.7	26.6±3.2	26.1±2.8	<0.001
Obesity (%)	25.9	61.4	75.0	64.3	<0.001
Current smokers (%)	8.8	2.3	11.1	7.1	0.768
Systolic blood pressure (mm Hg)	130±17	136±15	136±16	136±14	0.047
Diastolic blood pressure (mm Hg)	80±11	84±11	82±11	79±8	0.117
Prior diabetes (%)	7.4	20.4	13.9	28.6	0.010
White blood count (×10 ⁹ /L)	4.90 (3.9-6.2)	5.35 (4.5-6.7)	4.69 (3.8-6.6)	4.90 (3.2-5.8)	0.254
Neutrophil count (×10 ⁹ /L)	3.05 (2.2-4.1)	3.49 (2.6-4.2)	3.0 (2.4-4.7)	3.20 (1.9-4.5)	0.759
Lymphocyte count (×10 ⁹ /L)	1.20 (0.9–1.6)	1.40 (1.2-2.0)	1.10 (0.7–1.3)	0.92 (0.7-1.14)	<0.001
Haemoglobin (g/L)	132.4±16	136.6±15	135.5±12	135.8±17	0.305
Platelet count (×100 000/mm³)	211±72	246±75	183±64	125±24	<0.001
Prothrombin time (s), n=211	12.1±1.3	11.9±2.3	12.2±1.2	12.3±1.1	0.754
APTT (s), n=211	31.5±3.8	32.7±5.4	32.8±3.7	35.3±7.4	0.026
D-dimer (mg/L), n=183	0.18 (0.11-0.29)	0.21 (0.1-0.5)	0.21 (0.1-0.4)	0.27 (0.1-0.4)	0.432
C reactive protein (mg/L)	7.9 (1.9–24.9)	8.6 (2.9-23.6)	25.4 (8.7–53.3)	25.5 (8.7–53.4)	<0.001
Procalcitonin (ng/mL), n=190	0.05 (0.03-0.25)	0.08 (0.04-0.25)	0.06 (0.04-0.10)	0.20 (0.08-0.25)	0.077
Albumin (g/L), n=286	41.4 (38.0-44.5)	42.3 (37.3-44.6)	41.0 (36.9-43.1)	38.6 (37.7-42.8)	0.348
Total bilirubin (µmol/L)	10.5 (7.0–15.5)	10.1 (7.5–15.6)	12.0 (9.5–16.6)	15.3 (11.8–17.3)	0.025
AST (IU/L)	22 (17–27)	23 (19–32)	32 (26–50)	44 (29–83)	<0.001
ALT (IU/L)	18 (13–27)	30 (22–52)	28 (22–48)	27 (16–82)	<0.001
GGT (IU/L)	21 (14–33)	31 (22–54)	51 (24–81)	49 (32–102)	<0.001
Elevated AST>40 IU/L (%)	7.9	9.1	27.8	57.1	<0.001
Elevated ALT >40 IU/L (%)	13.0	29.6	30.6	42.9	<0.001
Total cholesterol (mmol/L)	3.98±0.8	4.11±0.9	3.73±0.7	3.82±1.0	0.217
Triglycerides (mmol/L)	1.15 (0.9–1.7)	1.61 (1.0-2.1)	1.48 (1.1–1.8)	1.11 (0.9–1.6)	<0.005
HDL cholesterol (mmol/L)	1.18±0.4	0.96±0.2	1.06±0.2	1.09±0.4	<0.005
LDL cholesterol (mmol/L)	2.23±0.7	2.54±0.8	2.10±0.7	2.20±0.8	0.116
Hospital stay (days)	18 (13–24)	18 (13–22)	22 (16–29)	17 (6–23)	0.122
NAFLD fibrosis score, n=286	-1.82 (-2.8 to -1.0)	-2.61 (-3.1 to -1.9)	-0.68 (-1.4 to -0.2)	+0.26 (-0.03 to 1.6)	<0.005
COVID-19 severity					<0.001
Non-severe (%)	88.4	86.4	63.9	57.1	
Severe (%)	11.6	13.6	36.1	42.9	

Sample size, n=310, except where indicated. Diabetes was diagnosed as self-reported history of disease and/or specific drug treatment. Obesity was diagnosed as BMI>25 kg/m². Data are expressed as means=50, medians and IQRS (in parentheses) or frequencies. Differences among the four groups of patients were tested by Fisher's exact test for categorical variables one-way analysis of variance for normally distributed continuous variables or the Kruskal-Wallis test for not normally distributed continuous variables. For the sake of clarity, significant p values are highlighted in bold.

P Valuation to the Company of the Co

of COVID-19 illness markedly increased among patients with MAFLD with intermediate or high FIB-4 scores.

The severity of COVID-19 illness was associated with intermediate (unadjusted OR 4.32, 95% CI 1.94 to 9.59) or high (unadjusted-OR 5.73, 95% CI 1.84 to 17.9) FIB4 scores among patients with MAFLD (table 2, model 1A). This association remained significant after adjusting for sex, obesity and diabetes (model 1B). We did not additionally adjust for age, because this variable was incorporated in the FIB-4 score. Similar to the main analysis, when the intermediate and high FIB-4 categories were combined, the risk of severe COVID-19 illness was increased with intermediate/high FIB-4 score in unadjusted (model 2A) and multivariateadjusted analyses (model 2B).

Similarly, the intermediate/high NFS (unadjusted-OR 5.21, 95%CI 2.39 to 11.3) was associated with a higher risk of severe COVID-19 illness. This significant association persisted in multivariate-adjusted analyses after controlling for sex, obesity and diabetes (adjusted OR 2.91, 95%CI 1.20 to 7.06).

When we included FIB-4 or NFS as continuous measures in multivariable regression models, increasing FIB-4 (adjusted OR 1.90, 95% CI 1.33 to 2.72) or NFS (adjusted OR 2.57, 95% CI 1.73 to 3.82) were significantly associated with greater COVID-19 severity, even after adjusting for sex, obesity, diabetes and presence/absence of MAFLD.

Our study has some limitations, including the relatively modest sample size, the Asian ancestry of the cohort and the use of noninvasive fibrosis scores without a histological diagnosis of liver fibrosis. Despite these limitations, our study is the first to examine the impact of FIB-4 or NFS on COVID-19 severity in patients with imaging-defined MAFLD. These non-invasive fibrosis scores have been shown to predict histological fibrosis stage with reasonable accuracy in cohorts of patients with MAFLD,7 and are also associated with increased overall and disease-specific mortality in population-based studies. 9 10 Our data demonstrate that patients with MAFLD with increased FIB-4 or NFS are at higher likelihood of having severe COVID-19 illness, irrespective of metabolic comorbidities. In the context of COVID-19, the presence of MAFLD with significant/ advanced fibrosis might exacerbate the virusinduced cytokine 'storm', possibly through the hepatic release of multiple proinflammatory cytokines, thereby contributing mechanistically to severe COVID-19. Further research is needed to better understand the mechanistic link of advanced MAFLD to the viral disease process.

¹Department of Medicine, Endocrinology and Metabolism, University of Verona, Verona, Veneto, Italy ²Southampton National Institute for Health Research Biomedical Research Centre, Southampton General Hospital, Southampton, Hampshire, UK ³Department of Critical Care Medicine, Wenzhou Medical College First Affiliated Hospital, Wenzhou, Zhejiang, China

⁴Department of Hepatology, Ningbo No 2 Hospital, Ningbo, Zhejiang, China

⁵Department of Radiology, Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China ⁶NAFLD Research Center, Department of Hepatology, Wenzhou Medical College First Affiliated Hospital, Wenzhou, Zhejiang, China

⁷Department of Infection and Liver Diseases, Liver Research Center, Wenzhou Medical College First Affiliated Hospital, Wenzhou, Zhejiang, China ⁸Storr Liver Centre, Westmead Institute for Medical Research, Westmead, New South Wales, Australia ⁹Institute of Hepatology, Wenzhou Medical University, Wenzhou, Zhejiang, China

Correspondence to Professor Giovanni Targher, Department of Medicine, Endocrinology and Metabolism, University of Verona, Verona 37126, Italy, giovanni.targher@univr.it and Professor Ming-Hua Zheng, MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No 2 Fuxue Lane, Wenzhou 325000, China; zhengmh@wmu.edu.cn

Correction notice This article has been corrected since it published Online First. A second corresponding author has been added.

Contributors Concept and design: M-HZ. Acquisition of data: X-BW, H-dY, Q-FS, K-HP, KIZ and Y-PC. Analysis and interpretation of data: GT and AM. Drafting of the manuscript: GT. Critical revision of the manuscript for important intellectual content: AM, CDB, ME and JG. Study supervision: M-HZ

1546 Gut August 2020 Vol 69 No 8

Table 2 Association between imaging-defined MAFLD with increasing levels of FIB-4 score and risk of having severe illness associated with COVID-19

Logistic regression analyses	ORs	95% CI	P value
Severity of COVID-19 illness (mild/moderate vs severe/critica	l)		
Unadjusted model 1A			
MAFLD/FIB-4 status			
No MAFLD (n=216)	Ref.	Ref.	
MAFLD with low FIB-4 (≤1.3; n=44)	1.21	0.46 to 3.14	0.701
MAFLD with intermediate FIB-4 (1.3-2.67, n=36)	4.32	1.94 to 9.59	<0.001
MAFLD with high FIB-4 (>2.67, n=14)	5.73	1.84 to 17.9	<0.005
Adjusted model 1B			
MAFLD/FIB-4 status			
No MAFLD (n=216)	Ref.	Ref.	
MAFLD with low FIB-4 (≤1.3, n=44)	0.82	0.30 to 2.24	0.696
MAFLD with intermediate FIB-4 (1.3–2.67, n=36)	2.59	1.09 to 6.13	0.030
MAFLD with high FIB-4 (>2.67, n=14)	4.04	1.22 to 13.3	0.021
Sex (men vs women)	1.78	0.93 to 3.44	0.079
Obesity (yes vs no)	2.62	1.31 to 5.24	<0.005
Prior diabetes (yes vs no)	1.04	0.40 to 2.80	0.928
Unadjusted model 2A			
MAFLD/FIB-4 status			
No MAFLD (n=216)	Ref.	Ref.	
MAFLD with low FIB-4 (≤1.3, n=44)	1.21	0.46 to 3.14	0.701
MAFLD with intermediate/high FIB-4 (>1.3, n=50)	4.68	2.31 to 9.49	<0.001
Adjusted model 2B			
MAFLD/FIB-4 status			
No MAFLD (n=216)	Ref.	Ref.	
MAFLD with low FIB-4 (≤1.3, n=44)	0.82	0.30 to 2.24	0.696
MAFLD with intermediate/high FIB-4 (>1.3, n=50)	2.95	1.37 to 6.34	<0.005
Sex (men vs women)	1.79	0.94 to 3.45	0.084
Obesity (yes vs no)	2.60	1.30 to 5.16	<0.005
Prior diabetes (yes vs no)	1.09	0.41 to 2.89	0.862

Sample size, n=310. Data are expressed as ORs and 95% CI as tested by univariable (unadjusted) and multivariable (adjusted) logistic regression analysis. Diabetes was diagnosed as self-reported history of disease and/or specific drug treatment. Obesity was diagnosed as BMIs-25 kg/m².

In the adjusted logistic regression models, we did not additionally adjust also for age, because this variable is already incorporated in the FIB-4 score. FIB-4, fibrosis-4; MAFLD, metabolic associated fatty liver disease; Ref, reference category.

Funding M-HZ is supported by grants from the National Natural Science Foundation of China (81500665). CDB is supported in part by the Southampton NIHR Biomedical Research Centre (IS-BRC-20004), UK. GT is supported in part by grants from the School of Medicine, University of Verona, Verona, Italy.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

This article is made freely available for use in accordance with BMJ's website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

© Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.

To cite Targher G, Mantovani A, Byrne CD, et al. Gut 2020;69:1545-1547.

Received 28 April 2020 Revised 4 May 2020 Accepted 6 May 2020 Published Online First 15 May 2020

Gut 2020;69:1545-1547. doi:10.1136/ gutjnl-2020-321611

ORCID iDs

Giovanni Targher http://orcid.org/0000-0002-4325-

Kenneth I Zheng http://orcid.org/0000-0002-1726-9298

Jacob George http://orcid.org/0000-0002-8421-5476 Ming-Hua Zheng http://orcid.org/0000-0003-4984-

REFERENCES

- 1 Ji D, Qin E, Xu J, et al. Non-alcoholic fatty liver diseases in patients with COVID-19: A retrospective study. J Hepatol 2020:S0168-8278(20)30206-3.
- Eslam M, Sanyal AJ, George J, et al. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020;158:1999-2014.
- Younossi ZM. Non-alcoholic fatty liver disease A global public health perspective. J Hepatol 2019;70:531-44.
- Taylor RS, Taylor RJ, Bayliss S, et al. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis. Gastroenterology 2020;158:1611-25.
- Gao F, Zheng KI, Wang XB, et al. Obesity as a risk factor for greater severity of COVID-19. Diabetes Care 2020.
- Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol 2020. doi:10.1016/j.jhep.2020.03.039. [Epub ahead of print: 08 Apr 2020].
- Vilar-Gomez E, Chalasani N. Non-invasive assessment of non-alcoholic fatty liver disease: clinical prediction rules and blood-based biomarkers. J Hepatol 2018;68:305-15.
- National Health Commission & State Administration of Traditional Chinese Medicine. Diagnosis and treatment

- protocol for novel coronavirus pneumonia (trial version 7). 2020 [EB/OL], 2020.
- 9 Unalp-Arida A, Ruhl CE. Liver fibrosis scores predict liver disease mortality in the United States population. Hepatology 2017;66:84-95.
- Sung Ki-Chul, Johnston MP, Lee MY, et al. Non-invasive liver fibrosis scores are strongly associated with liver cancer mortality in general population without liver disease. Liver Int 2020;59

Gut August 2020 Vol 69 No 8 1547