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ABSTRACT
Objective  To investigate the function of a novel 
primate-specific long non-coding RNA (lncRNA), named 
FLANC, based on its genomic location (co-localised with 
a pyknon motif), and to characterise its potential as a 
biomarker and therapeutic target.
Design  FLANC expression was analysed in 349 
tumours from four cohorts and correlated to clinical 
data. In a series of multiple in vitro and in vivo 
models and molecular analyses, we characterised 
the fundamental biological roles of this lncRNA. We 
further explored the therapeutic potential of targeting 
FLANC in a mouse model of colorectal cancer (CRC) 
metastases.
Results  FLANC, a primate-specific lncRNA feebly 
expressed in normal colon cells, was significantly 
upregulated in cancer cells compared with normal 
colon samples in two independent cohorts. High 
levels of FLANC were associated with poor survival 
in two additional independent CRC patient cohorts. 
Both in vitro and in vivo experiments demonstrated 
that the modulation of FLANC expression influenced 
cellular growth, apoptosis, migration, angiogenesis 
and metastases formation ability of CRC cells. In vivo 
pharmacological targeting of FLANC by administration 
of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine 
nanoparticles loaded with a specific small interfering 
RNA, induced significant decrease in metastases, 
without evident tissue toxicity or pro-inflammatory 
effects. Mechanistically, FLANC upregulated and 
prolonged the half-life of phosphorylated STAT3, 
inducing the overexpression of VEGFA, a key regulator 
of angiogenesis.
Conclusions  Based on our findings, we discovered, 
FLANC as a novel primate-specific lncRNA that 
is highly upregulated in CRC cells and regulates 
metastases formation. Targeting primate-specific 
transcripts such as FLANC may represent a novel and 
low toxic therapeutic strategy for the treatment of 
patients.

Introduction
Cancer mortality represents a huge medical issue,1 
in spite of major advances in the characterisation 
of the genomic alterations in most cancers types2 

Significance of this study

What is already known on this subject?
►► Primate-specific lncRNAs represent a newly 
discovered class of transcripts in need 
for functional characterisation in human 
carcinogenesis.

►► RNA-based targeting strategies have entered 
clinical trials in humans in different diseases.

What are the new findings?
►► Using data about genomic patterns of DNA 
motifs in cancer-associated regions, we were 
able to identify a novel primate-specific lncRNA, 
that we termed FLANC.

►► FLANC is upregulated in CRC tissue and poorly 
expressed in normal colon cells, and possesses 
prognostic potential in CRC.

►► FLANC influences cellular growth, migration, 
anchorage-independent growth, angiogenesis 
and metastases formation in vivo.

►► Mechanistically, FLANC induces angiogenesis 
via STAT3/VEGFA pathway.

►► Targeting FLANC by small interfering RNA 
carrying nanoparticles reduces angiogenesis 
and represents a potential novel cancer 
therapeutic approach with higher specificity for 
malignant cells.

How might it impact on clinical practice in the 
foreseeable future?

►► The primate-specific lncRNA FLANC represents 
a novel CRC driver, a prognostic factor and a 
therapeutic target.

S
ciences. P

rotected by copyright.  on O
ctober 29, 2020 at U

C
LA

 B
iom

edical Library 12-077 C
enter F

or H
ealth

http://gut.bm
j.com

/
G

ut: first published as 10.1136/gutjnl-2019-318903 on 27 January 2020. D
ow

nloaded from
 

http://www.bsg.org.uk/
http://gut.bmj.com/
http://orcid.org/0000-0002-8701-9462
http://orcid.org/0000-0002-7880-7723
http://orcid.org/0000-0002-5568-7714
http://orcid.org/0000-0002-5550-3516
http://orcid.org/0000-0002-4848-0168
http://orcid.org/0000-0002-0417-5559
http://orcid.org/0000-0003-1529-8631
http://orcid.org/0000-0002-7427-0578
http://crossmark.crossref.org/dialog/?doi=10.1136/gutjnl-2019-318903&domain=pdf&date_stamp=2020-08-24
http://gut.bmj.com/


1819Pichler M, et al. Gut 2020;69:1818–1831. doi:10.1136/gutjnl-2019-318903

Colon

and the development of a plethora of biomarkers3 and targeted 
therapies.4 Colorectal cancer (CRC) is the third most common 
malignancy in high-income countries5 and a substantial number 
of patients initially present or sequentially develop distant 
metastases, leading to a poor 5-year cancer-specific survival rate 
of about 10%–20%.6 Treatment options for metastatic CRC are 
limited, and include combination cytotoxic chemotherapy with 
5-fluorouracil, irinotecan and/or oxaliplatin, as well as the addi-
tion of antiangiogenic (antibodies against vascular endothelial 
growth factor (VEGF) and/or its receptor) or epidermal growth 
factor receptor (EGFR)-directed drugs.7

Within the last decade, non-coding (nc)RNA alterations have 
been identified to be involved in the progression from adenoma-
to-carcinoma in colorectal carcinogenesis.8 9 Several ncRNAs, 
which include long non-coding RNAs (lncRNAs) and short 
microRNAs (miRNAs), have recently been functionally charac-
terised.10–14 Because of their cancer-specific expression pattern, 
lncRNAs carry tremendous potential for novel targeted treatment 
approaches.15 16 Although the number of lncRNAs, including the 
primate-specific/human-specific ones,17–22 probably will surpass 
the number of coding genes,23 24 at present time only few of 
the former are proved to be involved in cancers,25 as the main 
focus of the translational research nowadays is on genes (coding 
or non-coding) highly conserved in evolution.8 13 26 Recently, 
we reported that multiple genomic non-coding loci harbouring 
human-specific/primate-specific motifs, named pyknons27, 
are differentially transcribed between CRC and normal colon 
and between poor versus good prognosis chronic lymphocytic 
leukaemia (CLL), and the expression levels correlate with 
patients’ overall survival.25 We further dissected the function 
of one of these transcripts in CRC, the lncRNA N-BLR, and 
we observed that it plays a key role in metastases. Herein, we 
functionally characterised a novel primate-specific lncRNA from 
one of these regions and we demonstrated the therapeutic poten-
tial of targeting this transcript, through RNA-based strategies, 
without evident tissue toxicity or pro-inflammatory effects in 
vivo.

Methods
Patient samples
Four different patient cohorts were studied with the staging 
performed by Dukes classification: cohorts A28 and B25 for the 
evaluation of FLANC expression in CRC tissue, compared with 
matched normal colon, and two larger CRC cohorts, C (n=170) 
and D (n=126), for testing the prognostic value of FLANC 
(online supplementary table 1 to 3). The patients’ clinicopath-
ological data were collected from medical records at the same 
institutions. All cases were reviewed based on pathology reports 
and histological slides. Written informed consent was obtained 
from each patient for these four cohorts.

In vivo treatment of colorectal cancer metastases
Male athymic nude mice were purchased from Taconic Farms 
(Hudson, New York, USA). All animals were aged 6–8 weeks 
at the time of injection. Metastatic liver models of CRC were 
developed as described previously.29 For all animal experiments, 
HCT116 cells (labelled with a stable expression luciferase gene) 
were used. For all therapeutic experiments, the dose of FLANC 
small interfering RNA (siRNA) was 200 µg/kg, as described 
previously.30 The oligos were incorporated into neutral 1,2-dio
leoyl-sn-glycero-3-phosphatidylcholine (DOPC) nanoliposomes. 
These were administered via intravenous injection twice weekly 
beginning 2 weeks after tumour cell injection and continued for 

4 weeks. All mouse studies were approved and supervised by the 
MD Anderson Cancer Center Institutional Animal Care and Use 
Committee.

Additional methods are presented in the online supplementary 
methods section.

Results
A novel primate-specific long non-coding RNA resides within 
the first intron of CELSR1
Following our initial report about enrichment of primate-specific 
motifs in ncRNAs involved in CRC,25 we identified a novel tran-
script located at chromosome 22q13.31 in the first intron of 
the cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1) 
gene (online supplementary figure 1A). The protein encoded by 
this gene is a member of the flamingo subfamily of the cadherin 
superfamily31 and has been described to be associated with the 
Wnt signalling pathway in gastrointestinal (GI) malignancies and 
leukaemia.32 33 According to its location, we named this novel 
transcript flamingo non-coding RNA (FLANC). We studied 
FLANC following the workflow presented in figure  1A. By 
strand-specific qRT-PCR, we proved that FLANC is transcribed 
in the antisense direction compared with CELSR1 (online 
supplementary figure 1B), being therefore an independent tran-
script from the CELSR1 messenger RNA or primary RNA.

By using Rapid Amplification of cDNA Ends (RACE) on RNA 
isolated from the HCT116 cell line, we cloned a mono-exonic 
873 nucleotides (nts) transcript from the CELSR1 intron 1 
(online supplementary figure 2A). Using in silico analysis, we 
were only able to identify the transcript in primates, with 98% 
homology with Pan troglodytes and 87% homology with Gorilla 
genomes. Further analysis of the sequence and conservation of 
this genomic region suggested that the evolution of this gene 
started within the class of mammalians and further evolved by 
the introduction of two Alu elements in primates (online supple-
mentary figure 2B).

We next analysed the protein coding potential of FLANC using 
multiple methods. First, an in vitro transcription-translation 
assay suggested lack of protein coding potential (online supple-
mentary figure 3A). We further used mass spectrometry for the 
identification of large proteins or small micropeptides (<100 
amino acids long), and could not identify any of the peptides 
predicted by an open reading frame analysis of this transcript 
(online supplementary figure 3B). All these data support the lack 
of protein-coding potential of FLANC.

FLANC expression in colorectal cancer correlates with 
patients’ overall survival
We first measured the expression of FLANC in a panel of eight 
CRC cell lines (online supplementary table 4). In five of them, 
FLANC expression was significantly higher than in five pooled 
normal colon tissues (p<0.05, online supplementary figure 1C). 
Additionally, we measured the level of FLANC in seven different 
organs and peripheral blood mononuclear cells (PBMCs) from 
healthy controls. FLANC was not detectable in healthy brain and 
liver tissues, was expressed at very low levels in normal colon, 
ovary, spleen and PBMCs tissues and was expressed at low levels 
in lung and testicular tissue (online supplementary figure 1D). 
Hence, we concluded that FLANC is a CRC-specific transcript.

To evaluate the levels of FLANC and its tissue location in 
CRC, we performed in situ hybridisation (ISH) on a commer-
cially available tissue microarray. Significantly higher levels of 
FLANC were observed in cancerous (primary adenocarcinoma 
and metastatic tumours) compared with normal colon tissues 
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Figure 1  FLANC is overexpressed in colorectal cancer (CRC) and correlates with patients’ overall survival. (A) Schematic workflow of the 
identification and comprehensive functional characterisation of FLANC in colorectal carcinogenesis. (B–C) Expression levels of FLANC in normal colon 
mucosa, adenocarcinoma of the colon, metastases of CRC, benign colon polyp and IBD, specifically detected by in situ hybridisation (ISH) on a tissue 
microarray. Overall, in adenocarcinoma (p<0.01) and metastatic tissue (p<0.001), FLANC is significantly upregulated in comparison to normal, benign 
polyps and inflamed colon tissue. The corresponding tissue slides indicate a nuclear and cytoplasmic upregulation and location of FLANC in epithelial 
cancer cells. (D) Using two independent cohorts, cancer tissue contained significantly higher expression levels of FLANC than corresponding normal 
colon tissue. (E) In addition, two large cohorts of patients with CRC were analysed and high expression levels of FLANC were associated with poor 
survival in both independent cohorts (log-rank test). Data are presented as means±SD (**p<0.01; ***p<0.001).
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Table 1  Univariate and multivariate analyses for predictors of overall survival in cohorts C and D

Variables

Cohort C (n=170) Cohort D (n=126)

Univariate Multivariate Univariate Multivariate

HR 95% CI P value HR 95% CI P value HR 95% CI P value HR 95% CI P value

Gender (female vs male) 0.94 0.53 to 1.66 0.828 0.97 0.53 to 1.78 0.933 1.22 0.63 to 2.35 0.549 1.02 0.50 to 2.09 0.941

Age (≧68 (median) vs <68) 0.59 0.33 to 1.04 0.071 1.77 0.97 to 3.23 0.059 0.78 0.41 to 1.48 0.450 1.20 0.59 to 2.44 0.600

Location (colon vs rectum) 0.87 0.49 to 1.55 0.648 0.95 0.53 to 1.72 0.888 1.35 0.69 to 2.64 0.370 1.44 0.69 to 2.96 0.323

Histological type (differentiated vs undifferentiated) 3.88 1.98 to 7.62 <0.001 4.27 2.09 to 8.73 <0.001 1.85 0.89 to 3.83 0.097 2.77 1.27 to 6.03 0.010

Stage classification (stage I–III vs stage IV) 6.76 3.83 to 11.93 <0.001 7.65 4.26 to 13.7 <0.001 7.47 3.9 to 14.30 <0.001 9.97 4.82 to 20.6 <0.001

FLANC expression (low vs high) 2.00 1.14 to 3.50 0.015 2.08 1.17 to 3.70 0.012 2.37 1.05 to 5.39 0.038 2.38 1.02 to 5.55 0.044

In bold—p<0.05.

(metastatic CRC vs normal colon, p<0.001, primary adenocar-
cinoma vs normal colon, p<0.01). In contrast, there were no 
significant differences between colitis and benign/polyp lesions 
versus normal tissue, suggesting that the upregulation of FLANC 
probably occurs in epithelial malignant cells, and not in stroma 
cells, premalignant or in inflammatory lesions (figure 1B,C and 
online supplementary figure 4). This observation is supported by 
the fact that FLANC has very low expression in healthy tissues 
and PBMCs (online supplementary figure 1D), but further clarifi-
cation by performing microdissection studies on CRC specimens 
is needed. Epithelial CRC cells of adenocarcinoma and meta-
static tissue showed an enriched localisation of FLANC in both 
cytoplasm and nucleus when compared with non-malignant cells 
(figure 1C and online supplementary figures 4-5). Biochemical 
separation of nuclear and cytoplasmic RNA fractions confirms 
the ISH findings of expression in both cell compartments (online 
supplementary figure 5A, B). In line with the results from ISH 
analysis, FLANC was significantly upregulated, measured by 
qRT-PCR, in CRC tissue compared with paired normal colon 
tissue using two independent cohorts (p<0.01, A and B, see 
‘Methods’ section). Of note, most of the normal tissues show no 
expression or very low expression of FLANC (figure 1D).

To test the value of FLANC as a prognostic biomarker, we 
performed clinical correlation in two additional independent 
CRC cohorts (C and D, see ‘Methods’ section and an overview 
about the two cohorts in online supplementary table 1): high 
expression levels of FLANC were associated with high patho-
logical tumour stage in both cohorts and with vessel invasion in 
cohort C (in cohort D, information about vessel invasion was not 
available) (online supplementary tables 2 and 3). In the screening 
cohort C (n=170), high expression of FLANC was associated 
with poor overall survival using a Kaplan-Meier curve (p=0.013, 
log-rank test, figure 1E, left). Using univariate and multivariate 
Cox proportional models, FLANC expression represented an 
independent prognostic factor even after adjustment for other 
well-known prognostic factors including tumour differentiation 
and stage (table 1). For independent confirmation, we measured 
the FLANC expression in a validation cohort D (n=126) and 
confirmed the association of poor survival with high FLANC 
expression (figure 1E, right, p=0.032), which prevailed again in 
multivariate analyses (table 1).

Knock-down of FLANC inhibits cell proliferation, migration 
and induces apoptosis in colorectal cancer cells
In order to identify the biological roles of FLANC in colorectal 
carcinogenesis, we established two independent siRNAs 
targeting FLANC (plus strand, see online supplementary figure 
1A). A ~40%–50% knock-down efficiency was obtained at 96 
hours, whereas the host CELSR1 gene expression (located on 

the minus strand) was not significantly affected by this treatment 
(HCT116 cell line, online supplementary figure 6A–D). After-
wards, we evaluated the biological effect of transient FLANC 
knock-down in a panel of three CRC cell lines expressing high 
levels of FLANC: the microsatellite instability (MSI) positive 
HCT116 and DLD-1 cells and the microsatellite stable (MSS) 
SW480 cells (online supplementary table 4 and online supple-
mentary figure 1C). Reduction of FLANC expression induced a 
significant decrease in cellular growth in all tested CRC cell lines 
after 120 hours; this was verified by CCK8 assay (figure 2A). 
To confirm the ability of FLANC to regulate cell growth, we 
used a clonogenic assay as a second independent method. We 
measured a significant reduction in the number of colonies by 
FLANC knock-down after 10–14 days (about 40% for HCT116 
(p<0.01), and 50%–70% reduction of colonies in SW480 
(p<0.001) and DLD-1 cells (p<0.05), figure 2B,C). In contrast, 
in HT-29 cells, which contained almost undetectable levels of 
endogenous FLANC and were regarded as a negative control, 
FLANC knock-down did not affect cell growth ability and 
colony formation (online supplementary figure 7A,B). Next, 
we proved that the anchorage-independent growth ability of 
CRC cells substantially decreased when FLANC levels were 
reduced by siRNA (p<0.001 for all three cell lines, figure 2D). 
Moreover, the number and size of tumour spheres were signifi-
cantly reduced in HCT116 and DLD-1 cells (p<0.001, online 
supplementary figure 7C,D). Because SW480 cells did not 
form tumour spheres under the selected conditions, we could 
not generate data for this cell line. In addition, knock-down of 
FLANC decreased migration of CRC cells (reduction between 
40% and 50% for both, the HCT116 and SW480 cells, p<0.05, 
respectively, online supplementary figure 7E,F).

We further explored whether reduced levels of FLANC can 
induce apoptosis. We performed a multiparametric apoptosis 
assay which evaluated the different steps in the apoptotic cascade 
(ie, mitochondrial depolarisation, caspase 3/7 activation, phos-
phatidylserine exposure on the external leaflet of the plasma 
membrane and chromatin condensation) after siRNA-mediated 
knock-down. Reduction of FLANC levels induced an increase of 
apoptosis in HCT116 cells, as measured by the increase of the 
apoptotic markers evaluated (figure 3A and online supplemen-
tary figure 8). In order to confirm these findings with a second 
alternative assay, we established a second multiparametric 
apoptosis assay using fluorescence dye-based single cell high-
resolution microscopy (online supplementary figure 9). Using 
this approach, we could confirm the activation of all steps of 
apoptosis induced by siRNA-mediated knock-down of FLANC, 
(χ2=341.4, p<0.0001 figure 3B and online supplementary figure 
10). Finally, we performed a third alternative assay (caspase 
activity) and we found that reduced levels of FLANC induced 
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Figure 2  FLANC is an oncogene in CRC cell lines. (A) Cellular growth assays (CCK8) demonstrate that knock-down of FLANC leads to decreased 
proliferation in three independent CRC cell lines, which (B–C) is confirmed by lower numbers of colonies in an independent clonogenic growth assay. 
Analysis of variance test was used to test for differences through all groups. (D) Knock-down of FLANC decreased the ability of these three CRC cell 
lines to grow under anchorage-independent conditions in soft agar. Data are presented as means±SD (*p<0.05; ***p<0.001).
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Figure 3  FLANC has an anti-apoptotic effect in colorectal cells (CRC). (A) A multiparametric apoptosis marker FACS assay shows that knock-down 
of FLANC increased all indicators of apoptosis, (B) which is confirmed by single cell high-resolution multiparametric apoptosis assay. Chi-square test 
was used to calculate differences between groups (C) caspase 3/7 assays confirmed the pro-apoptotic phenotype after knock-down of FLANC in all 
three CRC cell lines. Data are presented as means±SD (Student’s t-test: **p<0.01; ***p<0.001; ****p<0.0001).

activation of caspase 3 and caspase 7 in HCT116, SW480 and 
DLD-1 cells (figure 3C–E). Our findings clearly indicated that 
knock-down of FLANC has a pro-apoptotic effect in CRC cells.

FLANC induces growth and metastatic spread of colorectal 
cancer in vivo
To evaluate the role of FLANC in vivo, we generated HCT116 
clones which had either a stable knock-down of FLANC by two 
independent short hairpin RNAs (shRNA FLANC-1 and shRNA 
FLANC-2) or stable overexpression of FLANC transcript. The 
stable expression of shRNA targeting FLANC reduced FLANC 
levels by about 60%–80% compared with the empty vector 
control (online supplementary figure 11A). We performed cell 
growth, clonogenic growth and caspase 3/7 assays to confirm 
the results we observed after transient knock-down of FLANC 
by siRNAs. As shown in online supplementary figure 11B–D, cell 
growth rate and number of colonies decreased significantly in 
shRNA FLANC-1 and shRNA FLANC-2 clones, whereas apop-
tosis increased significantly. Conversely, HCT116 cells stably 

overexpressing FLANC (online supplementary figure 12A) had 
significantly increased proliferation rates (confirmed by two 
independent methods), increased ability to form colonies and 
decreased apoptosis (online supplementary figure 12B–E). To 
confirm these data in a second cell line, we generated FLANC 
overexpressing HT-29 cells. Here, we measured a significant 
increase in cellular growth (online supplementary figure 12F,G).

For in vivo confirmation of the observed phenotype, we 
subcutaneously injected 1×106 HCT116 stably expressing 
cells with: shRNA FLANC-1, shRNA control, FLANC over-
expressing and empty vector control to the flank of male nude 
mice and measured the tumour volume for 7 weeks. The shRNA-
mediated knock-down of FLANC led to a significant decrease 
in tumour volume in comparison with shRNA control (medi-
an/25th–75th percentiles: 295/282–341 mm3 and 458/369–825 
mm3, p<0.01, figure 4A). Conversely, FLANC overexpression 
generated larger tumours compared with empty vector control 
(median/25th–75th percentiles: 766/497–1001 mm3, 631/523–
794 mm3, respectively, p=ns, online supplementary figure 13A).

S
ciences. P

rotected by copyright.  on O
ctober 29, 2020 at U

C
LA

 B
iom

edical Library 12-077 C
enter F

or H
ealth

http://gut.bm
j.com

/
G

ut: first published as 10.1136/gutjnl-2019-318903 on 27 January 2020. D
ow

nloaded from
 

https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
http://gut.bmj.com/


1824 Pichler M, et al. Gut 2020;69:1818–1831. doi:10.1136/gutjnl-2019-318903

Colon

Figure 4  In vivo xenograft colon cancer model for the role of FLANC in tumour growth. (A) Mice injected with HCT116-shRNA-FLANC cells showed 
significantly smaller tumours than the shRNA control. (B) Prediction of tumour volume in different experimental conditions using a mathematical 
model (see supplementary materials for modelling details). Tumour growth rate was first estimated (r=0.072/day), and then drug inhibition rates for 
the control (α1=0.002/day) and the shRNA-mediated knock-down of FLANC groups (α2=0.038/day) were estimated. With these estimated parameters, 
the model successfully predicts experimentally measured tumour volume change over time. It can be observed that the model predicts the outcome 
with acceptable accuracy in all three conditions: FLANC overexpression (blue), control (green) and shRNA treatment (orange). (C–D) The TUNEL assay 
(marks apoptotic bodies) suggests that knock-down by shRNA-FLANC is able to induce apoptosis, compared with shRNA control. CRC metastases 
formation was assessed by applying intrasplenic injection of FLANC-expression manipulated HCT116 cells (E–J). Representative chemiluminescent 
images from whole body nude mice of empty control (E), FLANC overexpression (F) and from removed livers of the empty control (G) and FLANC 
overexpression cells (H) after approximately 7 weeks of intrasplenic injection with empty vector and FLANC overexpressing HCT116 clones are 
shown. (I) Overall numbers of mice positive by macroscopical exploration of different sites (liver, pancreas, intracavity of peritoneum and formation of 
bloody ascites). (J) The higher number of metastasis correlated with significantly higher intensity of bioluminescence signal in the livers of the group 
of FLANC overexpressing mice compared with those expressing empty vector control. Data are presented as means±SD (Student’s t-test: **p<0.01; 
***p<0.001; ****p<0.0001). shRNA, shorthairpin RNA.
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Next, we modelled the tumour response to drug treat-
ment based on our prior work on mathematical modelling 
of cancer.34–36 We first fit the model (where the inhibition 
rate (α)=0) to the data for the FLANC overexpression group 
in order to determine the tumour growth rate (r). We then 
fit the model to drug treatment data to obtain tumour inhi-
bition rate α for the control group and the shRNA FLANC 
group. The model successfully predicted treatment outcome 
(change of tumour volume over time) and reproduced 
experimentally obtained values with acceptable accuracy in 
all three conditions: FLANC overexpression, control, and 
shRNA FLANC (figure  4B). According to this model, to 
reach a tumour volume of 775 mm3 at the end time point 
(corresponding to normalised value of 0.37), it takes 47.4 
days for the FLANC overexpression group, 53.5 days for the 
control group, and 78.7 days for the shRNA FLANC treat-
ment group (note these are model-predicted values).

Microscopic examination showed that tumours with FLANC 
knock-down induced higher number of apoptotic cells compared 
with shRNA control (p<0.0001) (TUNEL assay, figure 4C,D), 
but no difference could be observed between FLANC overex-
pression and empty vector control (p=ns) (online supplemen-
tary figure 13B,C).

Furthermore, we tested whether FLANC expression influ-
ences metastases formation in vivo. We performed intra-splenic 
injection of 1×106 HCT116 cells (empty vector control and 
FLANC overexpressing cells) and monitored metastases forma-
tion by luciferase intensity imaging and pathological exploration 
(figure  4E–H). After 6 weeks, we observed a higher number 
of macro-metastases detected by anatomical exploration of 
the metastatic sites in mice injected with HCT116 cells over-
expressing FLANC compared with HCT116 cells expressing 
empty vector control (figure 4I). The higher number of metas-
tasis correlated with significantly higher intensity of biolumines-
cence signal in the livers of the group of FLANC overexpressing 
mice compared with those expressing empty vector control 
(figure 4J). Overall, our data support that moderately increased 
levels of FLANC (HCT116 shRNA control vs shRNA FLANC) 
regulate tumour growth and highly increased levels (HCT116 
FLANC overexpression vs FLANC empty vector control), regu-
late metastatic spread in vivo and the effects can be modelled for 
improving therapeutic efficacy.

FLANC expression modulation has genome-wide effects on 
transcripts and protein expression
The mechanisms of action of ncRNAs are numerous and 
still poorly understood.8 13 Therefore, we performed gene 
expression analyses (GEA) from HCT116 clones with either 
downregulation (shRNA) or upregulation (overexpression) 
FLANC (GEO accession#: GSE127785 and GSE127786) 
(figure 5A–D) and combined the results with reverse phase 
protein array (RPPA) data (online supplementary figure 
14A–D). On GEA, we identified 25 cancer-related pathways 
with negative correlation between the two types of clones; 
the most significantly dysregulated signalling pathways 
include the WNT signalling pathway and transcriptional 
regulation by TP53 (figure 5B–D), both well-known drivers 
of colon tumourigenesis.37 38 We investigated the protein 
expression changes by RPPA39 (online supplementary figure 
14A). We detected 34 proteins to be upregulated and 43 
downregulated in HCT116 FLANC overexpressing cells 
when compared with empty vector control (online supple-
mentary table 5). The FLANC upregulated proteins were 

grouped into pathways and the top 20 stimulated pathways 
are shown in online supplementary figure 14B. Correspond-
ingly, pathway analysis was also performed for the proteins 
inhibited by FLANC and the top 20 inhibited pathways are 
represented in online supplementary figure 14C. In order to 
visualise the proteins regulated by FLANC, we characterised 
the molecular network controlled by FLANC. According to 
the highest p values, the top five inhibited and top five acti-
vated pathways, with the corresponding proteins, are shown 
in online supplementary figure 14D. When combining the 
RPPA data with GEA data (online supplementary figure 
15A), we identified 11 signalling pathways in common 
between the various types of profiling performed, with the 
most significantly abnormal being ‘integrated cancer path-
ways’, ‘DNA damage response’, ‘retinoblastoma in cancer’ 
and ‘transcriptional regulation by TP53’ (online supplemen-
tary figure 15B). All these data proved that the deregulation 
of FLANC has a widespread effect both on gene expression 
and protein regulation levels.

siRNA therapeutics targeting FLANC leads to decreased 
proliferation and metastasis in vivo
To study FLANC as a potential therapeutic target, we eval-
uated whether siRNA-mediated targeting of FLANC might 
result in effective antitumour activity. We determined the 
effects of systemic delivery of FLANC siRNA #2 on metas-
tasis formation using FLANC siRNA incorporated into DOPC 
nanoliposomes. This vehicle is currently used for small RNAs 
delivery in clinical trials of patients with cancer (​Clinical-
Trials.​gov identifier: NCT01591356). For this experiment, 
we injected HCT116 cells into the spleen of mice (n=10 
each group) and monitored liver metastases formation by in 
vivo imaging. After 2 weeks, mice were randomly assigned 
to the following groups: untreated, treated with scrambled 
siRNA control and treated with FLANC siRNA, and we 
started administering the treatments twice a week (200 µg 
of siRNA/kg per injection). After 6 weeks, the body weight 
of mice treated with FLANC siRNA was significantly higher 
when compared with mice treated with the scramble siRNA 
(median/(25th–75th percentiles) body weight: 25.3/(24.41–
27.76) g (control siRNA) vs 28.92/(25.75–29.86) g (FLANC 
siRNA, p=0.045), respectively. Regarding tumour growth-
related parameters, we observed a significant decrease in 
bioluminescence signals in the whole mice (figure  6A), as 
well as in the isolated livers (figure 6B), in the FLANC siRNA 
group compared with siRNA scramble control (figure 6C). 
Overall, 5 out of 10 mice in the untreated group, 5 out of 
10 mice in the siRNA scramble control group and 4 out of 
8 mice in the siRNA FLANC group showed macroscopically 
visible liver metastases. The macroscopically countable liver 
metastases were 26 in the untreated mice, 21 in the siRNA 
control group and 6 in the siRNA FLANC group (p<0.05, 
analysis of variance test), respectively (figure  6D,E). The 
successful knock-down of FLANC was confirmed in vivo by 
performing ISH for FLANC (online supplementary figure 
16). We next examined the effects of the treatment on prolif-
eration (Ki67 staining) and apoptosis (TUNEL assay) in vivo. 
Administration of siRNA FLANC resulted in reduced tumour 
cell proliferation (figure 6F,G). Significant apoptosis induc-
tion was measured after the treatment with siRNA FLANC 
(p<0.05) compared with the corresponding siRNA scramble 
control (figure 6F and H). In summary, the treatment with 
siRNA FLANC reduced the number of macrometastases in 

S
ciences. P

rotected by copyright.  on O
ctober 29, 2020 at U

C
LA

 B
iom

edical Library 12-077 C
enter F

or H
ealth

http://gut.bm
j.com

/
G

ut: first published as 10.1136/gutjnl-2019-318903 on 27 January 2020. D
ow

nloaded from
 

https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
https://dx.doi.org/10.1136/gutjnl-2019-318903
http://gut.bmj.com/


1826 Pichler M, et al. Gut 2020;69:1818–1831. doi:10.1136/gutjnl-2019-318903

Colon

Figure 5  Genome-wide gene expression variation after FLANC levels modulation. (A) Illustrative representation of the HCT116 clones used for 
the array comparison. (B) FLANC stimulated signalling pathways negatively correlated in FLANC knock-down (blue=inhibited) and overexpression 
clones (red=activated) of HCT116 cells. (C) FLANC inhibited signalling pathways negatively correlated in FLANC knock-down (red=activated) and 
overexpression clones (blue=inhibited) of HCT116 cells. (D) The genes regulated by FLANC are key components of the TP53, WNT and C-MYC 
pathway, which negatively correlate in FLANC knock-down vs overexpression clones (red=activation, blue=inhibition).
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Figure 6  Therapeutically in vivo intrasplenic colon cancer model. (A) Representative chemiluminescent images from nude mice of untreated, siRNA 
scramble and siRNA-FLANC groups, and (B) liver metastases after approximately 7 weeks of intrasplenic injection with HCT116 cells are shown. 
(C) Weekly imaging was performed using the Xenogen IVIS spectrum system within 12 min following injection of D-Luciferin (150 mg/mL). Living 
image 4.1 software was used to determine the regions of interest (ROI), and average photon RADIANCE (p/s/cm2/sr) was measured for each mouse. 
(C–E) Representative images from liver macrometastasis and quantification of macrometastasis. (F) Immunohistochemistry for Ki67 (proliferation 
marker) and the TUNEL assay (marks apoptotic bodies) suggest that knock-down FLANC is able to reduce cell proliferation, and to induce apoptosis. 
(G–H) Quantification analysis of Ki67 positive cells and number of positive apoptotic cell. Data were log-transformed before analysis, n=10. Data are 
presented as means±SD (Student’s t-test: *p<0.05).

the liver, tumour burden in the liver and the tumour cell 
proliferation and apoptosis.

Absence of acute tissue toxicity or inflammatory response 
after anti-FLANC therapy
Additionally, we studied the effect of therapy on physiological 
parameters and evaluated the possible acute toxicity of the treat-
ment (eg, impaired organ function or inflammatory cytokine 

responses). Male C57BL/6J mice were either untreated or treated 
with single intravenous injections of either siRNA scramble control 
or FLANC siRNA and serum was collected after 72 hours. As shown 
in online supplementary figure 17A, there were no differences in 
parameter measuring liver (aspartate aminotransferase) and kidney 
function (blood urea nitrogen) or high cell turnover parameters 
(lactate dehydrogenase). In addition, we did not detect significant 
differences in levels of 11 pro-inflammatory cytokines (IFN-γ, 
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Figure 7  FLANC induces angiogenesis in vitro and in vivo. (A) Immunohistochemistry for CD31 (endothelial cell marker) suggested that knock-
down of FLANC is able to reduce angiogenesis in vivo. (B) Endothelial cell tube formation assay showing that siRNA FLANC-1 and siRNA FLANC-2 
decreased the number of tubes compared with siRNA scramble in vitro. (C) Immunoblotting analysis showed that FLANC overexpression compared 
with empty vector control increases the protein level of phosphorylated STAT3 Tyr 705 (pSTAT3) and VEGFA, but not of total STAT3 (left panel). 
The revers was observed after siRNA mediated knock-down of FLANC, both siRNA FLANC-1 and siRNA FLANC-2 decrease the level of pSTAT3 and 
VEGFA compared with siRNA control (right panel). (D) Cycloheximide Chase assay suggested that the half-life of pSTAT3, but not of total STAT3 in 
HCT116 cells with FLANC overexpression was prolonged compared with empty control vector (left panel). ImageJ quantification analysis showed 
that 4 hours after adding cycloheximide to the culture media the protein expression of pSTAT3 was higher in FLANC overexpression clones (right 
panel). (E) Immunohistochemistry expression of VEGFA in mouse tumours proved that siRNA FLANC treatment reduces the protein expression of 
VEGFA compared with siRNA scramble and untreated control. (F) Immunoblotting analysis showing that VEGFA protein level in mouse tumours is on 
average higher in the siRNA scramble group (average intensity=1) compared with the siRNA FLANC group (average intensity=0.53). (G) Schematic 
representation of the pathway regulated by FLANC. FLANC increases the expression level of pSTAT3 by prolonging its half-life and pSTAT3 is an 
established transcription factor for VEGFA, which in turn induces neovascularisation of the tumour. Data are presented as means±SD (Student’s t-test: 
*p<0.05; **p<0.01; ***p<0.001). siRNA, small interfering RNA.

MIP-2, KC, interleukin (IL)-10, IL-6, IL-12, IL-4, IL-13, MCP-1, 
tumour necrosis factor-α, VEGF), using a Luminex assay (online 
supplementary figure 17B). Tissue samples were also obtained 
for postmortem histopathology studies (brain, spleen, liver and 
kidney). H&E staining of the various tissues were analysed by 

Histopathology Core’s veterinary pathologist and no inflammatory 
changes were observed in the tissues studied (online supplemen-
tary figure 18). In summary, the administration of FLANC siRNA 
resulted in an effective decrease of metastatic disease without any 
signs for acute toxicity or inflammatory response.
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FLANC promotes angiogenesis in vitro and in vivo
We also checked the effect of FLANC inhibition on angiogenesis by 
analysing the microvessel density (CD31 expression) in fresh frozen 
specimens from the therapeutic in vivo mouse study. Administration 
of FLANC siRNA induced a significant reduction of endothelial 
cells compared with siRNA scramble or untreated control (p<0.01) 
(figure 7A). In vitro, we observed that siRNA mediated knock-down 
of FLANC in EC-RF24 cells determined a reduction in endothe-
lial tube formation (p<0.05 for siRNA FLANC-1 and p<0.01 for 
siRNA FLANC-2) (figure 7B). These data corroborated with the 
GEA data, made us focus on VEGFA, which is one of the top down-
regulated molecules in the shRNA FLANC versus shRNA control 
cell lines and a key regulator of angiogenesis.40 Of note, the RPPA 
antibody panel did not include anti-VEGFA.

Indeed, we confirmed by western blot analysis that VEGFA 
protein expression is positively correlated with FLANC modulation 
(figure 7C). Because STAT3 is an established transcription factor 
for VEGFA,41 we hypothesised that FLANC regulates VEGFA via 
STAT3. Western blot analysis data showed that FLANC overexpres-
sion induced a higher level of the phosphorylated STAT3 (pSTAT3 
at Tyr 705), the active form that induces VEGFA transcription,42 43 
but not of total STAT3. FLANC knock-down confirmed the reverse 
effect (figure 7C). It is known that lncRNAs are capable to alter the 
half-life of proteins.44 Therefore, we checked the half-life of STAT3 
and pSTAT3 in empty vector control and FLANC overexpression 
clones. We observed that high levels of FLANC prolonged the half-
life of pSTAT3, but not total STAT3 (figure 7D).

In vivo IHC data showed that siRNA FLANC treatment 
induces a downregulation of VEGFA in tumour tissue compared 
with siRNA scramble (p<0.001) and untreated control (p<0.01) 
(figure 7E). These results were confirmed by western blot anal-
ysis of in vivo tumours where despite samples heterogeneity, 
a tendency of downregulation of VEGFA by siRNA FLANC 
treatment was observed (average density of scramble siRNA=1 
and of siRNA FLANC=0.53) (figure 7F). In summary, FLANC 
induces angiogenesis via STAT3/VEGFA axis (figure 7G).

Discussion
Our study addresses an important novel therapeutic concept that 
could be exploited to kill malignant cells in vivo with less toxic-
ities: targeting a primate-specific lncRNA, expressed at very low 
levels in normal cells, but at significantly higher levels in tumour 
cells. We identified and functionally characterised FLANC, a 
novel primate-specific lncRNA that is located in the first intron 
and expressed in the antisense direction of the CELSR1 protein 
coding gene. FLANC expression levels do not influence consid-
erably the host gene expression levels, as we saw no significant 
difference in CELSR1 expression after FLANC knock-down. 
This suggests that FLANC is not an antisense exonic transcript 
acting in cis to regulate the sense host gene transcript. This novel 
approach has the potential to become a mainstream of cancer 
gene targeting. Recent studies identified about 11 000 primate-
specific lncRNAs by analysing the expression patterns in tetra-
pods45 and found that about 20% of the human long intergenic 
ncRNAs are not expressed beyond closely related primates such 
as chimpanzee or rhesus monkey.46 Several of such hominid-
specific genes have a coordinated expression under the effect of 
extracellular factors involved in cancers, such as oestrogens.47

In order to identify therapeutically actionable primate-specific 
transcripts, we used a category of very short (16 nts) DNA motifs 
with species-specific sequences named ‘pyknons’.27 We proved 
earlier that pyknons can serve as ‘proxies’ for transcripts that 
comprise them and can be functionally consequential.25 The 

majority of the >209 000 pyknons reported for the human 
genome27 48 are specific to humans/primates. This suggests the 
possibility that a vast spectrum of primate-specific lncRNAs exist, 
which are important for our understanding of human diseases 
and still remain uncharacterised. The absence of sequence 
conservation suggests that pyknon-containing transcripts can 
potentially reveal human-specific biology that the use of mouse 
models cannot uncover.

FLANC has a useful characteristic for therapeutic RNA 
targeting: it is expressed at very low levels in normal colonic cells, 
and therefore the cell death induced by RNA-targeting agents will 
be restrained mainly to the cancer cells with low toxicity. To test 
the therapeutic potential of FLANC, we used an intrasplenic injec-
tion approach commonly used as a CRC liver metastases model.49 
As ncRNAs are involved in all steps of immune system and 
inflammatory cell fate,50 and a previous first-in-human miRNA 
restoration trial exhibited toxicity due to pro-inflammatory side 
effects,51 we further evaluated cellular or immunological changes 
for the proposed treatment. Although we did not find any toxici-
ties, further dose-response studies need to be carried out to deter-
mine the optimal pharmacological therapeutic window to optimise 
the efficacy. Because previously we reported that pyknons can also 
differentiate ZAP-70 positive from ZAP-70 negative CLL,25 we do 
not exclude the hypothesis that FLANC or other primate-specific 
transcripts could be overexpressed also in other cancer types and 
could represent ideal therapeutic targets.

In summary, in this study we described a novel treatment 
approach in CRC and beyond, based on the identification of 
a novel primate-specific transcript FLANC, which is involved 
in colorectal carcinogenesis. Mechanistically, we observed that 
FLANC regulates the STAT3/VEGFA axis being involved in 
angiogenesis. FLANC function cannot be studied by geneti-
cally engineered mouse models of colorectal carcinogenesis,49 
as FLANC is primate-specific and thus not conserved in 
rodents. Because of the wide effect of FLANC on transcription 
and translation, we consider that other pathways involved in 
cancer are regulated by FLANC and need to be characterised. 
Due to the large number of potential primate-specific/human-
specific transcripts that define the ‘humanity’ fingerprint of 
cancers, this approach could represent a future mainstream of 
therapeutics, a concept further discussed in a recent review .52
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