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Abstract

Background: Anaesthetic drugs may cause neuroapoptosis in children and are routinely used off-label in specific age

groups. Techniques that reduce anaesthetic drug dose requirements in children may thus enhance the safety of pae-

diatric sedation or anaesthesia. Brainwave entrainment, notably in the form of auditory binaural beats, has been shown

to have sedative effects in adults. We evaluated the influence of brainwave entrainment on propofol dose requirements

for sedation in children.

Methods: We randomised 49 boys scheduled for sub-umbilical surgery under caudal blockade to an entrainment or a

control group. Small differences in pitch were applied to each ear to create binaural beats, supplemented by synchronous

visual stimuli, within the electroencephalographic frequency bands seen during relaxation and (rapid eye movement/

non-rapid eye movement) sleep. After establishment of caudal block, propofol infusion was started at 5 mg kg�1 h�1.

Intraoperatively, the infusion rate was adjusted every 5 min depending on the sedation state judged by the bispectral

index (BIS). The infusion rate was decreased by 1 mg kg�1 h�1 if BIS was <70, and was increased if BIS was >70, heart rate
increased by 20%, or if there were other signs of inadequate sedation.

Results: Mean propofol infusion rates were 3.0 (95% confidence interval [CI]: 2.4e3.6) mg kg�1 h�1 vs 4.2 (95% CI: 3.6e4.8)

mg kg�1 h�1 in the entrainment and control groups, respectively (P<0.01). BIS values were similar in the two groups.

Conclusions: Brainwave entrainment effectively reduced the propofol infusion rates required for sedation in children

undergoing surgery with regional anaesthesia. Further studies are needed to investigate the possibility of phasing out

propofol infusions completely during longer surgical procedures and optimising the settings of brainwave stimulation.

Clinical trial registration: DRKS00005064.
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Editor’s key points

� Tones of slightly different frequencies applied to the

left and right ears of a subject generate a so-called

binaural beat manifest as an increase in EEG power

at the frequency difference between the applied tones.

� Binaural beats have been shown to have anxiolytic,

sedative, and analgesic effects in adults.
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� The authors performed a randomised trial of the in-

fluence of binaural beats on propofol requirements for

sedation in children undergoing sub-umbilical surgery

performed under caudal analgesia.

� Binaural beats significantly reduced propofol

requirements.
rved.
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The use of general anaesthetics remains controversial in

children.1,2 There is ample evidence of neurodegenerative

changes in developing rodents and monkeys after exposure to

general anaesthetics,3e6 with adverse implications for

learning and behaviour.7e11 Even in small children, several

anaesthetic drugs have been linked to behavioural disorders

and impaired cerebral development.12,13

A number of observational studies have also been pub-

lished, albeit some of them with small effect sizes, in which

procedures that required general anaesthesia were found to be

associated with learning and behavioural deficits.14e20 More-

over, most sedative and analgesic drugs continue to be used

off-label in some paediatric age groups.21 The only reasonable

lesson to be drawn from these concerns is that any concepts

that may help to reduce the perioperative dose requirements

for sedative drugs in children should be regarded as poten-

tially useful and conducive to the safety of paediatric

anaesthesia.

One such concept is brainwave entrainment, a non-

pharmacological method of sedation, notably in the form of

binaural beats with addition of a visual stimulus. Binaural

beats have been shown to be useful for relaxation, sedation, or

reduction of pain and anxiety in adults.22e24 They are gener-

ated inside the brain from the neural output of two separate

tones being applied directly to each ear, with a small differ-

ence in pitch or frequency of each tone. A phase resonance is

thus created, which will cause the brainwaves, in an attempt

to locate the sound source, to pulsate ‘in sync’ with this fre-

quency difference. In this way, the pitches can be adjusted,

such that the frequency difference will fall into one of the

encephalographic frequency bands known to be associated

with specific states of brain activity ranging from excitement

to deep sleep.

Despite an emerging interest amongst clinicians, no clin-

ical data have yet been available on brainwave entrainment

and its potential towards ensuring sedation and minimising

requirements of general anaesthetics in paediatric surgery.

We therefore designed an investigator-blinded and rando-

mised controlled study into such entrainment as a means of

lowering propofol requirements for sedation in children un-

dergoing sub-umbilical surgery under caudal analgesia.
Methods

Preparations

We obtained approval of the study protocol from the institu-

tional review board (ethics committee) at the Medical Uni-

versity of Vienna (ref. 1506/2012; date of approval: October

2012), and registered the study both with the Austrian Agency

for Health and Food Safety (INS-621000-0401; date of approval:

April 2013) and in the German Clinical Trials Register (DRKS-

ID: DRKS00005064; date of approval: November 2014) before

patient enrolment.
Patient enrolment

From September 2013 toMay 2016, we considered 54 boys aged

1e6 yr who were scheduled for elective sub-umbilical pro-

cedures under caudal anaesthesia at the Division of Paediatric

Surgery (Medical University of Vienna). All parents gave their

written informed consent based on comprehensive informa-

tion provided about the nature and scope of the study and the

procedures to be conducted.
Exclusion criteria

Criteria resulting in exclusion from the study were deafness or

impaired hearing; blindness; epilepsy or other neurological

disorders requiring continuous hypnotic medication; contra-

indications to midazolam, propofol administration, or caudal

blockade; history of brain injury, disability, or allergy; and

inability to understand the study protocol or all procedures

related to the study.
Randomisation and masking

After applying these exclusion criteria, 49 of these boys could

be randomly assigned to a group receiving brainwave

entrainment or to a control group, in which the entrainment

device (MindLights®; Mindfield Biosystems, Gronau, Germany)

was fitted over the patients’ heads, but was not activated.

Hence, the anaesthesiologists in charge were unable to see

whether the device was on or off during the anaesthetic

procedure.
Anaesthesia management

Our departmental standard of care requires preoperative

fasting of 6 h for solid food, 4 h for breast milk, and 2 h for clear

fluids. Midazolam 0.5 mg kg�1 was administered orally or

rectally 30min before the induction of anaesthesia, which was

accomplished via a face mask administering a mixture of

sevoflurane/oxygen/air. Sevoflurane administration was

immediately stopped after establishment of venous access. A

caudal block was performed under ultrasound guidance with

ropivacaine 0.38% (1 ml kg�1 body weight). Haemodynamic

monitoring included electrocardiography, noninvasive blood

pressure, and peripheral oxygen saturation. Continuous infu-

sion of propofol started out at 5 mg kg�1 body weight h�1, and

spontaneous ventilation was maintained throughout the

anaesthetic procedure.
Brainwave entrainment

Figure 1 illustrates the clinical setting with the audiovisual

entrainment device in place (MindLights; Mindfield Bio-

systems). The device was fitted 10 min after the onset of the

caudal blockade, at the time of skin incision for the surgical

procedure. The binaural beats applied in the study group

commenced at a frequency difference of 10 Hz, were then

reduced by 2 Hz every 150 s until the software setting was

down to 2 Hz, and were finally maintained at a steady state

oscillating between 1 and 2 Hz to keep the brain continuously

stimulated. For visual stimulation, we selected sinus-shaped

variation of light intensity with primary colours and syn-

chronous phase variation.
Bispectral index monitoring

Sedation was assessed by means of continuous bispectral in-

dex (BIS) monitoring, via an electrode placed on the patient’s

carefully cleaned forehead, as per the manufacturer’s in-

structions (Covidien/Medtronic, Boulder, CO, USA). After the

skin incision, if the BIS was below 70, the propofol infusion

rate was reduced by 1mg kg�1 h�1 every 5min. Conversely, the

dose was increased whenever we noted a BIS value exceeding

70, any other sign of inadequate sedation such as spontaneous

movement, or an increase in heart rate of more than 20%.



Table 1 Characteristics of children having received or not
received brainwave entrainment in the present study,
expressed as absolute or mean values (range or standard
deviation)

Entrainment
(n¼23)

Control
(n¼26)

Age (yr) 3 (1e6) 3 (1e6)
Weight (kg) 15.6 (4.3) 14.5 (4.1)
Duration of surgery (min) 58.3 (36.7) 48.5 (27.6)
Duration of anaesthesia
(min)

69.4 (38.6) 59.9 (30.7)

Fig 1. Clinical setting with the brainwave entrainment device

fitted over a patient’s head. The device featured a light-emitting

diode mask and headphones connected to a laptop computer

and oxygen supply.
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Study hypothesis and outcome parameter

As null hypothesis, we postulated that the propofol re-

quirements to maintain sedation would not differ between

both groups, the alternative hypothesis being that such a dif-

ference would be demonstrable. Accordingly, the primary

outcome parameter of this study were the dose requirements

for continuous propofol infusion (in mg kg�1 body weight h�1)

to maintain BIS values between 60 and 70.
Power and statistical analysis

Our sample size estimates were aimed at disclosing the dose

concentration of propofol needed to achieve BIS values of 65 in

children aged 1 yr or over. They resulted in a sample size of 23

per group to detect a clinically meaningful difference of 30% (5

[2] mg kg�1 h�1 as within-group standard deviation) at a power

of 80%, given an alpha level of 0.05. To make allowances for

any dropouts, we increased this sample size to 27 per group.

Propofol dose, duration of surgery, age, and weight were

evaluated by means of an independent Student’s t-test or a

ManneWhitney U-test, as appropriate. Differences with P-

values <0.05 were considered statistically significant.
Results

No adverse events, whether related or unrelated to the

investigation, were observed throughout the study. Table 1

lists a pertinent selection of patient data and Fig 2 a study

flow chart as required by the Consolidated Standards of

Reporting Trials system for transparent trial reporting.

The mean dose requirement to maintain sedation was 3.0

mg kg�1 h�1 in the entrainment group (95% confidence interval

[CI]: 2.4e3.6) as compared with 4.2 mg kg�1 h�1 in the control

group (95% CI: 3.6e4.8). Hence, the null hypothesis for the

primary outcome parameter was rejected, as the intra-

operative requirements for propofol were indeed found to

differ significantly in both groups (P¼0.013).
The mean differences between intraoperative and preop-

erative BIS values were 5.98 (95% CI: 2.17e9.79) for the control

group and 4.35 (95% CI: 1.28e7.41) for the entrainment group

(P¼0.51 for the difference between the groups).
Discussion

This is the first communication to report clinical results of

brainwave entrainment aimed at minimising dose re-

quirements of propofol for effective sedation of children dur-

ing surgical procedures. We used this novel approach in the

setting of sub-umbilical surgery under caudal blockade and

achieved dose reductions that were statistically significant.

Hence, our findings indicate that brainwave entrainment can

effectively reduce the use of anaesthetic drugs in the scenario

of paediatric surgery.

Non-pharmacological means of sedation are particularly

useful in children. Concerns arise from the fact that virtually

none of the available general anaesthetics are labelled for all

paediatric age groups, but also from ongoing discussions about

general anaesthetics promoting neuronal apoptosis in chil-

dren.5,6,25 There is preclinical evidence of these drugs bringing

about changes in the developing brain26,27 that are linked to

long-term learning and behavioural deficits.9,10 Observational

studies have succeeded in translating these findings from

animal models to humans by associating repeated exposure to

procedures that require general anaesthesia with deficits in

learning, behaviour, fine motor coordination, and general

intelligence.1,20

The effectiveness of binaural beats has been addressed in

many studies dealing with conditions, such as anxiety,28

tinnitus,29 myofascial pain syndrome,30 or attention-deficit/

hyperactivity disorder.31 Pertinent research is also available

into preoperative anxiety of adult patients in day-case sur-

gery.22 The phenomenon of brainwave entrainment (i.e. of

brainwaves synchronising with auditory, visual, or tactile

input) can be traced on electroencephalograms based on four

bands of cerebral activity. Beta is the highest-frequency band,

ranging from �14 to �100 Hz, and reflecting normal con-

sciousness characterised by alertness and cognition. Delta (>0
to <4 Hz) and theta (�4 to <8 Hz) are associated with non-rapid

eye movement (NREM) and rapid eye movement sleep.

Relaxation and meditation are the hallmarks of the alpha

band, which ranges from �8 to <13 Hz, so that any brainwave

entrainment resulting in binaural beats of 10 Hz may be ex-

pected to encourage a relaxed (alpha) state of consciousness.

The rationale for our use of audiovisual stimulation, which

added flickering light to the binaural beats, was that a
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synchronous visual stimulus may reasonably be assumed to

boost the auditory effect of brainwave entrainment. It has

been shown that, in healthy volunteers who had their eyes

closed, audiovisual stimulation (including binaural beats at

18.5 Hz) increased the power in the 13e21 Hz frequency band

of the encephalogram by 49%, whereas auditory stimuli alone

increased the power by only 21% as compared with the same

measurements conducted without stimulation.32

Our approach in the present study was to match the fre-

quencies we applied for brain stimulation to the electroen-

cephalographic frequencies seen during NREM sleep. We

selected 10 Hz as a departure point, whichmay be considered a

fair approximation to the brain frequencies at this point, as the

patients were asleep by the time of initiating the administra-

tion of propofol. Then, we reduced the frequency step-by-step,

allowing the brain to synchronise with each new wavelength

before applying the next decrement. Finally, at the bottom end

of applicable frequencies, a steady state oscillating between 1

and 2 Hz was maintained to keep the brain continuously

stimulated, assuming that any prolonged exposure to a totally

unchanging frequency would be counterproductive.

BIS values, used to guide the dose reductions in the present

study, are demonstrably useful in monitoring the depth of

sedation achieved with propofol in paediatric surgery.33 In

fact, BIS monitoring of propofol anaesthesia has proved simi-

larly reliable in children 1 yr or older as in adults.34
Fig 2. Consolidated Standards of Reporting Trials flow diagram.
Controversy still exists over its accuracy, given that the ner-

vous systems of children are different from those of adults by

the very fact that they are undergoing rapid development, as

also reflected by typically more variable electroencephalo-

grams. Previous research has disclosed two age groups for BIS

monitoring under propofol anaesthesia, with 5e12 yr olds

exhibiting lower values than up to 5 yr olds evaluated at the

same time points.35 With regard to our study, this means that

any effect of age on these scores should have been minimal,

considering that the eligible age range of 1e6 yr eventuated in

only four children (two in either group) who were older than 5

yr.

Whilst the long-term implications of the present study are

potentially revolutionary, its nature is clearly associated with

medium-term limitations. Despite our point that many seda-

tives are not labelled for all age groups and may cause

neuronal apoptosis, it should be understood that these risks

mainly apply to very small children, whom we have been

unable to study for the time being. Note that appropriate

equipment is currently not available for children younger than

1 yr, let alone for neonates, and neither can BIS monitoring be

suitably used with babies this young.

These limitations cannot, however, change the fact that the

present study offers the first evidence of brainwave entrain-

ment being capable in principle of generating effective results

during paediatric surgery. We chose to investigate propofol,
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which is widely used for procedural sedation and general

anaesthesia in children. The use of a combination of drugs for

sedation (e.g. sevoflurane, opioids, and a-2-receptor agonists),
would have complicated the analysis and demonstration of

effectiveness here provided.

Further studies are needed to investigate the possibility of

further lowering sedative requirements. When surgery can be

performed under local or regional analgesia, the ultimate

objective would be to achieve sedation without the need for

pharmacological interventions. Further investigations are

needed to investigate the efficacy of entrainment, with pro-

pofol and other drugs, not only during longer surgical pro-

cedures, but also during other settings where sedation is used,

such as the ICU or during brachytherapy. Finally, further

studies are needed to determine the optimal choice of fre-

quencies for brainwave entrainment.
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