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Abstract

Background: Robot-assisted laparoscopic radical prostatectomy requires general anaesthesia, extreme Trendelenburg

positioning and capnoperitoneum. Together these promote impaired pulmonary gas exchange caused by atelectasis and

may contribute to postoperative pulmonary complications. In morbidly obese patients, a recruitment manoeuvre (RM)

followed by individualised PEEP improves intraoperative oxygenation and end-expiratory lung volume (EELV). We

hypothesised that individualised PEEP with initial RM similarly improves intraoperative oxygenation and EELV in non-

obese individuals undergoing robot-assisted prostatectomy.

Methods: Forty males (age, 49e76 yr; BMI <30 kg m�2) undergoing prostatectomy received volume-controlled ventilation

(tidal volume 8 ml kg�1 predicted body weight). Participants were randomised to either (1) RM followed by individualised

PEEP (RM/PEEPIND) optimised using electrical impedance tomography or (2) no RM with 5 cm H2O PEEP. The primary

outcome was the ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) before the last RM

before extubation. Secondary outcomes included regional ventilation distribution and EELV which were measured

before, during, and after anaesthesia. The cardiovascular effects of RM/PEEPIND were also assessed.

Results: In 20 males randomised to RM/PEEPIND, the median PEEPIND was 14 cm H2O [inter-quartile range, 8e20]. The PaO2/

FiO2 was 10.0 kPa higher with RM/PEEPIND before extubation (95% confidence interval [CI], 2.6e17.3 kPa; P¼0.001). RM/

PEEPIND increased end-expiratory lung volume by 1.49 L (95% CI, 1.09e1.89 L; P<0.001). RM/PEEPIND also improved the

regional ventilation of dependent lung regions. Vasopressor and fluid therapy was similar between groups, although 13

patients randomised to RM/PEEPIND required pharmacological therapy for bradycardia.

Conclusion: In non-obese males, an individualised ventilation strategy improved intraoperative oxygenation, which was

associated with higher end-expiratory lung volumes during robot-assisted laparoscopic prostatectomy.

Clinical trial registration: DRKS00004199 (German clinical trials registry)
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Editor’s key points

� Steep Trendelenburg positioning and capnoper-

itoneum promote pulmonary collapse, impaired gas

exchange, and pulmonary complications after surgery

in non-obese individuals.

� Individualised positive end-expiratory pressure,

titrated by electrical impedance tomography, improves

intraoperative oxygenation and end-expiratory lung

volumes in obese patients.

� In this randomised study, individualised PEEP settings

were quite variable, suggesting that one-size-fits-all

ventilatory strategies are suboptimal.

� Individualised PEEP improved oxygenation during

robot-assisted laparoscopic radical prostatectomy in

non-obese individuals.
Robot-assisted laparoscopic radical prostatectomy1 has

become an increasingly popular procedure used by surgeons

to minimise surgical trauma and blood loss, preserve of nerve

structures, and hasten recovery after surgery.2,3 However,

robot-assisted laparoscopic radical prostatectomy adversely

affects respiratory mechanics during general anaesthesia

because of high intra-abdominal pressures generated by the

combination of capnoperitoneum and the extreme Trende-

lenburg position required for optimal surgical access.1 Taken

together, these factors promote the development of pulmo-

nary atelectasis,4 which leads to reduced end-expiratory lung

volume (EELV) and impaired oxygenation, and may contribute

to postoperative pulmonary complications (PPCs).5,6 Levels of

PEEP that are often used during mechanical ventilation to

counteract these effects7,8 do not typically exceed 5 cm H2O,9

which may be too low to prevent atelectasis. Thus, patients’

individual constitution, BMI, positioning, and intra-abdominal

pressure may warrant a more individual approach to set PEEP.

One method to determine the lowest PEEP level that mini-

mises atelectasis while optimising tidal volume is the use of

electrical impedance tomography (EIT) imaging.10 In a previ-

ous study, recruitment manoeuvres (RMs) in combination

with individualised determination of the optimal PEEP level by

EIT in morbidly obese patients undergoing laparoscopic bar-

iatric surgery improved intraoperative oxygenation, by

increasing EELV and improving lung mechanics, compared

with standard ventilation with a PEEP of 5 cm H2O.11

Here, we tested the hypothesis that an initial RM and

individualised PEEP would improve intraoperative oxygena-

tion and EELV in patients with a BMI <30 kg m�2 at risk of PPCs

after robot-assisted laparoscopic radical prostatectomy.
Methods

A detailed description of themethods used in this prospective,

parallel-arm, randomised single-centre study was presented

in a previous publication in obese patients.11 The study re-

ported here is the second part of a larger project with a total of
113 planned patients (a run-in feasibility part with 5, a rand-

omised part with 54 obese and a randomised part with 54 non-

obese patients) and was approved by the local ethics com-

mittee (University of Leipzig, No. 196-11-ff-8042011) and

registered in the WHO-listed German trials registry

(DRKS00004199). The first part with obese patients has already

been published (appendix A).11 All non-obese patients were

recruited at the University of Leipzig Medical Centre between

February 2016 and December 2017. Informed consent of all

patients was obtained before inclusion.

Inclusion criteria

Males �18 yr of age, with a BMI <30 and >18.5 kg m�2 and in-

termediate to high risk of postoperative pulmonary compli-

cations (ARISCAT score [Assess Respiratory Risk in Surgical

Patients in Catalonia Score] �31)12 undergoing robot-assisted

laparoscopic radical prostatectomy were eligible for inclusion.

Exclusion criteria

The presence of implanted cardiac devices, chronic pulmo-

nary disease, congestive heart failure New York Heart Asso-

ciation III/IV, and severe haemodynamic instability after

induction of anaesthesia were defined as exclusion criteria.

Anaesthesia

After induction of anaesthesia with standard doses of remi-

fentanil, propofol, and rocuronium, general anaesthesia was

maintained as TIVA by continuous infusion of propofol and

remifentanil. Intravenous crystalloids and noradrenaline were

provided as necessary and at the discretion of the treating

anaesthetist, who was not part of the study team.

Intraoperative ventilation

All patients were ventilated in a constant-flow, volume-

controlled mode using a standard mechanical respirator

(EVITA-XL; Draeger Medical, Lübeck, Germany). Initial settings

after intubation were a tidal volume of 8 ml kg�1 predicted

body weight (PBW) and a ventilatory frequency of 12 breaths

min�1 in all patients. PEEP was adjusted according to the

experimental protocol (see below). The responsible anaes-

thetist was instructed to adapt ventilatory rate before a change

of tidal volume in the event of substantial hypercapnia (PaCO2

>6 kPa). Inspiratory flow was set to achieve an inspiratory

pause >0.2 s with an I/E ratio of 1:2. FiO2 was 0.4 and was

increased if necessary to maintain a peripheral oxygen satu-

ration of >92%.

Measurements

EELV was determined with the multiple breath nitrogen

washout method using respiratory mass spectrometry (RMS,

AMIS 2000; Innovision, Odense, Denmark) using the

Consensus technique.13



Fig 1. Experimental protocol timeline and interventions for both groups. PEEPIND, individual PEEP group; PEEP5, control group; RM,

recruitment manoeuvre.
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Arterial blood gas samples were analysed with a standard

co-oximeter (ABL 800; Radiometer, Copenhagen, Denmark).

Ventilation parameters and standard parameters of the

respiratory system (static and dynamic compliance, resis-

tance) were derived from the mechanical ventilator (EVITA-

XL; Draeger Medical). All variables were averaged for 20

ventilatory cycles.

EIT data were acquired with a commercially available EIT

system (PulmoVista500; Dr€ager Medical, Lübeck, Germany). In

addition to the regional ventilation delay index (RVDI), pa-

rameters quantified by EIT were regional ventilation distribu-

tion, the global inhomogeneity index (GI), and tidal ventilatory

distribution between dependent and non-dependent lung

zones, which were calculated offline using the Dr€ager EIT

analysis tool®, Version 6.1 (Draeger Medical).
Protocol

The study protocol is summarised in Figure 1. Randomisation

was performed after obtaining patient informed consent the

day before surgery with using aminimisation algorithmwith a

stochastic component, stratified by age (<45 vs �45 yr) and

ARISCAT score (<45 vs �45 points). Measurements of EELV,

arterial blood gas analyses with an FiO2 of 1.0 and EIT were

performed before induction of anaesthesia and 4e6 h after

extubation in the spontaneously breathing patient using a

special mouthpiece and a nose clamp. A first baseline mea-

surement was performed 10 min after induction of anaes-

thesia at a PEEP of 5 cm H2O in both groups, followed by

another two measurements at defined time points during

general anaesthesia, either at a PEEP of 5 cm H2O (control
group) or individual PEEP (intervention group). PEEP remained

at 5 cm H2O in the control group throughout the entire period

of mechanical ventilation without any RM. Subsequent to a

first RM followed by PEEP titration, an additional RM and

setting of the individual PEEP followed in the intervention arm.

All RMs were performed in pressure-controlled mode and

consisted of 10 respiratory cycles with a PEEP of 20 cm H2O, a

peak inspiratory pressure of 40 cm H2O, and a ventilatory

frequency of 6 breaths min�1 with an I/E of 1:2. Patient posi-

tioning was supine before induction of anaesthesia. All mea-

surements in the intubated patient were performed in the 30�

Trendelenburg position, except the last measurement 4e6 h

after extubation, which was performed in 30� reverse Tren-

delenburg position.
Individualised ventilatory strategy: PEEP titration

After baseline measurements at a PEEP of 5 cm H2O (see

above), a first RM was performed. Subsequently, the decre-

mental PEEP trial was initiated by setting PEEP to 20 cm H2O

and decreasing it stepwise by 2 cm H2O until a PEEP of 4 cm

H2O was reached (volume controlled mode, tidal volume 8 ml

kg�1 PBW, ventilatory frequency 12 breaths min�1, I/E 1:2, FiO2
0.4), with a low flowmanoeuvre (LFM) at each PEEP step (single

breath, inspiratory flow: 4 L min�1; tidal volume: 12 ml kg�1

PBW). As reported in our previouswork, RVDI for each of the 11

LFMwas calculated offline using customised software. In brief,

the regional ventilation delay during the LFM for each pixel in

the EIT image was determined, and the RVDI was then defined

as the standard deviation (SD) for all pixels’ regional ventilatory

delay. The PEEP corresponding to the lowest RVDI was set as



Fig 2. Flowchart of enrolment and outcomes. EELV ¼ end-expiratory lung volume; FiO2 ¼ fraction of inspired oxygen; PaO2 ¼ partial pressure

of oxygen in arterial blood; PEEP ¼ positive end-expiratory pressure.
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PEEPIND. After another RM, PEEPIND was maintained

throughout the entire period of mechanical ventilation. After

resolution of the capnoperitoneum at the end of the operation,

a last (fourth) RM was performed immediately before extuba-

tion (see also Fig. 1). Patients were postoperatively monitored

in the PACU for at least 6 h and received standard post-

operative care.
Primary outcome

The primary outcomewas the PaO2/FiO2 ratio before the last RM

before extubation.
Secondary outcomes

We measured the following secondary outcomes:
1. EELV before last RM.

2. PaO2/FiO2 ratio and EELV at different points in time during

and after ventilation.

3. Vasopressor, fluid, and heart rate-related pharmacological

interventions were recorded to determine whether the

ventilation strategies explored had any cardiovascular

effects.
Sample size calculation

The sample size calculation was based on detecting differ-

ences in PaO2/FiO2 of 13.3 kPa (100 mm Hg) between the two

ventilation strategies, with an SD of 90 mm Hg in each arm.

Accounting for drop-outs, 27 subjects were planned for each

ventilation strategy so as to have 22 subjects with complete

data, to achieve a power of 90%. Because of the low drop-out



Table 1 Baseline characteristics of the study population. En-
tries are mean (standard deviation, SD), mean (range) or
numbers (%). ARISCAT score, Assess Respiratory Risk in Sur-
gical Patients in Catalonia score; ASA, American Society of
Anesthesiologists; EIT, electrical impedance tomography;
PEEPIND, designation for the intervention arm, in which an
individual PEEP was determined with EIT titration; PEEP5,
designation for the control arm, where a standard PEEP of 5
cm H2O was used; NA, not available.

PEEPIND (n¼20) PEEP5 (n¼20)

Number of males 20 (100%) 20 (100%)
Age (yr) 62.6 (49e76) 64.2 (50e76)
BMI (kg m�2) 25.3 (2.3) 25.6 (2.5)
ARISCAT score 36.1 (5.3) 35.0 (4.0)
>44 2 (10%) 1 (5%)

ASA physical status
1 7 (35%) 2 (10%)
2 12 (60%) 16 (80%)
3 1 (5%) 2 (10%)

Smoking
Never 10 (53%) 8 (42%)
Former 3 (16%) 4 (21%)
Current 6 (32%) 7 (37%)

Alcohol use
None 2 (11%) 1 (6%)
Rarely 8 (42%) 7 (39%)
Regularly 9 (47%) 10 (56%)

Heart failure 0 (0%) 1 (5%)
Coronary heart disease 1 (5%) 3 (16%)
Bronchitis within
past month

1 (5%) 1 (5%)

Sleep apnoea 1 (5%) 0 (0%)
Diabetes mellitus 0 (0%) 2 (10%)

Individualised PEEP during robot-assisted laparoscopic radical prostatectomy - 377
rates in the obese part of the trial along with large effect

sizes,11 we were able to reduce the sample size from 44 to 40

analysed subjects.
Statistical analysis

The PaO2/FiO2 and EELV were analysed using analysis of

covariance, with the value before extubation as the depen-

dent variable, the value after intubation as a covariate, and

the assigned arm as a factor. A linear mixed model with

interaction between the randomisation group and the point

in time was used to compare PaO2/FiO2 and EELV data at

multiple time points between both ventilation strategies,

with prespecified multiple comparisons performed using the

‘multcomp’ package and the Westfall adjustment for P-

values. Patients with at least one measurement provide in-

formation that enters into the estimates of the coefficients.

Missing data for EELV were treated with multiple imputation

with 50 iterations using the ‘mice’ R-package.14 Because

purely technical issues unrelated to lung volume led to

missing data, they were treated as ‘missing completely at

random’; an analysis of the existing data provides a non-

biased estimate as a sensitivity analysis.15 Finally, a robust-

ness analysis was conducted to determine the magnitude of

the effect needed before a different conclusion would be

drawn from the data. Comparisons for count data were made

using Fisher’s exact test. Statistical analyses were performed
using R Version 3.6.1 (R Foundation for Statistical Computing,

Vienna, Austria; www.R-project.org). P-values <0.05 denote

statistical significance.
Results

Subject characteristics

All 40 subjects completed the study (Fig. 2). Themean BMI, 25.3

(2.4) kg m�2, was similar between each group (Table 1). No

subjects required mechanical ventilation after the operation.

Complete PaO2/FiO2 data were available for all subjects, but

complete EELV data as a secondary endpoint could only be

computed for 24 subjects. In the other subjects, technical is-

sues with mass spectrometry such as vacuum pump failure,

calibration issues, and leakage with nitrogen inflow during

spontaneous breathing because of patients’ inability to

maintain a closed loop system with the mouthpiece resulted

in incomplete data. At least one EELV data point was available

for 35 patients, and all of these subjects were included in the

mixed model.
Individualised ventilation strategy

The median PEEP in the intervention group was 14 cm H2O

[inter-quartile range, 8e20].
Primary outcome: PaO2/FiO2 before extubation

Before extubation, PaO2/FiO2 was 10.0 kPa higher in the PEEPIND

during capnoperitoneum (95% confidence interval [CI],

2.6e17.3 kPa; P¼0.0094) compared with the PEEP5 group

(Fig. 3a).
Secondary outcomes: end-expiratory lung volume

EELV declined in both groups after induction of general

anaesthesia and intubation (Fig. 3b). In the PEEPIND group,

EELV increased after initial RM and application of PEEPIND, but

remained unchanged in the PEEP5 group until after extubation.

Before extubation, EELV was 1.01 L higher in the PEEPIND

compared with the PEEP5 group (95% CI, 0.79e1.27 L; P<0.001).
In the corresponding sensitivity analysis with complete data,

the estimate was 1.49 L higher in the PEEPIND compared with

the PEEP5 group (95% CI, 1.09e1.89 L; P<0.001). From the

robustness analysis, we found similar results, unless mean

EELV among the missing data were 1.4 L lower in the PEEPIND

group.
Lung mechanics

Intubation and ventilation with a PEEP of 5 cm H2O led to a

shift of ventilation distribution to non-dependent lung areas

in both groups. This effect was partly counterbalanced by RM

and individualised PEEP in the PEEPIND group during capno-

peritoneum. After release of capnoperitoneum, ventilation

distribution reached preoperative values measured during

spontaneous breathing. In contrast, ventilation remained

primarily in the non-dependent lung areas during mechanical

ventilation in the PEEP5 group until the patients returned to

spontaneous ventilation (Fig. 3c). Postoperatively, ventilation

distribution did not differ from preoperative values. Ventila-

tion inhomogeneity as calculated by the GI also increased in

http://www.R-project.org


Fig 3. Time course of PaO2/FiO2 (a), EELV calculated from multiple breath nitrogen washout (b), global inhomogeneity index (c) and dis-

tribution of regional ventilation of tidal volume (VT) distributed to the non-dependent lung (d), with the last two both calculated from

electrical impedance tomography. Points represent means and whiskers 95% confidence intervals from the data at that given time point

(i.e. not from the repeated-measures analysis of variance). For the points in time from left to right, EELV was available for n¼22, 29, 28, 26,

and 19 patients, respectively. EELV, end-expiratory lung volume; FiO2, fraction of inspired oxygen; PNP, capnoperitoneum; PEEPIND, elec-

trical impedance tomography-based individualised PEEP arm; PEEP5, standard PEEP of 5 cm H2O arm.

378 - Girrbach et al.
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both groups after intubation. Mechanical ventilation with

individualised PEEP led to a significant improvement in

ventilation homogeneity in the PEEPIND group. However, we

observed a return to pre-intubation levels in the PEEPIND group

resulting in comparable GI in the PEEPIND and PEEP5 group

postoperatively (Fig. 3d). Peak and plateau pressures were

higher in the PEEPIND group, but this resulted in significantly

lower driving pressures (12(3) vs 17(3) cmH2O, P<0.001; see also

Table 2).
Cardiovascular effects of PEEPIND

Doses of vasopressor and fluid infusions during mechanical

ventilation were similar between groups (Table 3). Thirteen

patients showed relevant bradycardia during RM or PEEP

titration phases requiring pharmacological intervention.
Discussion

In the present study, EIT-guided PEEPIND with RM resulted in

better oxygenation and greater EELV, compared with a stan-

dard PEEP of 5 cm H2O without RM. Our findings confirm our

previous study in obese patients,11 in which ventilation with

PEEPIND and RM also resulted in better intraoperative

oxygenation, higher EELV, higher ventilation homogeneity,

and improved respiratory system mechanics. The current

study shows that this holds in non-obese patients undergoing

invasive prostatectomy requiring capnoperitoneum and

extreme Trendelenburg positioning, although mean PEEP was

3.5 cm H2O lower than for obese patients.

The differences between the study groups concerning

oxygenation and EELV resolved quickly after extubation.

However, EELV was comparable with the values measured

preoperatively and oxygenation worsened only slightly, which

is in contrast to our findings in morbidly adipose patients

where differences were substantial.11 We observed that atel-

ectasis caused by mechanical ventilation, extreme Trende-

lenburg positioning and capnoperitoneum resolved after

extubation in the control group. Ventilation with PEEPIND with

RM in normal weighted patients therefore exerts its effects

mainly on intraoperative lung function. In our study group

consisting of non-obese patients with healthy lungs, atelec-

tasis did not have detrimental effects on oxygenation, despite

an observed average reduction of EELV of about 1 L after

intubation compared with preoperative values in the control

group. Even if we did not observe any hypoxic events in our

study group, the improvement in oxygenation in the inter-

vention group could be crucial in patients with impaired lung

function. PEEPIND also resulted in better respiratorymechanics

indicated by lower driving pressures, which may be a surro-

gate for ventilator-induced lung injury.16,17

The majority of patients required vasopressor support

during anaesthesia. However, the mean vasopressor doses

were low and were similar between groups. Furthermore,

most cardiovascular complications such as bradycardia and

hypotension occurred during the application of RM in the

intervention group and were only transient with quick reso-

lution after termination of the RM. Cardiocirculatory depres-

sion is one of the main reasons why anaesthesiologists

hesitate to perform RM, and their relevance in context with

other elements of a lung protective ventilation strategy has

been questioned.
The decrease in EELV with shift of ventilation to non-

dependent lung areas indicates rapid development of atel-

ectasis in dependent lung areas only 10 min after intubation

and Trendelenburg positioning. In a comparable clinical

scenario, Futier and colleagues18 showed that the addition of

RM to PEEP led to significant improvement in oxygenation

compared with PEEP alone in non-obese and obese patients.

Therefore, we still consider RM followed by adequate PEEP to

be a cornerstone of a lung protective ventilation strategy.

RMs were thus included in the PEEPIND arm in line with other

recent PEEP studies.11,19

Our study was a proof-of-concept study and not designed

to detect whether the RM/PEEPIND strategy resulted in differ-

ences in postoperative pulmonary complications (PPCs). The

recent Intraoperative Ventilation with Higher vs Lower Levels

of Positive End-Expiratory Pressure in Obese Patients (PROB-

ESE) study) did not detect differences in PPC in obese patients

when comparing a PEEP of 12 cm H2O with RM to PEEP of 4 cm

H2O. However, given that individual PEEP values were sub-

stantially higher in a physiological study in obese patients,11 a

PEEP value of 12 cm H2Omight have been ineffective for entire

prevention of atelectasis in the PROBESE study. In non-obese

patients with abdominal surgery, the large Ventilation Using

High vs Low Positive End-Expiratory Pressure (PROVHILO)

study compared PEEP values of 12 cm H2O with RM with PEEP

�2 cm H2O without RM and did not observe differences in

PPC.20 Apart from the lack of PEEP individualisation, however,

PROVHILO did not include patients with laparoscopic sur-

gery.20 In a recent meta-analysis including 12 trials, Cui and

colleagues21 suggested that a lung protective ventilation

strategy with RM is associated with a lower incidence of PPC in

non-obese patients.

Our study has several limitations. In contrast to Andersson

and colleagues,4 we did not measure the real extent of atel-

ectasis and alveolar recruitment by RM and PEEPIND. However,

EELVmeasured by the nitrogenwashoutmethod shows a good

correlation with EELV measured by CT,22 although in this

particular study the method was fraught with technical chal-

lenges leading to missing data for some interventions. We

performed sensitivity and robustness analyses, which clearly

showed that effects were so large that missing data was un-

likely to affect our conclusions. For practical reasons, PEEP

titration and determination of PEEPIND was done in 30� Tren-

delenburg position, but before initiation of capnoperitoneum.

Furthermore, the capnoperitoneum measurement was un-

dertaken without readjustment of PEEPIND. Few clinical data

are available concerning the additional effects of capnoper-

itoneum on respiratory mechanics and lung volumes in

extreme Trendelenburg positioning. In a small study including

30 obese and 30 normal weight patients, capnoperitoneum led

to a decrease in respiratory system compliance, but patients

were not positioned in the Trendelenburg position.18 In our

study, EELV did not decrease further in the PEEP5 group after

initiation of capnoperitoneum compared with the levels

measured after intubation and Trendelenburg positioning of

the patient, indicating that capnoperitoneum might not have

relevant effects on EELV in addition to that caused already by

the Trendelenburg position. Accordingly, Loring and col-

leagues23 did not detect a significant decrease of EELV after

initiation of capnoperitoneum in a small study including

mainly obese patients. However, clinical experience and the



Table 2 Respiratory and blood parameters at three time points during mechanical ventilation. Gas volumes are given in body tem-
perature and pressure saturated (BTPS) conditions. Entries are mean (standard deviation) and P-values compare the two arms from a
repeated-measures analysis of variance. BE, acidebase excess; FiO2, fraction of inspired oxygen; PetCO2, end-tidal partial pressure of
carbon dioxide; PBW, predicted body weight; PEEPIND, designation for the intervention arm, where an individual PEEP was determined
with titration; PEEP5, designation for the control arm where a standard PEEP of 5 cm H2O was used; PNP, pneumoperitonium.

PEEPIND (n¼20) PEEP5 (n¼20) P

After
intubation

PNP Before
extubation

After
intubation

PNP Before
extubation

Tidal volume (ml) 643 (91) 652 (97) 641 (90) 603 (58) 606 (62) 611 (69) e

Tidal volume/PBW (ml kg�1) 8.33 (0.78) 8.45 (0.70) 8.30 (0.69) 8.46 (0.48) 8.50 (0.54) 8.55 (0.57) e

PEEP (cm H2O) 5.0 (0.0) 14.7 (3.3) 14.7 (3.3) 5.0 (0.0) 5.0 (0.0) 5.0 (0.0) <0.001
Peak pressure (cm H2O) 23.4 (5.3) 34.9 (3.9) 29.9 (3.7) 24.2 (4.3) 30.4 (4.6) 25.5 (4.0) 0.025
Plateau pressure (cm H2O) 15.8 (2.2) 26.4 (4.4) 22.2 (3.8) 16.6 (3.0) 22.3 (3.3) 17.2 (2.7) 0.012
Driving pressure (cm H2O) 10.8 (2.2) 11.7 (2.9) 7.7 (1.8) 11.6 (3.0) 17.3 (3.3) 12.2 (2.7) <0.001
Resistance (cm H2O) 7.7 (5.4) 8.4 (2.3) 7.5 (2.7) 7.8 (2.9) 7.9 (1.9) 8.1 (1.9) 0.89
PetCO2 (kPa) 6.26 (0.54) 6.40 (0.83) 6.64 (1.09) 6.53 (0.63) 5.93 (0.44) 5.87 (0.43) 0.080
Ventilatory frequency
(breaths min�1)

12 (0.9) 15 (2.7) 15 (2.9) 12 (1.1) 17 (3.6) 17 (3.8) 0.059

Minute ventilation (L min�1) 7.9 (1.3) 9.8 (2.2) 9.6 (2.0) 7.5 (0.9) 10.1 (2.2) 10.3 (2.3) 0.66
PaO2/FiO2 (kPa) 63.8 (7.9) 64.3 (12.7) 69.0 (12.9) 56.6 (14.0) 52.2 (13.7) 55.7 (10.8) <0.001
PaCO2 arterial (kPa) 4.62 (0.41) 4.82 (0.85) 4.78 (0.91) 4.76 (0.53) 4.55 (0.55) 4.49 (0.60) 0.40
pH 7.461 (0.028) 7.429 (0.060) 7.426 (0.066) 7.445 (0.040) 7.444 (0.038) 7.431 (0.089) 0.90
Haemoglobin (mmol L�1) 8.6 (0.8) 8.4 (0.7) 8.2 (0.6) 8.6 (0.6) 8.4 (0.7) 8.3 (0.8) 0.83
BE (mmol L�1) 0.9 (1.5) �0.5 (1.4) �0.6 (1.4) 0.5 (1.5) �0.3 (1.3) �0.1 (1.0) 0.84
HCO3

e (mmol L1) 24.8 (1.4) 23.6 (1.4) 23.4 (1.5) 24.8 (1.3) 24.0 (1.3) 24.2 (1.1) 0.40
Temperature (�C) 35.7 (0.4) 36.5 (0.5) 36.5 (0.5) 35.7 (0.3) 36.2 (0.4) 36.3 (0.4) 0.13
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study by Andersson and colleagues4 suggest that both Tren-

delenburg positioning and capnoperitoneum contribute to

atelectasis-induced loss of FRC. Another explanation for the

apparent absence of further reductions in EELV after initiation

of capnoperitoneum in the PEEP5 group could be that signifi-

cant airway closure has already occurred after Trendelenburg

positioning of the patient. This would limit the further loss of

EELV.
Table 3 Vital parameters, vasoactive medication and complications d
or numbers (%), wheremeans for vasoactive medication refer only to
single ampoules of 1þ20 mg for theodrenaline þ cafedrine or 5 mg o
compared for the 14 individualised and 19 standardised patients, wh
infusions. Blood pressure complications are defined by <90 mm H
pulmonary and extra-pulmonary complications are explained in th
used: PetCO2, partial pressure of end-tidal carbon dioxide; PEEP, posi
vention arm, in which an individual PEEP was used; PEEP5, designat
used; SpO2, peripheral capillary oxygen saturation.

PEEPIND (

During surgery
Heart rate (beats min�1) 60 (10)
Mean arterial blood pressure (mm Hg) 77 (9)
Total fluid infusion rate (ml h�1 kg�1) 7.03 (3.24
Vasoactive injections
Received medication 18 (90%)
Amount (bolus equivalents) 2.0 (8.9)

Norepinephrine infusion
Received medication 18 (90%)
Maximal rate (mg�1 min�1) 0.089 (0.1

Blood pressure complications 8 (40%)
After operation (day of OP)
SpO2 <90% 0 (0%)
PetCO2 >6.7 kPa 0 (0%)
Blood pressure complications 0 (0%)
Vasoactive medication administered 0 (0%)
In summary, the results of the current work combined

with our previous study in obese patients11 show that indi-

vidualised PEEP improves intraoperative oxygenation and

lung mechanics compared with a lower standard PEEP in

both normal weight and obese patients undergoing laparo-

scopic surgery. To date, the main shortcoming of an indi-

vidualised PEEP strategy using EIT is that it extends the

duration of anaesthesia, which may limit clinical utility.
uring and after surgery. Entries are means (standard deviations)
those who received it. Bolus equivalents aremeasured in units of
f norepinephrine. Amounts of vasoactive injected medication is
o received such medication, but did not receive norepinephrine
g (systolic) or <60 mm Hg (diastolic) for 10 min. The particular
e text. Fluid infusion was entirely crystalloid, no colloids were
tive end-expiratory pressure; PEEPIND, designation for the inter-
ion for the control arm, where a standard PEEP of 5 cm H2O was

n¼20) PEEP5 (n¼20) P

58 (9) 0.64
78 (9) 0.66

) 8.46 (3.08) 0.16

14 (70%) 0.24
0.0 (0.2) 0.34

15 (75%) 0.41
24) 0.043 (0.021) 0.14

5 (25%) 0.50

0 (0%) e

0 (0%) e

1 (5%) 1.00
2 (10%) 0.49
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Further physiological studies are required to develop indi-

vidualised PEEP measurements in a more time-efficient

manner.
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Appendix A.

The study was conceived to contain two randomised pop-

ulations: the obese and non-obese. The decision to recruit,

analyse and publish them separately was taken because of

fundamental differences between them: (1) evaluating the

main research question did not necessarily need a control

group of a different patient population (obese vs non-obese),

and (2) the obese patient group was expected to contain pre-

dominantly females with all patients undergoing bariatric

upper abdominal surgery performed in reverse Trendelenburg

position. In contrast, the non-obese group were exclusively

male patients undergoing robot-assisted laparoscopic radical

prostatectomy. This operation, however, is performed in

extreme Trendelenburg position.

Whereas the trial protocol is explicit about analysing the

groups separately, the registered information on the trial un-

fortunately does not make it clear that there exist two groups,

nor that they were recruited consecutively.
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