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Abstract

Background: Recent studies point to a fundamental distinction between population-based and individual-based

anaesthetic pharmacology. At the population level, anaesthetic potency is defined as the relationship between drug

concentration and the likelihood of response to a stimulus. At the individual level, even when the anaesthetic con-

centration is held constant, fluctuations between the responsive and unresponsive states are observed. Notably, these

spontaneous fluctuations exhibit resistance to state transitions Rst. Therefore, the response probability in each individual

depends not just upon the drug concentration, but also upon responses to previous stimuli. Here, we hypothesise that Rst

is distinct from drug potency and is differentially modulated by different anaesthetics.

Methods: Adult (14e24 weeks old) C57BL/6J male mice (n¼60) were subjected to repeated righting reflex (RR) assays at

equipotent steady-state concentrations of isoflurane (0.6 vol%), sevoflurane (1.0 vol%), and halothane (0.4 vol%).

Results: Fluctuations in RR were observed for all tested anaesthetics. Analysis of these fluctuations revealed that Rst was

differentially modulated by different anaesthetics (F[2, 56.01]¼49.59; P<0.0001). Fluctuations in RR were modelled using a

stochastic dynamical system. This analysis confirmed that the amount of noise that drives behavioural state transitions

depends on the anaesthetic agent (F[2, 42.86]¼16.72; P<0.0001).
Conclusions: Whilst equipotent doses of distinct anaesthetics produce comparable population response probabilities,

they engage dramatically different dynamics in each individual animal. This manifests as a differential aggregate pro-

pensity to exhibit state transitions. Thus, resistance to state transitions is a fundamentally distinct, novel measure of

individualised anaesthetic pharmacology.
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Editor’s key points

� Fluctuations in the state of responsiveness at fixed

anaesthetic concentrations exhibit resistance to state

transitions, such that knowing just the drug concen-

tration is insufficient to predict the probability of

response.

� Resistance to state transitions could depend solely on

the effective concentration of an anaesthetic, or be in-

dependent of drug potency and differentially modu-

lated by different anaesthetics.

� To distinguish between these possibilities, the authors

exposed male mice to equipotent concentrations of

three volatile anaesthetics and quantified the degree of

resistance to state transitions.

� At equipotent concentrations, resistance to state tran-

sitions depended on the anaesthetic agent, and is thus

a dissociable feature of anaesthetic pharmacology that

has been obscured by conventional population-based

measures of drug efficacy.

� Even when the population-based measures, such as

effective concentration, are the same, the state of

anaesthesia induced with different volatile anaes-

thetics is associated with distinct dynamics at the level

of individual mice, which has implications for defining

depth of anaesthesia.
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Anaesthesiologists aim to deliver an appropriate anaesthetic

dose, such that each individual patient remains unconscious

throughout the procedure and recovers consciousness swiftly

and uneventfully once the procedure concludes. To accom-

plish this goal, clinicians currently rely on fundamental prin-

ciples of pharmacology. The relationship between anaesthetic

concentration and its effect in a target population is quantified

by constructing a concentrationeresponse curve.1 A classic

measure of inhaled anaesthetic pharmacology, the minimal

alveolar concentration (MAC), is defined as the anaesthetic

concentration at which the likelihood of a response to a

painful stimulus is 50%.2e4 Other anaesthetic endpoints, such

as MAC-awake, have been defined as the concentration at

which 50% of subjects respond to a verbal command.2 In
Fig 1. Identical anaesthetic potencies can be obtained with varying degr

of performance of two individuals on eight consecutive righting reflex

system that changes between states randomly. (b) High Rst results in

systems differ in their Rst, both produce an identical measure of anaest

compared with the total amount of observed trials (50%).
rodent research, the ability of an animal placed on its back to

turn over onto its paws, the righting reflex (RR), has been used

as a proxy for the state of wakefulness.5,6 Across many

mechanistically distinct anaesthetics, the effective concen-

trations for 50% of subjects (EC50) for loss of RR in rodents and

MAC-awake in humans are closely correlated.7

Current measures of anaesthetic efficacy, including MAC-

awake, define the response at the level of the population

rather than of the individual. To apply population-based

measures to an individual, it is typically assumed that the

individual’s probability of wakefulness mirrors that of the

population for every anaesthetic concentration. At the EC50,

for instance, each individual is expected to be responsive on

50% of trials. However, this line of reasoning reveals an

essential shortcoming of population-based measures of

anaesthetic potency. It is not clear which 50% of stimuli will

trigger a response in each individual.

To illustrate this limitation, consider two hypothetical ex-

amples of individuals at EC50 (Fig. 1). With respect to the

across-trial probability of wakefulness, these individuals are

the same and each responds to 50% of stimuli. Yet, the overall

righting probability does not directly inform the underlying

dynamics of the responses in the two individuals. The first

individual randomly fluctuates between responsive and un-

responsive states (Fig. 1a). Thus, on average, the state switches

approximately every other trial. In contrast, the fluctuations in

the second individual are more predictable. The second indi-

vidual tends to dwell in its previously observed state (Fig. 1b).

We define this inertial tendency ‘resistance to state transi-

tions’ Rst. One manifestation of this inertia is that the proba-

bility of unresponsiveness is significantly higher if the

individual was unresponsive on the previous trial. The key

point is that, with respect to the population-basedmeasures of

anaesthetic potency, the two individuals in Figure 1 are iden-

tical. Thus, population-based measures of anaesthetic phar-

macology cannot account for the tendency to resist state

transitions.

The scenario illustrated in Figure 1 is not just a hypothet-

ical possibility. In a study of the fluctuations in responsive-

ness in mice and in zebrafish exposed to isoflurane or

propofol,8 fluctuations in the state of wakefulness under fixed

anaesthetic concentrations exhibited resistance to state

transitions. Thus, knowing just the drug concentration is

insufficient to predict the probability of response. To more

precisely determine the probability of response, an
ees of resistance to state transitions Rst. Schematic representations

trials at a fixed anaesthetic concentration. (a) Low Rst results in a

a system that tends to persist in a given state. Although the two

hetic potency, given by the proportion of responsive trials observed
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individual’s previous state of responsiveness must also be

considered.

Here, we further characterise resistance to state transi-

tions. One possibility is that resistance to state transitions

depends solely on the effective concentration of an anaes-

thetic. If so, then different anaesthetic agents administered at

equipotent concentrations will be associated with identical

resistance to state transitions. Alternatively, it is possible that

resistance to state transitions is independent of drug potency

and can be differentially modulated by different anaesthetics.

To distinguish between these possibilities, we exposedmice to

equipotent concentrations of distinct volatile anaesthetics

and quantified the degree of resistance to state transitions. We

show that, at equipotent concentrations, the degree of resis-

tance to state transitions depends strongly on the anaesthetic

agent. Thus, resistance to state transitions is a dissociable

feature of anaesthetic pharmacology that has been obscured

by conventional population-based measures of drug efficacy.

Our results illustrate that, even when the population-based

measures, such as effective concentration, are the same, the

state of anaesthesia induced with different volatile anaes-

thetics is associated with distinct dynamics at the level of in-

dividual mice.
Fig 2. Steady-state response probability at the population level is assoc

level. Groups of 20 mice were exposed to either isoflurane 0.6%, sevo

duration of each anaesthetic exposure was 4 h, with righting reflex asse

trials per exposure). One experimental exposure from (a) isoflurane 0

squares depict trials, in which the animal successfully righted itself. B

Fluctuations between the responsive and unresponsive states were ob

level, anaesthetic potency, defined as the proportion of unresponsive

anaesthetics. (d) Isoflurane 0.6%: 0.44 (0.06) mean [standard deviation],

(0.05). Response probability was approximately constant across trials

P¼1), and halothane (R2¼1.4�10�15; P¼1), as measured by Pearson’s R

bars represent 30 min.
Methods

Animals

Studies were approved by the Institutional Animal Care and

Use Committee at the University of Pennsylvania and were

conducted in accordance with the National Institutes of

Health guidelines. Inbred male wild-type C57BL/6J mice

(Jackson Laboratory, Bar Harbor, ME, USA) aged 16e24 weeks

(n¼60) were used in RR behavioural assays.
Righting reflex assay during volatile anaesthetic
exposure

Before anaesthetic exposure, the mice were acclimatised to

gas-tight temperature-controlled 200 ml experimental cham-

bers, as described.9 The RR protocol was performed, as

described.8 In brief, separate cohorts of 20 mice were exposed

to either isoflurane 0.6 vol%, sevoflurane 1.0 vol%, or halo-

thane 0.4 vol% in 100% oxygen on four separate occasions over

the course of 1 month. These drug concentrations were

determined in preliminary experiments and chosen such that

they are close to the EC50 and such that the overall righting

probability was statistically indistinguishable amongst the
iated with spontaneous behavioural fluctuations at the individual

flurane 1.0%, or halothane 0.4% on four separate occasions. The

ssments made every 3 min during the final 2 h of each exposure (40

.6%, (b) sevoflurane 1.0%, and (c) halothane 0.4% is shown. Green

lue squares depict trials, in which the animal failed to right itself.

served in each mouse and for every anaesthetic. At the population

individuals on a given trial, remained constant across trials for all

dotted line. (e) Sevoflurane 1.0%: 0.41 (0.05). (f) Halothane 0.4%: 0.48

under isoflurane (R2¼4.4�10�16; P¼1), sevoflurane (R2¼4.2�10�16;

correlation between trial number and response probability. Scale



Fig 3. Righting probability depends on previous behavioural state. Bernoulli process simulations consisting of the same number of trials as

experimental data sets were computed for each anaesthetic based on the experimental population response probabilities from Figure 2.

Individual response probability, the proportion of responsive trials, was not significantly different between simulations and experimental

data for (a) isoflurane (median experimental¼0.45; simulated¼0.47; U¼194; P¼0.88), (b) sevoflurane (median experimental¼0.41; simu-

lated¼0.42; U¼190; P¼0.79), or (c) halothane (median experimental¼0.4; simulated¼0.49; U¼144; P¼0.13). However, mice exposed to (d)

isoflurane (median experimental¼0.34; simulated¼0.47; U¼29; P<0.0001), (e) sevoflurane (median experimental¼0.27; simulated¼0.48;

U¼5.5; P<0.0001), or (f) halothane (median experimental¼0.16; simulated¼0.5; U¼0; P<0.0001) all had fewer state transitions than Bernoulli

simulations predict. Statistical significance is shown by ****P<0.0001. All comparisons performed using ManneWhitney U-test. Circles

show individual points; black lines show medians. Exp, experimental; Sim, simulated.
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different anaesthetics. A fresh gas flow of one-volume turn-

over-per-minute exchange rate was used to assure rapid drug

equilibration, with 4 h anaesthetic exposures begun between

ZT12-14. Righting reflex assessments were performed every 3

min during the final 2 h of each 4 h anaesthetic exposure. The

first 2 h of drug exposure ensured anaesthetic equilibration.
Fig 4. Probability of future response depends on the previous state of

animal was unresponsive on the previous trial for all three anaestheti

P(U) previously unresponsive¼0.55; U¼103; P¼0.008. (b) Sevoflurane

unresponsive¼0.69; U¼9; P<0.0001. (c) Halothane median P(U) previou

U¼19; P<0.0001. Circles show individual points; black lines show me

pairwise comparisons performed using ManneWhitney U-test.
Each RR trial consisted of two rotations of the chamber per-

formed in rapid succession. An animal was considered to be

responsive if it was able to return to an upright posture on both

chamber rotations. All other outcomes (righting on zero or on

just one rotation) were defined as unresponsive. Chamber

anaesthetic concentration was measured and confirmed to be
the animal. Probability of unresponsiveness P(U) was higher if the

cs. (a) Isoflurane median P(U) previously responsive¼0.45; median

median P(U) previously responsive¼0.31; median P(U) previously

sly responsive¼0.20; median P(U) previously unresponsive¼0.80;

dians. Statistical significance shown by **P<0.01; ****P<0.0001. All



Fig 5. Resistance to state transitions is distinct from anaesthetic potency and altered by different anaesthetics. (a) The mean response

probability was not significantly different across mice exposed to isoflurane, sevoflurane, or halothane (F[2, 46.30]¼0.5915; P¼0.5576). (b)

The mean resistance to state transitions Rst was significantly different across mice exposed to isoflurane, sevoflurane, or halothane (F[2,

56.01]¼49.59; P<0.0001) post hoc comparisons isoflurane vs sevoflurane (0.54 [0.05] vs 0.60 [0.06]; mean [standard deviation {SD}]; P¼0.0062),

sevoflurane vs halothane (0.60 [0.06] vs 0.72 [0.06]; mean [SD]; P<0.0001), and isoflurane vs halothane (0.54 [0.05] vs 0.72 [0.06]; mean [SD];

P<0.0001). Post hoc comparisons performed using Dunnett’s multiple comparisons test. (c) Pearson’s correlation coefficients between in-

dividual response probability and Rst did not reach statistical significance for any anaesthetic (isoflurane R2¼0.23, P¼0.36; sevoflurane

R2¼0.25, P¼0.27; halothane R2¼e0.38, P¼0.1). Statistical significance shown by **P<0.01; ****P<0.0001. Statistical comparisons performed

using parametric analysis of variance (ANOVA) without assuming equal variance (BrowneForsythe ANOVA). Halo, halothane; Iso, isoflurane;

Sevo, sevoflurane.
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constant throughout the experiment using a Riken FI-21

refractometer (A.M. Bickford, Wales Center, NY, USA). Iso-

flurane experiments have been described8 and are shown here

for the purposes of comparison with the other anaesthetics.

Analysis of isoflurane data shown in Figures 5 and 6 has not

been reported before.
Transition probability matrix estimation

Markov matrix modelling is a simple and convenient method

for describing fluctuations in RR. Markov processes relate the

current state of a system to the previous state of a system

using a transition probability matrix (TPM). In the case of the

binary responses (e.g. the RR assay), the probability of the

responsive R or unresponsive U state can be modelled using

the following Markov matrix M:

M¼
�
PðRt jRt�1Þ PðUt jRt�1Þ
PðRt jUt�1Þ PðUt jUt�1Þ

�

M consists of four conditional probabilities in the form

of PðIt jJt�1Þ. This notation is expressed henceforth as PðIjJÞ for
simplicity, and reflects the probability that an animal is in

state I (responsive or unresponsive) given that it was in state J

(responsive or unresponsive) on the previous trial. Thus, P(RjR)
is the probability of being responsive on two consecutive trials,

P(UjU) is the probability of staying unresponsive on two

consecutive trials, P(UjR) is the probability of failing to right

given a successful RR on the previous trial, and P(RjU) is the

probability of a successful RR given a failed response on the

previous trial. Note that the sum of conditional probabilities in

each row is exactly 1. Thus, M is completely specified by
computing the two diagonal elements P(UjU) and P(RjR).
Similar to previous work,8 P(UjU) and P(RjR) were estimated

empirically for each individual on the basis of four exposures

each consisting of 40 RR trials (160 RR trials total).

Comparison of experimental data with simulations

To examine whether there is a state dependence on the

observed behavioural fluctuations, simulations of a Bernoulli

process were computed. Bernoulli process is a special case of

the TPM M from the Transition probability matrix estimation

section, but with a special condition of state independence. In

other words, a Bernoulli process assumes that the probability

of righting is independent of the previous state of the animal,

P(RjR)¼P(RjU). Consequently, the TPM for a Bernoulli process,

MB, can be fully defined by knowing the fraction of responsive

trials:

MB ¼
�
PðRÞ PðUÞ
PðRÞ PðUÞ

�

MB was constructed separately from the mean popula-

tion response probability for isoflurane, sevoflurane, and

halothane. Note that MB mathematically expresses the

assumption that the probability of response is solely depen-

dent on anaesthetic concentration. For each anaesthetic, 20

simulations consisting of 160 trials were computed using MB.

State transition probabilities were then compared between

experimental and simulated data sets. State transition prob-

ability was computed as

PðTransitionÞ¼ PðUjRÞ þ PðRjUÞ
PðRjRÞ þ PðUjRÞ þ PðRjUÞ þ PðUjUÞ



Fig 6. Noise driving state transitions is dissociable from anaesthetic potency and differs amongst equipotent anaesthetics. (a) A network

composed of mutually inhibitory (and self-excitatory) neuronal populations. (b) Simulation of neuronal dynamics under lower-noise (top

trace) and higher-noise (bottom trace) conditions. Red dashed line shows the threshold used for binarisation of dynamics into the

responsive and unresponsive states. Distribution of states in each simulation is shown on the margin. Noise does not strongly affect the

probability of being responsive or unresponsive, but affects the frequency of state switching. Noise recovered from the simulations using

our fitting procedure gives a precise and unbiased estimate of the noise driving the fluctuations. (c) Neuronal dynamics model simulations

performed by parametrically varying noise (shading) are plotted in the parameter plane of the two-state transition probability matrix

(TPM). Because the neuronal dynamics model gives rise to state stabilisation, no simulations are found in the bottom triangle of the plane.

Each point corresponds to the TPM fitted independently to each mouse (colour shows anaesthetic agent). (d) Noise estimated from

behavioural fluctuations for isoflurane, sevoflurane, and halothane. (H¼30.09; P<0.0001); non-parametric KruskaleWallis analysis of

variance; post hoc comparisons isoflurane vs sevoflurane (P¼0.84), isoflurane vs halothane (P<0.0001), sevoflurane vs halothane (P¼0.0001);

median s isoflurane 0.20; sevoflurane 0.18; halothane 0.12. Post hoc comparisons performed using Dunnett’s multiple comparisons test.

Statistical significance shown by ****P�0.0001. Halo, halothane; Iso, isoflurane; Sevo, sevoflurane.
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As an additional test to assess state dependence, the

probabilities of staying unresponsive, P(UjU), were compared

with the probabilities of becoming unresponsive, P(RjU), across
individuals for each anaesthetic tested. Note that these con-

ditional probabilities in the Bernoulli process case are identical

(P(U)).

Determination of resistance to state transitions

The 2�2 TPM is fully determined by specifying P(RjR) and

P(UjU), the probabilities that an animal remains in the

responsive or unresponsive state on two consecutive trials.

Adding these two values together results in a metric of the

propensity to stay in the same state, or the resistance to state

transitions Rst. We quantify resistance to state transitions as

Rst ¼ PðRjRÞ þ PðUjUÞ
2

The normalisation is used to assure that Rst varies be-

tween 0 and 1. Zero indicates a system that never stays in the

same state, and 1 indicates a system that never transitions

from its initial state. Thus, Rst value of 1 is only attainable

when fixed anaesthetic concentration reliably leads to either

loss or preservation of the RR in each animal.
Fitting behavioural fluctuations to a stochastic
dynamical system

Markov modelling of fluctuations in responsiveness can be

seen as a discrete approximation to a continuous dynamical

system. To fit the behavioural fluctuations to a continuous

system, we adapt the mathematical formalism described

previously.8,10 The purpose of this procedure is to estimate the

amount of noise that drives fluctuations between the

responsive and unresponsive states. Briefly, behavioural
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fluctuations in RR can be approximated by diffusion on an

energy landscape that contains twowells corresponding to the

responsive and unresponsive states. The overall dynamics of

the system are given by

dx
dt

¼ � D
dEðxÞ
dx

����
ec

þ ε (1)

where x is the state of the system, D is the diffusion constant

(assumed to be 1 for mathematical convenience), E is the en-

ergy function, ec is the effective anaesthetic concentration at

which the partial derivative is evaluated, and ε is noise

modelled as a Gaussian process with mean zero and standard

deviation s; s controls the amount of noise. Following previ-

ous work,8 we define the energy function as

Eðx;ecÞ¼ x2
�
x2

2
�2

�
þecðx� 1Þ2 þ ð1�ecÞðxþ 1Þ2 (2)

This energy function forms two local energy minima at

ðxz�1; xz1Þ corresponding to the unresponsive and

responsive states, respectively, and a local energy maximum

at xz0. With increasing effective concentration ec, the energy

minimum corresponding to the unresponsive state is deep-

ened and the well corresponding to the responsive state be-

comes shallower. To simulate the continuous system,

equation (1) is integrated using the standard Euler method.

The simulated dynamics are then binarised into ‘responsive’

and ‘unresponsive’ states using x ¼ 0 (local energymaximum)

as threshold. The resultant binary time series is then fit to a

Markov process using the same method as for the RR assays.

This predicted Markov model is specified by two parameters:

{P(UjU)pred and P(RjR)pred}. The effective concentration ec for

the simulations was fixed to the overall probability of suc-

cessful righting computed across trials in each individual.

This leaves only one free parameter: the noise level s. To

approximate the amount of noise present in the behavioural

observations, we find s such that the Euclidean distance be-

tween the experimentally observed Markov model given by a

point {P(UjU)exp, P(RjR)exp} and the predicted Markov model

given by {P(UjU)pred, P(RjR)pred} is minimised. This constrained

minimisation was implemented in MATLAB (MathWorks,

Natick, MA, USA) using particle swarm optimisation algo-

rithm. Using this strategy, we estimated the amount of noise

present in each individual exposed to a given anaesthetic.

The accuracy of the fitting procedure was demonstrated by

constructing synthetic time series using equation (1) with

pre-specified s and recovering the correct s from the fitting

procedure.
Statistical analyses

Analyses were performed using custom code written in

MATLAB implementing the statistics, machine learning, and

global optimisation toolboxes. Statistical comparisons were

performed using Prism 8.3 (GraphPad Software, San Diego,

CA, USA). Pearson’s correlation coefficient was used to

confirm steady-state population response probabilities. R2

values approaching zero indicate constant population

response probabilities across trials. Statistical comparisons

between experimental and simulated data sets were per-

formed using the ManneWhitney U-test. Testing for equal

variances across experimental vs simulated response prob-

abilities and experimental response probabilities vs re-

sistances to state transitions was performed using the
BrowneForsythe test for equal variances. After verifying

that the experimental observations do not deviate signifi-

cantly from normal distribution (AndersoneDarling test),

parametric analysis of variance (ANOVA) without assuming

equal variances (BrowneForsythe ANOVA) test was used for

comparing results across different anaesthetics. If experi-

mental observations deviated significantly from a normal

distribution, the non-parametric KruskaleWallis test was

used to compare results across different anaesthetics.

P<0.05 was considered statistically significant for all

comparisons.
Results

Individuals fluctuate between responsive and
unresponsive states at steady-state concentrations

Separate cohorts of 20 mice each were exposed to isoflurane

0.6%, sevoflurane 1.0%, or halothane 0.4%. All data for iso-

flurane in Figures 2e4 are from experiments previously ana-

lysed,8 and are plotted here for the sake of comparison with

other anaesthetics, which have not been previously reported.

Figure 2 shows the results of 40 consecutive trials of RR assay

performed every 3 min after a 2 h equilibration period

(Fig. 2aec). The population-level response probability for ani-

mals remained constant for all three anaesthetics (Fig. 2def).

Whilst the population-level righting probability did not change

over time, the ability of each mouse to successfully right itself

did fluctuate from trial to trial. Fluctuations are observed for

each mouse and each anaesthetic agent at constant anaes-

thetic concentration. Animals exposed to halothane appeared

to switch states less frequently than those exposed to

isoflurane.

The simplest model of behavioural fluctuations in Figure 2

is that the effective concentration of an anaesthetic sets the

probability of successful righting as assumed in population-

based anaesthetic pharmacology.11 A clear prediction of this

model is that the probability of successful righting should be

the same for all trials of the RR, be independent of the previous

state of the animal and of the anaesthetic agent, so long as the

effective concentration is the same. For instance, at EC50, we

expect the probability of righting to be 50% on each trial.

Mathematically, this corresponds to modelling trial-to-trial

fluctuations in Figure 2 as a Bernoulli process. Thus, we

compared the trial-to-trial fluctuations observed for iso-

flurane, sevoflurane, and halothane anaesthesia with those

observed in a Bernoulli process constrained to have the same

population-level righting probability. The overall righting

probability in experiments and simulations was not statisti-

cally different for each anaesthetic (Fig. 3aec). In contrast,

switches between the responsive and unresponsive states

happened significantly less frequently for all three anaes-

thetics than in those generated by a Bernoulli process

(Fig. 3def). Thus, a Bernoulli process does not adequately

capture the observed behavioural fluctuations.

To further expose the limitation of a Bernoulli process, we

directly compared the probability of failure on the RR trials

preceded by either success or failure. The probability of failure

on the RR assay was significantly larger if the animal failed to

right itself on the previous trial (Fig. 4aec). This clearly illus-

trates that, whilst the effective concentration is an indis-

pensable measure of population-based anaesthetic

pharmacology, it is not sufficient to explain the trial-to-trial

fluctuations observed in individuals. This is because the
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effective concentration fails to account for the fact that

righting probability depends not just on drug concentration,

but also on the ability of the animal to successfully right itself

on the preceding trial.
Degree of resistance to state transitions differs
between equipotent doses of distinct anaesthetics

It is generally assumed that the probability of successful

response to the stimulus ought to be independent of the

identity of the anaesthetic agent, so long as the effective

concentration is the same. This assumption underlies the

concept of equipotency. In contrast to this prediction of

population-based pharmacology, results in Figure 2 suggest

that animals exposed to halothane switched between the

responsive and unresponsive states less frequently than those

exposed to other anaesthetics. Indeed, the probability of the

state switch was different amongst the anaesthetic agents (F

[2, 57]¼25.89; P<0.0001). Post hoc pairwise comparisons

revealed statistically significant differences between all pairs

of anaesthetics (isoflurane vs sevoflurane, P¼0.018; isoflurane

vs halothane, P<0.0001; sevoflurane vs halothane, P<0.0001).
To further quantify the propensity to switch between the

responsive and unresponsive states, we quantitatively defined

resistance to state transitions Rst. This is accomplished by

quantifying the propensity of each animal to stay in its pre-

viously observed state. Complementary analysis that quan-

tifies the propensity of the system to switch from the

responsive to the unresponsive state and vice versa is shown in

Supplementary Table S1. We then estimated Rst for different

anaesthetics. Figure 5 shows the distribution of Rst observed

for isoflurane, sevoflurane, and halothane. Whilst there were

no statistically significant differences in the mean righting

probability (Fig. 5a), Rst depended strongly on the anaesthetic

agent (Fig. 5b). This finding is consistent with the observation

that animals exposed to halothane exhibited fewer switches

between the responsive and unresponsive states (Fig. 2). We

next determined whether, at the level of an individual, prob-

ability of righting and Rst are correlated. Results in Figure 5c

fail to reveal significant correlation between these two mea-

sures of anaesthetic responses. Thus, resistance to state

transitions is distinct from anaesthetic sensitivity and is

differentially affected by different anaesthetics at equipotent

concentrations. This further illustrates the limitation of the

concept of equipotency. Even at equipotent concentrations,

different anaesthetics engage different dynamics at the level

of an individual.

In contrast to highly variable sensitivity to anaesthetics,

even amongst genetically identical age-matched mice,12 the

tendency to resist state transitions was tightly controlled

amongst individuals (isoflurane P [response] vs Rst, F[1, 38]¼
23.72, P<0.0001; sevoflurane, F[1, 38]¼13.03, P<0.001; halo-

thane, F[1, 38]¼15.03, P<0.0001; BrowneForsythe test for equal

variance). Thus, resistance to state transitions is tightly bio-

logically controlled.
Noise driving state transitions is modified by different
anaesthetics

Until now, we have inferred resistance to state transitions by

empirically estimating transition probabilities between states

of responsiveness and unresponsiveness from behavioural

data. In what follows, we more rigorously define the tendency

of the system to maintain its previous state using a
mathematical model of neuronal dynamics. As proposed,8,10

the simplest model of spontaneous state switching at a con-

stant drug concentration is that of a diffusion on an energy

landscape with two energy wells. These diffusion models can

be used to model the activity of neuronal networks composed

of mutually inhibitory neuronal populations13 (Fig. 6a). Such

neuronal architecture is thought to underlie switches between

states of sleep and wakefulness.14 Addition of noise to the

system results in stochastic switches between network states,

where one or the other neuronal population temporarily

dominates network activity (Fig. 6b). Increasing the amount of

noise does not fundamentally alter the distribution of states

(i.e. response probability). Rather, increasing noise results in

increase in the frequency of state switching8,10,13 (Fig. 6b).

Thus, resistance to state transitions at its most fundamental

level is related to the amount of noise required to recapitulate

the observed behavioural dynamics.

Using this simple intuition, we explicitly fitted the observed

behavioural fluctuations at a fixed drug concentration to a

neuronal dynamics model. We first computed the transition

probability matrices that correspond to different combina-

tions of drug sensitivity and noise. The results of these simu-

lations are plotted in the parameter space of the TPM spanned

by P(UjU) and P(RjR), the probability of staying in the unre-

sponsive and responsive states, respectively. The amount of

noise needed to give rise to a TPM is shown by shading in

Figure 6c. Because of stability afforded by the energy wells, the

behavioural fluctuations given by the model are predicted to

reside exclusively in the upper triangle of the parameter plane

(Fig. 6c, shaded area). Consistent with this prediction, behav-

ioural observations in most animals are confined to the upper

triangle of the plane (circles). Low-noise systems tend to the

perimeter of the plane (tan colours). This is because under

low-noise conditions, the system tends to stay in its previous

state and state transitions are rare. In contrast, systems with

high noise tend towards the centre of the plane (brown col-

ours). This behaviour arises because, under high-noise con-

ditions, the system becomes independent of the energy

landscape and switches state every other trial on average.

Note that behavioural fluctuations observed under halothane

are located closer to the perimeter of the plane, whilst those

observed under isoflurane are found close to the main

diagonal.

By fitting the neuronal dynamics model to the observed

fluctuations in RR, we estimated the amount of noise driving

behavioural fluctuations under different anaesthetic condi-

tions. This analysis revealed statistically significant differ-

ences in the amount of noise driving behavioural fluctuations

for different anaesthetics. This provides further independent

confirmation that resistance to state transitions is funda-

mentally distinct from drug potency and is differentially

modulated by different anaesthetics.
Discussion

Fluctuations in the state of responsiveness in individual ani-

mals were observed even when volatile anaesthetic concen-

tration was held constant. These fluctuations were reliably

observed for three different volatile anaesthetics. These fluc-

tuations in responsiveness were not random. Rather, for all

three volatile anaesthetics, fluctuations in responsiveness

exhibited resistance to state transitions. Resistance to state

transitions was fundamentally distinct from anaesthetic po-

tency. Several lines of reasoning support this last claim.
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Anaesthetic potency is traditionally defined at the level of a

population. In contrast, resistance to state transitions is an

individual-based measure of anaesthetic pharmacology, and

is obscured by averaging response probabilities across trials

and across individuals. No significant correlations were

observed between individual sensitivity to an anaesthetic and

resistance to state transitions. Most importantly, however, we

show that, even when anaesthetic agents were administered

in equipotent doses, resistance to state transitions varies

depending on the anaesthetic agent.

These findings expose a fundamental distinction between

population-based and individual-based anaesthetic pharma-

cology. At the level of the population, anaesthetic effects are

described using a smooth concentrationeresponse

curve.1,4,7,11,15,16 Whilst many different anaesthetic endpoints,

such asMAC,2,3 MAC-awake,2,17 MAC-amnestic,18,19 and others,

have been defined, all share one thing in common: an individ-

ual responses collapses to a binary outcome: a given individual

either does or does not respond to a given stimulus.20 The

distinction between binary responses of individuals, on the one

hand, and the graded population-level responses, on the other,

has been reconciled by invoking individual differences in

anaesthetic sensitivity.11,20 One interpretation of this model is

that, at the EC50, 50% of the individuals will be consistently

unresponsive, whilst the other, more resistant 50% of in-

dividuals, will consistently respond to stimuli. Alternatively, it

is possible that each individual would respond to 50% of stim-

uli.11 The first interpretation is categorically ruled out by our

data presented herein. Whilst the second interpretation of the

population-level doseeresponse relationship is prima facie

consistent with our results, it is not complete. Specifically,

failures to respond to the stimulus are not randomly distributed

amongst trials of the RR assay. If an individual failed to respond

on a previous trial, its probability of response on the next trial is

significantly decreased. Thus, the response to a stimulus is not

solely a function of the effect-site anaesthetic concentration, as

is assumed in pharmacokineticepharmacodynamic models of

anesthetics,21,22 but also of the state of the individual when the

stimulus is applied.

Our observation of spontaneous behavioural state switch-

ing at a fixed anaesthetic concentration is consistent with

neurophysiological experiments. It has been shown using

invasive recordings of brain activity in rodents that, under

anaesthesia, the state of the brain fluctuates spontaneously

between several discrete activity patterns.23,24 Such fluctua-

tions are also observed in the EEG of patients undergoing

anaesthesia.25e27 State transitions are a feature of mathe-

matical models of anaesthetic effects on the cortex.28e30

Resistance to state transitions is consistent with the stabili-

sation of neuronal dynamics by mechanistically distinct

anaesthetics.31e33

Pharmacokineticepharmacodynamic models would pre-

dict that, all things held equal, a person who starts out more

deeply anaesthetised should take longer to recover con-

sciousness after anaesthetic administration ceases. Yet, hu-

man subjects who exhibit burst suppression, a universally

accepted marker of deep anaesthesia, recover consciousness

and cognitive function at the same rate as those whowere less

deeply anaesthetised.34 One potential explanation for this

puzzling observation is that resistance to state transitions

exerts a strong influence on the transitions between the states

of arousal. This resistance to state transition is a hidden var-

iable obscured by population-level pharmacology.
It has recently been proposed that spontaneous switching

between discrete states is sufficient to give rise to anaesthetic

hysteresis.10 Anaesthetic hysteresis, or neural inertia, refers to

the observation that recovery of consciousness after anaes-

thesia reliably happens at a lower anaesthetic concentration

than loss of consciousness.35 Anaesthetic hysteresis is evolu-

tionarily conserved from Drosophila36 to mice37 and humans.38

Whilst evidence for anaesthetic hysteresis in humans has not

been found in all studies,39 the inability to measure anaes-

thetic concentration in the brain experimentally complicates

the analysis of human data.35 Definitive evidence concerning

anaesthetic hysteresis in humans will ultimately have to be

obtained using novel experimental approaches.40 The evi-

dence for anaesthetic hysteresis in animalmodels, however, is

unequivocal.

According to a previous model,10 the key determinant of

anaesthetic hysteresis is ‘noise’ that drives switching between

different states under constant anaesthetic conditions. The

model predicts that, all things held equal, increasing noise

results in faster collapse of the hysteresis. Thus, less noisy

systems are expected to have greater anaesthetic hysteresis.

The meaning of the term ‘noise’, however, was left unclear.

Traditionally, the term ‘noise’ is reserved for describing

microscopic processes that are not directly observed experi-

mentally. This does not necessarily imply that the processes

that give rise to the observed phenomena are ultimately sto-

chastic. For instance, fluctuations between conductive and

non-conductive states of an ion channel are described using

stochastic processes.41 Yet, molecular dynamic simulations of

conformational switches are deterministic.42 Similarly, firing

of many cortical neurones can be well approximated by a

stochastic Poisson process,43 but Hodgkin and Huxley44

models of neuronal activity are deterministic. We invoke the

term ‘noise’ here in a similar spirit of statistical mechanics.45

As we are not observing all of the microscopic parameters

that ultimately result in a transition between the responsive

and unresponsive states, we can approximate the sum total of

these unobserved processes as noise.

It is thus interesting to ask whether ‘noise’ is entirely

determined by the effective concentration of anaesthetic. This

is equivalent to asking whether resistance to state transitions

is the same for different anaesthetic agents. Using two com-

plementary analytical approaches, we demonstrate that this is

not the case. Whilst the overall probability of righting under

different anaesthetics failed to exhibit statistically significant

differences, the probability of switching between the states of

arousal depended strongly on the anaesthetic agent. Specif-

ically, halothane anaesthesia was characterised by the largest

resistance to state transitions or, alternatively, the smallest

noise. We were able to detect statistically significant differ-

ences in resistance to state transitions for isoflurane and

sevoflurane using empirically estimated transition probability

matrices. In the continuous model, whilst there was a trend

towards decreased noise in response fluctuations for sevo-

flurane anaesthesia, these differences failed to reach statisti-

cal significance when compared with isoflurane. One

interpretation of this difference between the two approaches

is that more trials of the RR may be required to unequivocally

determine whether anaesthesia produced by isoflurane or

sevoflurane is characterised by different noise levels.

Whilst both noise and Rst analysis attempt to quantify the

tendency of the system to stay in its previously observed state,

they are distinct parameters. Rst is proportional to the sum of
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PðUjUÞ þ PðRjRÞ, and therefore remains constant along diago-

nal lines parallel to y ¼ �x in the plane spanned by PðUjUÞ and
PðRjRÞ shown in Figure 6c. The amount of noise driving state

transitions, in contrast, remains constant for points spanning

this plane in elliptic-like curves centred around the point (0.5,

0.5), as shown in Figure 6c. Both Rst and noise change

concomitantly when the point moves along the line y ¼ x.
Away from this line, however, Rst and noise behave in more

complex ways: Rst can stay constant whilst estimate of noise

will change or vice versa. Thus, Rst and noise are distinct but

related measures of the propensity of the system to exhibit

resistance to state change.

Regardless of the differences between Rst and noise anal-

ysis, both show that halothane anaesthesia is associated with

greatest resistance to state transitions and the least amount of

noise. Consistent with this observation, anaesthetic hysteresis

observed under halothane anaesthesia is larger than that

observed for isoflurane.36,37 Increased resistance to state

transitions for halothane is unrelated to its pharmacokinetics.

All experiments were performed at pharmacokinetic steady

state, assured by a 2 h equilibration period. Furthermore, the

across-subject response probability remained constant

throughout the experiment.

How can different volatile anaesthetics differentially affect

noise? Whilst volatile anaesthetics are known to act on a large

number of receptors,7,16,46 this molecular-level promiscuity47

does not imply that all volatile anaesthetics act on the same

molecular targets. For instance, whilst halothane binds

broadly throughout the nervous system, this binding cannot

be readily displaced by isoflurane.48 Unfortunately, very few

studies have directly compared the effects of different volatile

anaesthetics on their molecular targets. Yet, some differential

activity of volatile anaesthetics on muscarinic signalling,49

gamma-aminobutyric acid inhibition,50,51 and potassium

channels52 have been documented. Different volatile anaes-

thetics also exert differential effects on cortical activity. EEG

oscillations under halothane anaesthesia are more ‘wake-like’

than for comparable doses of isoflurane.53 For instance, whilst

isoflurane reliably elicits burst suppression at 1.2% and above

in rats, even when administered at 2%, halothane fails to elicit

burst suppression.54

The differential effects of volatile anaesthetics on subcor-

tical structures are of particular significance for the study of

noise-driven fluctuations in arousal. Whilst isoflurane sup-

pressed activity of orexinergic neurones in the hypothala-

mus55 and noradrenergic neurones in the pontine locus

coeruleus, equipotent halothane fails to do so in vivo.56 Loss of

orexinergic neurones or suppression of their signalling results

in narcolepsy/cataplexy.57 Narcolepsy is characterised by a

decrease in stability, or alternatively, increase in the noise, in

the networks that mediate transitions between sleep and

wake states.58e60 In a large part, orexinergic neurones affect

sleepewake transitions by acting upon locus coeruleus neuro-

nes.61 Thus, it is possible that increased resistance to state

transitions observed for halothane is because of the continued

activity of orexinergic neurones. Whilst little is known about

the specific effects of sevoflurane on orexinergic neurones,55

sevoflurane activates locus neurones in brain slices.62 This

observation is consistent withmodest increase in resistance to

state transitions observed for sevoflurane relative to

isoflurane.

Whether the orexinergic system is causally involved in

mediating the ‘noise’ will have to be directly tested in the

future. Regardless of the specific mechanisms, however, the
fact that the amount of ‘noise’ depends on the anaesthetic

agent implies that this noise is not merely an automatic

consequence of neuronal activity. The possibility that noise

is just a function of effective concentration can also be ruled

out. Even when different anaesthetics are administered at

equipotent doses, the amount of noise still strongly depen-

ded on the anaesthetic agent. Thus, the apparent noise that

drives fluctuations in the behavioural responsiveness under

constant anaesthetic conditions is a distinct phenomenon

likely controlled by specific elements within the networks

that mediate transitions between unresponsiveness and

arousal.

What are the clinical implications of these findings? This is

a study on male rodents, and stochastic fluctuations in the

state of responsiveness in female rodents and humans must

be demonstrated experimentally. The fact that stochastic

fluctuations and resistance to state transitions were observed

in rodents and zebrafish,8 species separated by 400 million yr

of evolution, strongly suggests that similar fluctuations will be

present in humans as well. If so, then this work suggests that a

core concept in clinical anaesthesiology, depth of anaesthesia,

must be fundamentally redefined.

The current conception of depth of anaesthesia is very

closely tied to the effect-site anaesthetic concentration.63

Because the concentration of anaesthetic is assumed to

vary gradually along a single dimension, anaesthetic depth

is usually thought to be a graded one-dimensional quantity.

This assumption is reflected in the widely used clinical

monitors of anaesthetic state that assign depth of anaes-

thesia a single value that varies gradually between 0 and

100.64 In contrast, the constellation of neurophysiological

recordings,24e27 mathematical modelling,10,28e33 and the

results presented here suggest that the state of anaesthesia

is a collection of discrete brain states more akin to sleep

stages than a graded function of anaesthetic concentration.

Even at constant anaesthetic concentration, the state of the

brain,24 and indeed the behavioural state, can spontane-

ously switch from unresponsive to responsive.65 A novel

monitor of anaesthetic depth that takes these observations

into account might be better suited to defining the anaes-

thetic state in each individual patient rather than of a

population. Having a better quantification of the anaesthetic

state in each individual may in turn allow clinicians to avoid

the complication of awareness under anesthesia,66e71 whilst

at the same time avoiding delays in restoration of con-

sciousness and cognition common in older patients upon

recovery from surgery.71

Based on findings in this paper, we hypothesise that

resistance to state transitions is dissociable from anaesthetic

potency and is controlled by specific neuronal mechanisms. If

this hypothesis proves correct, we speculate that novel

adjunct therapies that specifically affect resistance to state

transitions may be developed in the future. Once the uncon-

scious state is attained, a theoretical ‘state stabiliser’ drug

could be used to lock the subject in the state of unconscious-

ness and prevent spontaneous awakening during surgery

without requiring an increased anaesthetic dose. At the

conclusion of surgery, the unconscious state could then be

destabilised, allowing uneventful restoration of

consciousness.
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