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Abstract

Background: Postoperative cognitive decline (PCD) requires microglial activation. Voltage-gated Kv1.3 potassium chan-

nels are involved in microglial activation. We determined the role of Kv1.3 in PCD and the efficacy and safety of inhibiting

Kv1.3 with phenoxyalkoxypsoralen-1 (PAP-1) in preventing PCD in a mouse model.

Methods: After institutional approval, we assessed whether Kv1.3-deficient mice (Kv1.3e/e) exhibited PCD, evidenced by

tibial-fracture surgery-induced decline in aversive freezing behaviour, and whether PAP-1 could prevent PCD and

postoperative neuroinflammation in PCD-vulnerable diet-induced obese (DIO) mice. We also evaluated whether PAP-1

altered either postoperative peripheral inflammation or tibial-fracture healing.

Results: Freezing behaviour was unaltered in postoperative Kv1.3e/e mice. In DIO mice, PAP-1 prevented postoperative (i)

attenuation of freezing behaviour (54 [17.3]% vs 33.4 [12.7]%; P¼0.03), (ii) hippocampal microglial activation by size (130

[31] pixels vs 249 [49]; P<0.001) and fluorescence intensity (12 000 [2260] vs 20 800 [5080] absorbance units; P<0.001), and
(iii) hippocampal upregulation of interleukin-6 (IL-6) (14.9 [5.7] vs 25.6 [10.4] pg mg�1; P¼0.011). Phenoxyalkoxypsoralen-1

neither affected surgery-induced upregulation of plasma IL-6 nor cartilage and bone components of the surgical fracture

callus.

Conclusions: Microglial-mediated PCD requires Kv1.3 activity, determined by genetic and pharmacological targeting

approaches. Phenoxyalkoxypsoralen-1 blockade of Kv1.3 prevented surgery-induced hippocampal microglial activation

and neuroinflammation in mice known to be vulnerable to PCD. Regarding perioperative safety, these beneficial effects of

PAP-1 treatment occurred without impacting fracture healing. Kv1.3 blockers, currently undergoing clinical trials for

other conditions, may represent an effective and safe intervention to prevent PCD.
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Editor’s key points

� Postoperative cognitive decline (PCD) involves micro-

glial activation, which is regulated by voltage-gated

Kv1.3 potassium channels.

� Mouse models were used to determine the role of Kv1.3

in PCD and the efficacy of inhibiting Kv1.3 with

phenoxyalkoxypsoralen-1 (PAP-1) in preventing PCD.

� The small-molecule PAP-1 prevented surgery-induced

hippocampal microglial activation and neuro-

inflammation in mice known to be vulnerable to PCD.

� The effects of PAP-1 treatment occurred without

affecting fracture healing, a known potential side-ef-

fect of inhibition of inflammation.

� Use of Kv1.3 blockers represents a promising potential

intervention to prevent PCD.
Perioperative neurocognitive disorders encompass a spectrum

from delirium to dementia,1 and threaten postoperative

functional independence and survival. Because perioperative

neurocognitive testing is not routinely performed, the true

incidence of this surgical complication is not known, but

postoperative delirium in unselected surgical populations has

been estimated to occur in ~37% of patients.2 Ageing of the

surgical population and increase in worldwide surgeries to

>300 million procedures per annum3 are converging to pro-

duce an epidemic of perioperative neurocognitive disorders

with high morbidity and mortality.

Prevention, mitigation, or reversal of this surgical compli-

cation requires an understanding of the pathophysiological

mechanisms that explain age dependency4 and increased risk

in patients with metabolic syndrome5 and with postoperative

infection.6 In the last decade, we have generated rodent

models of postoperative cognitive decline (PCD) that repro-

duce these features.7e9 Using these models, we have learned

that trauma-released alarmins engage the innate immune

system inducing nuclear translocation of the transcription

factor nuclear factor kappa light chain enhancer of activated B

cells in bone marrow-derived monocytes (BM-DMs) resulting

in upregulation and peripheral release of pro-inflammatory

cytokines10 needed for wound healing.11 These cytokines can

also disrupt the bloodebrain barrier,12 allowing entry of BM-

DMs into the CNS,13 where, together with activated micro-

glia,14 these cells release pro-inflammatory cytokines, such as

interleukin (IL)-1b15 and IL-6,16 that disrupt long-term poten-

tiation, the neurobiological correlate of learning and mem-

ory.17 Similar inflammatory events,18 including activation of

microglia,19 also occur in the clinical setting.

In a proof-of-concept study, we reported that depleting

microglia before their activation precluded PCD.14 In searching

for a druggable target to prevent PCD without affecting pe-

ripheral inflammation and surgical wound healing, we

focused on Kv1.3 potassium channels, the opening of which is

required for microglial activation.20 The small-molecule Kv1.3

blocker phenoxyalkoxypsoralen-1 (PAP-1) inhibits
lipopolysaccharide-induced microglial activation and synthe-

sis and release of pro-inflammatory cytokines.21 We hypoth-

esised that inhibiting Kv1.3 channels with PAP-1 prevents the

development of postoperative neuroinflammation, and

thereby mitigates PCD while maintaining the systemic in-

flammatory milieu needed for wound healing.22 Using mice

lacking Kv1.3 (Kv1.3e/e) and treatingmice highly susceptible to

PCD with PAP-1, we establish the relevance of Kv1.3 for the

development of PCD and the effectiveness of blocking this

channel to prevent PCD without affecting tibial-fracture

healing. These findings provide laboratory support for trans-

lational studies in PCD of Kv1.3 inhibitors, a drug class being

developed for autoimmune conditions.23
Methods

Animals

Experimental procedures involving animals were approved by

the Institutional Animal Care Use Committee of the University

of California, San Francisco (San Francisco, CA, USA), andwere

performed in accordance with the United States Public Health

Service Policy on Humane Care and Use of Laboratory Ani-

mals. Male mice 12e14 weeks old on a C57bl/6j background

(Jackson Laboratory, Sacramento, CA, USA) were group-

housed mice (five per cage) with 12 h light/dark cycles in a

temperature-controlled environment with ad libitum access to

standard rodent chow and water. Before the experiments, the

mice were randomly assigned into groups. The Kv1.3e/e mice

were a gift from Leonard Kaczmarek (Yale University, New

Haven, CT, USA), and have been rederived onto the C57bl/6j

background to homozygosity.24 Five-week-old C57bl/6j mice

were fed either a standard chow diet or a high-fat (42% of

calories fat derived) Western diet (TD.09682; Envigo-Teklad,

Livermore, CA, USA) for 8 weeks to create diet-induced

obesity (DIO) mice,14 which exhibit exaggerated neuro-

inflammation after aseptic peripheral trauma.14
Surgical procedure

Aseptic tibial surgical trauma under isoflurane anaesthesia

and buprenorphine analgesia was performed as reported.16

Just before surgery, mice in the intervention groups received

either i.p. PAP-1 (40 mg kg�1), a dose that inhibits Kv1.3

channel signalling,25 or the diluent MIGLYOL® (Spectrum

Chemicals, Gardena, CA, USA) in a volume of 5 ml g�1 body

weight (control). Dosing with PAP-1 or MIGLYOL was repeated

at 12-hourly intervals until use (Fig. 1). PAP-1 was synthesised

at the Department of Medical Pharmacology and Toxicology at

the University of California, Davis (Davis, CA, USA) as

described.26
Cognitive assessment

Trace fear conditioning (TFC) was used to assess

hippocampus-dependent memory in rodents, as described.16



Fig 1. Timeline of studies. (a) Behavioural assessment: mice

(wild-type, with diet-induced obesity [DIO] or Kv1.3 deficient

[Kv1.3e/e]) were trained in the trace fear-conditioning paradigm

30 min before induction of general anaesthesia with isoflurane.

During general anaesthesia, surgery was performed on the tibia

of the left hindlimb. Before surgical incision, wild-type and DIO

mice received either i.p. phenoxyalkoxypsoralen-1 (PAP-1) 40

mg kg�1 or vehicle (MIGLYOL) repeated every 12 h thereafter.

After 3 days, freezing behaviour was tested in the same context

as the training was performed. (b) Hippocampal neuro-

inflammation assessments: mice with DIO underwent tibial

surgery during general anaesthesia. At the end of surgery, the

mice received either PAP-1 or vehicle (MIGLYOL) i.p., and

repeated 12 h later. At 24 h, the mice were killed and prepared

for assessment of either hippocampal microglial activation by

immunohistochemistry or hippocampal interleukin-6 (IL-6) by

enzyme-linked immunosorbent assay. (c) Systemic inflamma-

tion assessment: wild-type mice underwent tibial fracture and

internal fixation surgery during general anaesthesia. At the end

of surgery, the mice received either PAP-1 or vehicle (MIGLYOL)

i.p. At 6 h, the mice were killed and blood collected for analysis

of plasma IL-6. (d) Wound-healing assessment: wild-type mice

underwent tibial surgery during general anaesthesia. At the end

of surgery, the mice received either PAP-1 or vehicle (MIGLYOL)

i.p., and repeated every 12 h, thereafter until the third day. On

the 10th day, the mice were killed and the left hindlimbs were

removed for assessment of fracture callus.
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Freezing behaviour, a manifestation of memory for the aver-

sive event, was recorded and quantified by Video Freeze®

software (Med Associates Inc., St Albans, VT, USA). Evaluation

was performed by a reviewer (XF) blinded to experimental

conditions.
Systemic inflammatory response

At 6 h after surgery, blood was drawn from the inferior vena

cava of wild-type (WT) mice under terminal isoflurane

anaesthesia in heparin-coated syringes. Plasma, collected af-

ter centrifugation of the blood at 2000� g for 20min at 4�C, was

stored at e80�C for later analysis. Because of the mediating

role of IL-6 in the development of PCD,16 the systemic in-

flammatory state was assessed by measuring concentrations

of this pro-inflammatory cytokine using a commercially

available enzyme-linked immunosorbent assay (ELISA) kit

according to the manufacturer’s manual that lists the lower

detection limits at 1.6 pg ml�1 (R&D Systems, Minnneapolis,

MN, USA). Evaluation was performed by a reviewer (IKL)

blinded to experimental conditions.
Hippocampal inflammatory response

The hippocampus, involved in context-sensitive memory in

rodents,27 was removed 24 h after surgery in DIO mice and

homogenised in cell lysis buffer (Cell Signaling Technology,

Danvers, MA, USA) with protease and phosphatase inhibitors

(Thermo Fisher Scientific, Waltham, MA, USA) and phenyl-

methanesulphonyl fluoride (Cell Signaling Technology). Pro-

tein concentration was measured with a Pierce™ BCA Protein

Assay Kit (Thermo Fisher Scientific). Hippocampal IL-6 con-

centrations were assayed by ELISA as for plasma. Evaluation

was performed by a reviewer (IKL) blinded to experimental

conditions.
Microglial activation

At 24 h after surgery, DIO mice were systemically perfused

with ice-cold saline followed by paraformaldehyde 4% in 100

mM phosphate buffer, and brains were removed and post-

fixed in the same fixative overnight (4�C), and then dehy-

drated in sucrose 30% (w/v) for at least 48 h until completely

submerged. The hippocampus was embedded in optimal cut-

ting temperature compound, immediately frozen on dry ice,

and stored (e80�C). Coronal sections (35 mm thick) from the

dentate gyrus region were cut on a cryostat, mounted on glass

slides using VECTASHIELD® antifade mounting media (Vector

Labs, Burlingame, CA, USA), blocked for 1 h with bovine serum

albumin 5% (Sigma-Aldrich, St. Louis, MO, USA) in phosphate-

buffered saline containing Triton™ X-100 0.1% (v/v) (Fisher

Scientific, Pittsburgh, PA, USA), and incubated with anti-

ionised calcium binding adaptor molecule 1 (Iba1) antibody

(1:1000 rabbit polyclonal; Wako Chemicals, Richmond, VA,

USA) to detect activated microglia. Immunofluorescence was

performed with Alexa Fluor® 488-labelled anti-rabbit (Fisher

Scientific, South San Francisco, CA, USA). DAPI VECTASHIELD

solution (Vector Labs) was used to identify cell nuclei.

Images were acquired using a confocal laser-scanning mi-

croscopy (Leica TCS SP5, Buffalo Grove, IL, USA) with 20�
magnification. Confocal images were collected in z-stacks

with a distance of 0.4mm.Manual morphological analysis was

performed using ImageJ software (National Institutes of

Health, Bethesda, MD, USA). The Iba1þ cells were counted



Fig 2. Role of Kv1.3 in postoperative cognitive decline in the trace fear-conditioning (TFC) paradigm. (aec) Cohorts of mice were trained in a

TFC paradigm immediately before surgery and tested for freezing behaviour 3 days after surgery. (a) Wild-type mice (12e14 weeks old

C57bl/6j) were randomised to three groups (n¼8e9 per group) that received no surgery/vehicle, surgery/vehicle, or surgery/

phenoxyalkoxypsoralen-1 (PAP-1). (b) Wild-type mice with diet-induced obesity (DIO) were randomised to three groups (n¼8e10 per

group) that received no surgeryþvehicle, surgeryþvehicle, or surgeryþPAP-1. (c) Mice deficient in Kv1.3 (Kv1.3e/e) were randomised to two

groups (n¼9e10 per group) that received either sham (no surgery) or surgery. After wound closure and every 12 h thereafter, the mice

randomised to PAP-1 received 40 mg kg�1 i.p. vehicle consisted of MIGLYOL in the same volume as PAP-1. On the third day, freezing

behaviour was tested in the same context as the training. (a) and (b) Analysed by one-way analysis of variance followed by Bonferroni post

hoc test. (c) Analysed by unpaired t-test. *P¼0.029; **P¼0.005; xP¼0.011; xxP¼0.030.
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manually by visual inspection in hippocampal sections of

anatomically matched photomicrographs, with an average

taken from four sequential sections per mouse. To analyse

microglial cell-body size, each section was processed in a

systematic way to create a binary image by applying a previ-

ously established threshold. The Iba1 fluorescence intensity

was similarly measured with ImageJ software from images

captured using identical exposure times that also avoided

saturating the pixel intensities. Evaluation was performed by a

reviewer (MV) blinded to experimental conditions.
Wound healing

Assessment of tibia fracture healing 10 days after surgery was

performed as described.28 Sections of the callus weremounted

on slides and stained using HalleBrunt’s quadruple stain to

visualise bone tissue (red) and cartilage tissue (blue). Tissue

volume and composition of the callus were evaluated using a

stereology system (BX51 microscope and CAST software;

Olympus Inc., Center Valley, PA, USA) and image analysis

software (VIS version 6.10; Visiopharm A/S, Hoersholm,

Denmark) according to established stereological methods.29

Boundary outlines of the callus were acquired at 2� magnifi-

cation, and bone and cartilage tissue were individually iden-

tified by standard histological staining patterns and

morphology at 20� magnification. Composition measure-

ments were calculated as each tissue volume divided by total

fracture callus volume. Evaluation was performed by a

reviewer (KM) blinded to experimental conditions.

Statistical analysis

Statistical analyses were performed using Prism versions 7.0

and 8.0 (GraphPad Software, San Diego, CA, USA) and data

expressed as mean (standard deviation [SD]). Statistical com-

parisons were analysed by one-way analysis of variance

(ANOVA) followed by Bonferroni post hoc test, unpaired t-test, or

two-way ANOVA followed by Sidak’s post hoc test. Statistical

significance was set at P<0.05.
Results

PAP-1 treatment attenuates surgery-induced loss of
fear-conditioned memory

Adult C57bl/6j (WT) mice that had experienced the relation-

ship between a tone and foot shock in a classical TFC para-

digm (Fig. 1a) were documented to have a robust freezing

response in the training session that was unaffected by PAP-

1. These mice subsequently underwent a stereotypical tibial

fracture and 3 days later were assessed for their ability to

recall prior fear conditioning when placed into the same TFC

spatial context. Surgery induced a reduction in the percent-

age of time that mice exhibited freezing behaviour from 65.8

(18.3)% to 41.9 (16.6)% (one-way ANOVA F¼7.12; P¼0.004; post hoc

P¼0.029; Fig. 2a). Pretreating the mice with PAP-1 before sur-

gery restored postoperative memory of prior TFC learning, as

indicated by a freezing time percentage of 73.0 (19.1)% (post

hoc P¼0.005; Fig. 2a), levels akin to those seen in the non-

surgical sham group. The PAP-1 treatment on its own had

no impact on TFC memory when measured in the context of

sham-operated mice, and it did not alter the ability of the

mice to learn the TFC stimuluseresponse relationship during

training (not shown). These data suggest that inhibition of

microglial activation by Kv1.3 channel blockade is sufficient

to prevent surgery-induced loss of fear-conditioned memory

in WT mice.

We next tested the effectiveness of preoperative PAP-1

treatment in preserving postoperative TFC memory in mice

with DIO, a model that has increased vulnerability to PCD in a

TFC paradigm.14 Mice with DIO that had previously learned

the TFC relationship had a reduction in the percentage of

time spent freezing 3 days after surgery (33.4 [12.7]%) when

compared with sham-operated mice (57.1 [15.8]%; one-way

ANOVA F¼5.87; P¼0.008; post hoc P¼0.011; Fig. 2b). Pretreat-

ment with PAP-1 was sufficient to restore postoperative

freezing behaviour (54 [17.3]%; post hoc P¼0.03; Fig. 2b) to

levels similar to those seen in the control group, indicating

that this treatment was effective in mitigating this early



Fig 3. Phenoxyalkoxypsoralen-1 (PAP-1) attenuates surgery-induced microglial activation. Mice with diet-induced obesity (DIO) were

randomised to three groups (n¼8 per group) that received neither surgery nor PAP-1 (DIOþsham), surgery alone with no PAP-1

(DIOþsurgery), or surgery together with PAP-1 (DIOþsurgeryþPAP-1). After surgery, mice not randomised to receive PAP-1 (DIOþsham;

DIOþsurgery) were administered MIGLYOL, and mice randomised to PAP-1 received doses intraoperatively and 12 h postoperatively. At 24

h after surgery, mice were killed, and brains were perfused, fixed, and sectioned. Coronal sections (35 mm thick) from the dentate gyrus

were stained with anti-Iba1 antibody. Immunofluorescence was performed with Alexa Fluor 488-labelled anti-rabbit antibody. (a)

Representative photomicrographs from each of the groups. The upper panel represents DAPI staining, the middle panel staining for Iba1,

and the lower panel a higher magnification. The internal scale marker represents 50 mm. (b) Iba1þ cells were counted manually by visual

inspection of hippocampal sections of anatomically matched photomicrographs, with an average taken from four sequential sections per

mouse. (c) To analyse microglial cell-body size (in pixels), each section was processed in a systematic way to create a binary image by

applying a previously established threshold. (d) Iba1 fluorescence intensity (absorbance unit [AU]) was similarly measured with ImageJ

from images captured using identical exposure times that also avoided saturating pixel intensities. Data (mean [standard deviation]) were

analysed by one-way analysis of variance followed by Bonferroni post hoc test. *P¼0.0012; **P<0.001.
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indicator of PCD even in a model with heightened

susceptibility.
Kv1.3e/e mice retain TFC memory after surgery

We examined the possibility that results obtained in WT mice

using PAP-1 treatment could have resulted from an off-target

drug effect (e.g. on a channel other than Kv1.3 or on a non-

channel target); we examined Kv1.3e/e mice that lack Kv1.3

attributable to deletion of the gene. As opposed to WT mice,

Kv1.3e/e mice that had previously undergone TFC learning

exhibited similar freezing behaviour whether they had un-

dergone surgery (52.9 [18.9]%) or not (59.9 [18.1]%) (unpaired t-

test P¼0.422; Fig. 2c). Coupled with the findings obtained using

PAP-1 treatment, these findings implicate Kv1.3 as an essential

mediator of behaviours indicative of PCD-linked memory loss

after peripheral surgery in mice.
PAP-1 treatment attenuates surgery-induced
activation of hippocampal microglia in mice with diet-
induced obesity

Clinical translation for the prevention of PCDwould likely occur

in a setting, in which PAP-1 is given coincident with surgery in

patients at high risk for a perioperative neurocognitive disorder,

such as thosewith themetabolic syndromeasmodelled inmice

withDIO.5 Preventionof fear-conditionedmemory lossbyPAP-1

treatment was associated with a reduction in surgery-induced

activation of hippocampal microglia 24 h post-surgery (Fig. 3a).

The absolute number of microglia (mean [SD]), marked by their

expression of Iba1, inhippocampal sections frommicewithDIO

was similar whether assessed under basal conditions (175 [8]),

after surgery (166 [19]), or in the context of surgery combined

with PAP-1 pretreatment (137 [28]) (Fig. 3b). In contrast, micro-

glial size, as quantified by pixel number, was larger in the post-



Fig 4. Phenoxyalkoxypsoralen-1 (PAP-1) prevents surgery-
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surgical group (249 [49] pixels) than in the non-surgical group

(170 [29] pixels) (one-way ANOVA F¼20.88; P<0.001; post hoc

P¼0.0012; Fig.3c).TreatmentofmicewithPAP-1wassufficient to

prevent enlargement of hippocampal microglia otherwise

induced by surgery (130 [31] pixels) (post hoc P<0.001; Fig. 3c). As
increasingsize isan indicatorofmicroglialactivation, thesedata

suggest that PAP-1 treatment prevents hippocampal microglial

activation after tibial fracture in vulnerable mice with DIO.

Alongwithmicroglial size, the intensity of Iba1 staining is also a

histological indicator of inflammatory activation. The Iba1

staining intensity within the hippocampus (mean [SD]; absor-

bance unit [AU]) was not significantly greater after surgery (20

800 [5080] AU) than in the non-surgical control group (16 400

[2340] AU) (one-way ANOVA F¼12.66; P<0.001; post hoc P¼0.06;

Fig. 3d). Pretreating mice with PAP-1 decreased the staining in-

tensity of microglia in the hippocampus (12 000 [2260] AU; post

hoc P<0.001). These data support the concept that microglia

require activation of Kv1.3 channels to undergo inflammatory

activation after surgery.

induced hippocampal inflammation. Mice with diet-induced

obesity were randomised to four groups (n¼8 per group) that

received either no surgery or surgery, and either PAP-1 or

vehicle. At 24 h after surgery, the animals were killed and

hippocampi were removed and assayed for interleukin-6 (IL-6)

by enzyme-linked immunosorbent assay. Data were analysed

by one-way analysis of variance followed by Bonferroni post hoc

test. *P<0.001; **P¼0.011.
PAP-1 treatment attenuates surgery-induced
hippocampal inflammation in mice with diet-induced
obesity

Hippocampal IL-6 is a pivotal factor in the development of

surgery-induced PCD in mice.16 Given this, we measured hip-

pocampal IL-6 by ELISA as amarker of neuroinflammation 24 h

post-surgery. Focusing on the vulnerable DIO mouse model,

we found that surgery upregulated concentrations of IL-6

(mean [SD]) within the hippocampus, from a control value of

10.9 (2.2) to 25.6 (10.4) pg mg�1 (one-way ANOVA F¼9.592;

P<0.001; post hoc P<0.001; Fig. 4). However, PAP-1 treatment

prevented upregulation of hippocampal IL-6 concentrations

(14.9 [5.7] pgmg�1), whichwere no different from those seen in

non-surgical control mice and sharply reduced with respect to

untreated mice that underwent surgery (post hoc P¼0.011;

Fig. 4). Thus, PAP-1 treatment prevents surgery-associated

hippocampal neuroinflammation.
PAP-1 treatment does not prevent surgery-induced
peripheral inflammation in WT mice

To assess the extent to which PAP-1 treatment might attenuate

systemic inflammation in the context of tibial fracture and sur-

gical repair, we measured circulating concentrations of IL-6 in

plasma samples frommice that had undergone either surgery or

a non-surgical sham control procedure 6 h previously. Whereas

surgery increased plasma IL-6 concentrations (mean [SD]) vs

control (one-way ANOVA F¼127.1; P<0.001; post hoc P<0.001), these
concentrations were not affected by PAP-1 treatment, either

under control conditions or before surgery. Plasma IL-6 concen-

trationsafter surgerywere210 (23) pgml�1 inmice receivingonly

vehicle prior, and 210 (23) pgml�1 inmice receiving PAP-1 before

surgery. This suggests that PAP-1 treatment does not alter the

systemic inflammatory response to surgery, and supports the

concept thatPAP-1 isunlikely toexert itseffectsonmemoryasan

indirect consequence of an action on cell types located either in

the circulation or peripheral tissues (Fig. 5).
PAP-1 treatment does not impair wound healing after
aseptic trauma in WT mice

In WT mice, in which surgery-induced upregulation of pe-

ripheral inflammation was not attenuated, PAP-1 did not alter
wound healing (Fig. 6a and b). Bone and cartilage comprising

the calluses of treated and control animals were stereologi-

cally quantified throughout the entire fracture callus. No sig-

nificant differences in either the volumes (Fig. 6c) or

proportions (Fig. 6d) of bone and cartilage were observed in

treated and control animals.
Discussion

Our findings suggest that attenuating surgery-induced

microglial activation with the Kv1.3 blocker PAP-1 prevents

postoperative cognitive dysfunction and hippocampal

inflammation without disrupting wound healing.
Microglial activation and Kv1.3 potassium channels

We recently reported that microglial activation is a pivotal

step in the pathway to neuroinflammation that is required for

the development of PCD.14 It is pertinent that

lipopolysaccharide-induced microglial activation, which also

causes cognitive decline,30 has been shown to require partic-

ipation of microglial voltage-gated Kv1.3 potassium chan-

nels.20 The Kv1.3 ion channel both (i) sets the resting

membrane potential for tissue macrophages, including

microglia31; and (ii) is required for activation to the pro-

inflammatory state.20 Disabling Kv1.3 prevents activation of

downstream effectors of the inflammatory response,

including pro-inflammatory cytokine production in the

context of inflammatory stimuli.32 Microglia in the brains of

Kv1.3e/e mice fail to activate after intracerebroventricular in-

jection of lipopolysaccharide, confirming that Kv1.3 is impor-

tant for microglial activation and downstream pro-

inflammatory mediator expression and production both

in vitro and in vivo.20,32
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Kv1.3 in immune responses

Kv1.3 was first described in human T-cells,33 where it plays an

important role in regulating membrane potential and Ca2þ

signalling by providing counterbalancing Kþ efflux for the Ca2þ

influx necessary for T-cell activation.34 Other immune cell

types that express Kv1.3 under specific conditions include B

cells, macrophages, and dendritic cells.34 It is notable that

chemotaxis of monocytes across a model of the bloodebrain

barrier is enhanced by activation of Kv1.3. Therefore, it is not

clear whether the beneficial effects of PAP-1 on PCD and

neuroinflammation are attributable to its effects on BM-DMs,

microglia, or on another pool of immunocytes. However, the

fact that PAP-1 prevented hippocampal microglia from

adopting a pro-inflammatory morphology and reduced hip-

pocampal concentrations of IL-6 after surgery without altering

the postoperative increase in circulating IL-6 concentrations

supports the concept that at least some of the beneficial ef-

fects of PAP-1 treatment in this context are attributable to a

specific effect on microglial function. Our data align with

others, indicating that blocking Kv1.3 prevents brain injury

initiated by activation of innate immune cells.35
Kv1.3 blockade in models of disease

Kv1.3 inhibitors are classed as immunomodulators rather

than immunosuppressants36 based on the observation that

Kv1.3 blockers do not affect the ability of rodents to clear

influenza and Chlamydia infections or of primates to respond

to vaccination,37 although interferon-g and IL-17 production

by effector memory T-cells are both reduced.38 PAP-1,

although potently able to prevent inflammatory activation of

hippocampal microglia and neuro-inflammatory changes

more broadly (e.g. increased concentrations of hippocampal

IL-6), did not suppress the peripheral inflammatory responses

after surgery. A key aspect of the immunomodulatory effects

of Kv1.3 blockade may be a preference for counteracting CNS

inflammation; however, such anatomical specificity will
Fig 5. Phenoxyalkoxypsoralen-1 (PAP-1) does not affect surgery-

induced peripheral inflammation. Wild-type mice were rando-

mised to four groups (n¼4 per group) that received either no sur-

geryþvehicle,nosurgeryþPAP-1, surgeryþvehicle, orsurgeryþPAP-

1. At 6 h after surgery, the animals were killed and blood removed

for measurement of plasma interleukin-6 (IL-6) by enzyme-linked

immunosorbent assay. Data were analysed by one-way analysis

of variance followed by Bonferroni post hoc test. *P<0.001.
require further studies with a bloodebrain barrier impene-

trant blocker of Kv1.3.23

Increasedmicroglial Kv1.3 expression has been observed in

both humans and animal models of ischaemic stroke39 and

Alzheimer’s disease,40 suggesting that targeting Kv1.3 may be

an effective strategy for reducing neuroinflammation in the

context of a variety of acute and chronic CNS insults. The

therapeutic benefit of Kv1.3 blockade, using the brain-

penetrant small-molecule PAP-1,26 was tested in a rodent

model of ischaemic stroke and in which it reduced microglial

activation and infarct size and improved neurological deficit.39

Similarly, PAP-1 treatment reduced neuroinflammation,

decreased cerebral amyloid load, enhanced hippocampal

neuronal plasticity, and improved behavioural deficits in

mouse models of Alzheimer’s disease.40 Kv1.3 inhibitors have

also been shown to ameliorate disease severity in rodent

models of multiple sclerosis,41 prevent autoimmune diabetes

mellitus and rheumatoid arthritis,38 and suppress inflamma-

tory skin diseases such as contact dermatitis and psoriasis in

animal models.42 The peptidic Kv1.3 blocker dalazatide was

shown to reduce the severity of plaque psoriasis in a small

Phase-Ib study.23 Possibly, the specific T-cell subsets involved

in these autoimmune conditions express Kv1.3 in a manner

that makes them amenable to treatment with a specific

channel blocker. However, such peripheral immune cell pop-

ulations are unlikely to have a significant role in the acute

response to peripheral surgery as PAP-1 treatment did not

appear to reduce peripheral inflammation or impact wound

healing in this model.
Peripheral inflammation and wound healing

An influx of circulating immunocytes, attracted by upregula-

tion of pro-inflammatory cytokines in the fracture haema-

toma,43 initiate orderly bone healing. A number of pro-

inflammatory cytokines, including IL-6, are secreted at the

local site in the early inflammatory phase after fracture. IL-6

serves not only to maintain bone homeostasis by mediating

both bone formation via osteoblasts and bone resorption via

osteoclasts,44 but also fracture healing through a biphasic

repair process involving early osteoclastogenesis45 and late

bone formation in the fracture callus.46 Global inhibition of

pro-inflammatory cytokines adversely impacts fracture heal-

ing in the same manner as anti-inflammatory drugs, such as

cyclooxygenase-2 inhibitors.47

An intriguing finding is that the elevation of IL-6 concen-

trations in the circulation induced by surgery was not dimin-

ished by PAP-1. Indeed, wound healing by morphometric

assessment of cellular components and fracture callus for-

mation was grossly intact in the face of Kv1.3 blockade. Thus,

Kv1.3 blockade may be able to avoid at least one key obstacle,

namely, altered wound healing, that might otherwise thwart

therapeutic development of neurocognitive protective strate-

gies in the setting of surgery.
Limitations

Some of the studies presented here were performed using WT

mice fed a standard chow diet (Fig. 2a), whereas other studies

(Figs 2b, 3, and 4) involvedmicewith DIO, which are vulnerable

to PCD.We decided not to usemicewith DIO in the studies that

determined the effect of PAP-1 on peripheral inflammation

and wound healing because fracture healing is already

impaired in diabetes mellitus.48



Fig 6. Phenoxyalkoxypsoralen-1 (PAP-1) does not affect fracture

healing. Wild-type mice were randomised to two groups (n¼10

per group) that received either PAP-1 or vehicle (control)

administered intraoperatively and at 12 h intervals for 3 days. At

10 days after surgery, the mice were killed and the left tibiae

were removed for stereological evaluation of fracture healing.

(a) Vehicle control and (b) PAP-1 treated are representative

histological images of fracture callus stained with HalleBrunt’s

quadruple stain that illustrates bone tissue (red) and cartilage

tissue (blue). The scale bar is 1 mm. (c) Volume of bone and

cartilage tissue in the total fracture callus volume. (d) Percent-

age composition of bone and cartilage tissue in the fracture

callus. Data were analysed by two-way analysis of variance

followed by Sidak’s post hoc test.
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The inflammatory milieu that affects bone healing is in the

haematoma surrounding the fracture site. In lieu of sampling

the haematoma, we sampled cytokines in the peripheral cir-

culation, which may not reflect the site of interest. Further-

more, we chose to focus on the cytokine IL-6 as a marker of

systemic and neuroinflammation because our previous

studies showed the relevance of this pro-inflammatory cyto-

kine for PCD16 and because this cytokine promotes fracture

healing.45

In a series of patch-clamp electrophysiological experi-

ments on a cell line that expresses Kv1.3 channels, isoflurane

directly affected conductance through the Kv1.3 channels in a

biphasic manner (potentiation at sub-anaesthetic and inhibi-

tion at supra-anaesthetic concentrations).49 Therefore, it is

possible that the ameliorative effect of PAP-1 on PCD may be

attributable to its interaction with isoflurane on Kv1.3 channel

gating kinetics. However, general anaesthetics do not influ-

ence the development of postoperative cognitive dysfunction

in clinical studies.50

The mice were exposed to PAP-1 at the initiation of aseptic

peripheral trauma; whether this perturbant can still be effec-

tive if administered after surgery remains unknown.

Finally, relatively young male mice were used throughout,

whereas perioperative neurocognitive disorders tend to occur

in older surgical patients of both sexes. We believe that the

age-related criticism is largely rebutted by our use ofmicewith

DIO, in which all the precocious ageing features of diabetes

mellitus are present.51 Confirmation in other species, females,
and other models of PCD are required to demonstrate the

overall effectiveness of Kv1.3 blockade.
Conclusions

Targeting the Kv1.3 channel represents a possible strategy to

prevent development of perioperative neurocognitive disor-

ders without affecting surgical wound healing. Additional

studies are required to further probe the molecular mecha-

nisms underlying this effect and to determine the feasibility of

PAP-1 for clinical translation of these preclinical findings.
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