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Summary

Although RCTs represent the gold standard in clinical research, most clinical questions cannot be answered using this

technique, because of ethical considerations, time, and cost. The goal of observational research in clinical medicine is to

gain insight into the relationship between a clinical exposure and patient outcome, in the absence of evidence from

RCTs. Observational research offers additional benefit when compared with data from RCTs: the conclusions are often

more generalisable to a heterogenous population, which may be of greater value to everyday clinical practice. In Part 2 of

this methods series, we will introduce the reader to several advanced methods for supporting the case for causality

between an exposure and outcome, including: mediation analysis, natural experiments, and joint effects methods.

Keywords: causal inference; confounding; epidemiology; joint effects; mediation analysis; natural experiment; obser-

vational research
Editor’s key points

� The best way to test causality in science is the rando-

mised controlled trial, but this can be expensive and

infeasible.

� This article summarises three sophisticated observa-

tional statistical techniques that can be helpful in

assessing causality: mediation analysis, natural ex-

periments, and joint effects methods.

� When considering causality, it is always important to

consider biological plausibility and pre-existing evi-

dence; statistical tests in a contextual vacuum often

produce misleading inferences.

� Statistical approaches, including randomised trials,

cannot prove causality; they can decrease uncertainty

and modify probabilistic perspectives.
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The goal of observational research in clinical medicine is often

to gain insight into the relationship between a clinical expo-

sure and patient outcome, in the absence of evidence from

experimental studies, such as RCTs. Clinicians often rely on

observational research because of the dearth of high quality

RCTs informing practice in perioperative medicine. Thus, it is

paramount that observational research studies are designed

as rigorously as possible, aiming to limit bias, reduce con-

founding, and improve patient outcomes on a global scale.

With the growing availability of detailed perioperative data via

the increased uptake of electronic patient records and large

patient registries, a greater knowledge of advancedmethods of

causal inference is necessary in order to increase the rigor and

reproducibility of observational findings. In this review, we

build upon the concepts of graphical causalmodels introduced

in Part 1 to introduce examples of modern observational
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techniques (mediation analysis, natural experiments, and

joint effects) and conclude with thoughts regarding claiming

causality from observational studies. Although a comprehen-

sive review of every advanced methodologic technique is well

beyond the scope of this review, our goal is to give the reader

an appreciation that, above and beyond the fundamentals,

advanced methods are available to handle complex issues in

observational research in perioperative medicine.
Mediation analysis in perioperative medicine

Generally, clinical studies are designed to assess whether an

exposure (or intervention) affects a particular outcome.

Although this is the most commonly instituted paradigm,

sometimes either the question or the structure of data

collection can answer the question: ‘What is the mechanism

for how an exposure affects an outcome?’ For this particular

question, a well-conducted mediation analysis can help to

shed light on complex underlying mechanisms of the

exposureeoutcome relationship. In the following section, we

will summarise: (1) the definition of mediating variables (and

their distinction from confounding variables); (2) design

consideration in a mediation study; (3) current analytic

methods; (4) requirements for the consideration of mediation;

and (5) limitations of this approach.

The primary conceptual framework for a mediation anal-

ysis places variables in four categories: exposures, outcomes,

confounders, and mediators. Figure 1 shows an example of

this concept as a directed graph, using a simplified version of a

motivating example from Amato and colleagues,1 where in-

vestigators examined whether the effect of being assigned to a

‘low tidal volume’ treatment group on mortality in patients

with the acute respiratory distress syndrome (ARDS) was

mediated by driving pressure (Fig. 1,2). In this example, it can

be seen that mediation is fundamentally different from con-

founding: although confounders are associated with the

exposure and outcome and do not lie on the causal pathway,

mediators lie on the causal pathway between exposure and

outcome. From a temporal perspective, confounding variables

generally occur before the exposure (i.e. particular clinical or

demographic variables), and mediating variables occur after

the exposure of interest. Thus, when buildingmodels to assess
Exposure
Treatment Arm (Low
vs. High Tidal Volume)

Outcome
Mortality

Confounder
Age

Mediator
Driving Pressure

Fig 1. Conceptual model of exposure, outcome, single

confounder, and single mediator.
the relationship between an exposure and outcome, it is

essential to adjust for confounders but not mediators, as this

would tend to attenuate the exposureeoutcome relationship.

Therefore, in Figure 1,2 the effect of low tidal volume ventila-

tion on mortality is confounded by age, but potentially medi-

ated through changes in driving pressure. In decomposing the

associations in Figure 1,2 the total effect of the exposure on

outcome is broken up into ‘direct effect’ of exposure on

outcome (i.e. independent of the mediator) and ‘indirect ef-

fect’ of exposure on outcome explained by the mediator

(Fig. 2).
Methodology

When designing a mediation study, several considerations

need to be taken into account.2,3 First, an appropriate con-

ceptual model needs to be outlined, as differences between

exposure, outcome, confounding, and mediating effects need

to be clear e to this effect, many authors suggest that a clear

causal diagram or directed acyclic graph (DAG) be constructed

before analysis.4 Second, the timing of exposure and medi-

ating effects are a critical component, and this is generally

more straightforward in acute as opposed to chronic expo-

sures. To claim mediation, the mediator cannot occur before

the exposure e this is generally more obvious in acute expo-

sures (i.e. the effect of general anaesthesia on blood pressure)

vs chronic exposures (i.e. the effect of smoking on myocardial

infarction). Lastly, even with full optimisation, a clearly con-

ceptualised DAG, and care in assessing the timing and biologic

plausibility of the exposureemediatoreoutcome relationship,

causeeeffect relationships with mediation analysis should be

cautiously interpreted.

Traditional methods of mediation analysis involve the

above conceptual framework of decomposing the

exposureeoutcome relationship into total effects, direct ef-

fects, and indirect effects. In epidemiologic literature, this has

been termed the ‘causal steps’ approach to mediation anal-

ysis.5 In the causal steps model,6 the goal is to decompose the

complex associations into a ‘direct effect’ (the effect of the

exposure on the outcome), the association between the

exposure and mediator, and the association between the

mediator and outcome (controlling for the exposure), as

detailed by Mascha and colleagues.2 Using the coefficients

from regression models (generally linear regression for causal

steps approach, althoughmethods are available for categorical

outcomes) derived from the above equations and con-

ceptualised in Figure 2, it is then possible to estimate the

mediating (or ‘indirect’) effect.

To estimate the indirect effect of a mediating variable

on the outcome of interest, the product of the coefficients

of the exposureemediator relationship (1) and the

mediatoreoutcome relationship (2) can be taken; another

method involves the subtraction of the direct effect (3) from

the total effect (4)e generally, bothmethods will give the same

result for continuous mediators and outcomes meeting all

model assumptions.7 If different models are used for mediator

and outcome (i.e. linear regression and logit) or if different

confounders are used in each model, then methods will need

to be used to standardise the coefficients8 before using the

differences or product method. Although the ‘indirect effect’

has intrinsic meaning, for interpretation, the ‘proportion

mediated’ is often reported, and this is given by: 1e(d/c).

Although most statistical software packages generate stan-

dard errors for the mediator coefficients using the Sobel

mailto:Image of Fig 1|eps


Exposure Outcome

Mediator

Direct Effect “d“

Effect “a“ Effect “b“

Exposure OutcomeTotal Effect “c“

Fig 2. Decomposition of total effects into direct and indirect effects.
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method (using the coefficients and standard errors from the

regressionmodels), this tends to result in less precise standard

errors; thus, many authors suggest an approach that uses

bootstrapping,2 which involves repeated sampling from

observed data to generate a representation of the sampling

distribution to derive standard errors for the coefficients in the

model.

Because of the many assumptions necessary for an unbi-

ased estimate using the causal steps approach, another

approach to mediation analysis (and being used increasingly

in the literature) is the potential outcomes approach, which

uses a counterfactual framework to decompose the total effect

into direct and indirect effects.9e11 Using this framework, an

individual can have two potential outcomes based on a binary

exposure e in mediation analysis, this approach takes this

principle one step further by including the mediator in the

series of equations that can explain a potential outcome (the

true outcome and the counterfactual situation). Thus, for an

individual i, with and binary exposure E and outcome Y, we

may be interested in the following effects.
Causal mediation effect (natural indirect effect)

This refers to the causal effect of the exposure that operates

only through the mediator (holding exposure constant) and

compares two potential outcomes: (1) mediator set to its value

under the ‘exposed’ situation and (2) mediator set to its value

in the ‘unexposed’ situation. Therefore, no matter what the

exposure of each individual, this approach asks what the

outcome would be in the presence and absence of the medi-

ator in the counterfactual exposure situation.
Natural direct effect

Natural direct effect measures causal effect of exposure that

does not operate though mediator e thus, as opposed to the

above equations, in this analysis, the mediator is held

constant.
Total causal effect (or total effect)

This refers to the causal effect of the exposure and mediator

on outcome Y.

Because of the need to create counterfactual variables and

models, a statistical software package is used to simulate po-

tential values of the mediator and potential outcomes, and

several iterations are required.

Claiming mediation requires several steps, as suggested by

the evolving literature and guidance in this area.12e14 Thus,

even if a ‘statistically significant’ indirect effect is noted,

several proposed criteria are generally required. First, it is

essential that the exposure variable is associated with the

mediator (i.e. effect ‘a’ in Fig. 2 must be significant). Second,
the mediator must be associated with the outcome, indepen-

dent of exposure (i.e. effect ‘b’ in Fig. 2 must be significant).

Third, the mediation effect must be significant (both statisti-

cally and clinically), biologically plausible, and in the correct

time sequence. Fourth, it is highly preferable (although

sometimes the potential outcomes approach can overcome

this) that no exposureemediator interaction exists through

formal testing (associations must be independent of one

another). Fifth, it is best to avoid mediatoreoutcome con-

founding, in order to avoid bias in estimation of direct and

indirect effects.15 Lastly, the results of mediation analyses

should be interpreted with caution, keeping in mind the lim-

itations of mediation analyses (especially when using tradi-

tional methods) including violations of model assumptions,

small sample sizes, measurement error,16 and the use of

multiple hypothesis testing. There is a growing body of liter-

ature addressing the detection of bias in mediation analyses

by detecting violations to model assumption through the use

of sensitivity analyses on mediated variables.17
Example

As discussed in the Introduction, we present a motivating

example, where Amato and colleagues1 used mediation anal-

ysis to examine the effect of changes in driving pressure (as a

result of an assignment to a randomised group, based on

ventilator settings) on mortality in patients with ARDS. The

investigators conducted two separate analyses (one in pooled

data from RCTs randomising tidal volume and another in

pooled data from RCTs randomising PEEP) to examine the

mediating effect of driving pressure on mortality. After

examining driving pressure as a mediator candidate through

stepwise tests, the investigators calculated both proportion

mediated and average causal mediation effect (ACME). Among

the low tidal volume trials, driving pressure mediated 75% of

the benefits attributable to treatment group assignment

(ACME P¼0.004); and among the PEEP trials, driving pressure

mediated 45% of the benefits attributable to treatment group

assignment (ACME P¼0.001).1
Mediation: summary

In summary, mediation analysis is a valuable tool for helping

to decompose and characterise varying pathways from expo-

sure to outcome; furthermore, both traditional and more

modern methods can quantify these different pathways.

Mediation analyses may represent unique ways to use data

collected in a prospective study to help shed light on under-

lying disease mechanisms. Although traditional models (i.e.

causal steps) are often used, limitations to those approaches

have resulted in models with greater flexibility and the ability

to harness the power of modern statistical software and

computers to allow simulation. One must consider the many
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limitations to arriving at a valid estimate from a mediation

analysis, and therefore careful thought must go into deriving

the appropriate conceptual model, selecting the appropriate

variables and statistical model, and in carefully interpreting

the results.
Natural experiment design in perioperative
medicine

The history of natural experiment design can be traced to

London, UK in the mid-19th century to Dr John Snow, a British

physician who is credited as one of the fathers of both public

health and anaesthesia. Dr Snow believed that the outbreaks

of cholera that killed 616 people in London in the mid-1800s

were spread by drinking water contaminated with sewage. In

his ‘Grand Experiment’, he retrospectively compared rates of

cholera infection in two populations supplied with separate

water sources, one upstream from the sewage outflow into the

River Thames, and the other downstream.18 The populations

were ‘selected’ by an influence external to any enquiry into

cholera, as the majority of the scientific community believed

cholera to be spread by airborne transmission or acts of God.

Furthermore, it was only after the fact that Snow decided to

compare these populations. Intentionally randomising people

to an exposure known to be harmful would, of course, be

unethical.

As is now common knowledge, cholera is indeed trans-

mitted bywater and Snow demonstrated this with a rate of 315

cholera deaths from 10 000 homes supplied with sewage-

contaminated water, compared with 37 cholera deaths from

10 000 homes supplied with non-contaminated water.

Although Snow’s ‘Grand Experiment’ has since been shown to

contain methodological errors, the principle of utilising

external influences to ‘as-if’ randomise populations continues

to have a great deal of utility in population health sciences.
Methodology

Natural experiments may be defined as exogenous events not

controlled by the researchers, which divide a population into

exposed and unexposed groups. Exposures can be environ-

mental (natural disasters), policy (local, state, national),19,20

medication or equipment shortages,21 or introductions of

newmedications into practice. By using external influences as

randomising effects, investigators may be able to reduce se-

lection bias.22 It remains important to ensure that study pop-

ulations remain comparable, and do not differ in other

unmeasured influences.

Natural experiments are useful in many situations. First,

natural experiments can evaluate large scale population

health interventions in an efficient and effective manner.

Second, natural experiments can be exploited when random-

isation is not possible; for example, an intervention deemed to

be unethical. Third, given the time and cost for well-controlled

RCTs (even in ethical situations), RCT evidence may not al-

ways be available to fill evidence gaps; thus, rigorously

designed natural experiments may help fill this gap. Fourth,

overly controlled RCTsmany not mimic real-world conditions,

and natural experiments may represent a method to assess

the generalisability of RCT evidence in large populations.

Although the goal of a well-conducted natural experiment

is to achieve ‘as-if’ randomisation, there are several key dif-

ferences between natural experiments and traditional RCTs.23

Although both RCTs and natural experiments have clearly
defined interventions, the details of the intervention in an RCT

are within full control of the investigators, including dose,

timing, compliance, etc. Furthermore, assignment of the

intervention in RCTs is also under control of the researchers,

so that appropriate randomisation techniques can be used. In

contrast, natural experiments do not allow detailed knowl-

edge of the assignment process, thereby subjecting the anal-

ysis to confounding. Lastly, all subjects in an RCT have a

known risk of receiving a treatment or control assignment; but

in natural experiment designs, the possibility of a subject be-

ing ‘at risk’ for the exposure and outcome remain unclear.

Based on this, natural experiments cannot be seen as a sub-

stitute for a well-designed RCT, but rather as complementary

in the quest for efficacy, generalisability, and causality.

There are several approaches to evaluating natural exper-

iments, above and beyond descriptive assessment before and

after intervention.22 The use of traditional regressionmethods

can allow for inclusion of measured confounding variables in

an analysis, using time period (before and after intervention)

as the exposure. In order for natural experiment study par-

ticipants to be allocated to either an intervention or control

group while minimising measured and unmeasured con-

founding, propensity scoring can be additionally used. The

propensity score is defined as the probability of a study subject

being allocated to the intervention group, and is most

commonly calculated using logistic regression. The derived

propensity score can be used for matching, inverse probability

of treatment weighting, or as covariate in a regression model.

The intention of this method is that by accounting for the

measurable differences in subjects assigned to the interven-

tion and control groups, unmeasured confounding will also be

minimised. However, the limitations of propensity score

matching are related to the number and type of available

covariates, and how those covariates are related to unmea-

sured confounders.23 Furthermore, although RCTs theoreti-

cally assure balance of measured and unmeasured

confounders, propensity scores only assure relative balance of

measured confounders. In addition to examining only a pop-

ulation that has been exposed to an intervention (before and

after intervention), including a control group that has been

unexposed to an intervention using difference-in-differences

methodology22 may help to further enhance causal infer-

ence. Lastly, the inclusion of detailed time series data is

generally more robust than only measuring data at a single

time point, so that changes in trends (i.e. slopes) can be ana-

lysed before and after intervention e this methodologic

approach has been described as an interrupted time series24

and can be evaluated with advanced analytic methods, such

as segmented regression.25
Example

We present a motivating example, in which Vail and col-

leagues21 exploited a putative natural experiment to examine

the association between a norepinephrine shortage in the USA

and mortality in patients with septic shock.

In the primary analysis, the investigators examined 27 835

patients treated in 26 ‘shortage’ hospitals (where norepi-

nephrine utilisation for vasopressor support in septic shock

was observed to decrease during the period of the US norepi-

nephrine drug shortage). Among patients treated for septic

shock at ‘shortage’ hospitals, in-hospital mortality was

observed to be 35.9% during non-shortage time periods,

compared with 39.6% during the period of the US
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norepinephrine drug shortage (adjusted odds ratio¼1.15; 95%

confidence interval [CI], 1.01e1.30; P¼0.03). To account for

secular trends and further support causal inference, the in-

vestigators also constructed a difference-in-differences model

(using ‘consistent use’ hospitals, where norepinephrine uti-

lisation was not observed to change during the drug shortage

period, as a control group), with stable results (adjusted odds

ratio¼1.17; 95% CI, 1.06e1.31; P¼0.003). The investigators

concluded that patients with septic shock admitted to

‘shortage’ hospitals during the period of the US norepineph-

rine shortage had higher in-hospital mortality, compared with

admission during non-shortage periods.
Natural experiments: summary

Natural experiment design can offer a viable alternative to

RCTs, where RCTs are impractical because of logistical or

ethical considerations. ‘As-if’ randomising study subjects by

an external influence has the potential to minimise unmea-

sured confounding, particularly if paired with additional

strategies such as regression adjustment, propensity score

matching, use of control groups, and statistical methods for

time series data. However, despite the use of rigorous meth-

odologic and analytic techniques, the observational nature of

natural experiment designs may still be prone to the threat of

unmeasured confounding.
Joint effects in perioperative medicine

Sometimes the effect of one drug on an outcome differs with

the presence of another drug to some extent, resulting in a

heterogeneity of treatment effects. For example, when

examining the effect of multimodal analgesia on outcomes

after surgery, certain analgesic combinations may be syner-

gistic, whereas others may not (or worse, antagonistic). In this

situation, drawing a causal association between an exposure

(Drug A) and outcomemay depend on the presence/absence of

an additional exposure (Drug B). In other words, an interaction

may exist between two drugs (or exposures), and outcome

effects are thus not independent. In epidemiology papers or

textbooks, this is called an interaction or ‘joint effect’ between

the two exposures. If the joint effect of two exposures is larger

or smaller than the sum of the individual effects, there is

interaction. Inmany cases a joint effect is assessed by entering

a product term of two exposures into the regression model.

Two types of outcomes, binary and continuous outcomes, are

often used in clinical studies, and the interpretation of the

regression coefficient of the product term varies based on

which outcome is used. In general, in joint effect analysis,

linear regression models using a continuous outcome esti-

mate additive interaction, whereas logistic regression models

(and Cox proportional hazard models) using a binary outcome

estimate multiplicative interaction. For the sake of simplicity,

we will focus only on interaction on additive scales using a

continuous outcome, and we will discuss the methods and

formulas to estimate joint effect with a hypothetical example.
Table 1 Interaction model for joint effect of A and B.

Be Bþ

Ae b0 b0 þ b2
Aþ b0 þ b1 b0 þ b1 þ b2 þ b3
Methodology

As a motivating example, consider hypothetical data con-

cerning the effect of two multimodal analgesics on opioid

consumption on the day of surgery. It is of interest to deter-

mine whether the joint effect of two multimodal analgesics

would have lower opioid consumption after surgery than the
sum of individual effects. Let Y denote a continuous outcome:

opioid consumption. Let A and B denote two binary exposures

of interest. These can be acetaminophen, NSAIDs, gabapenti-

noids, etc. We can construct a 2�2 table with the mean of

opioid consumption in the four groups: non-A and non-B

(AeBe), A and non-B (AþBe), non-A and B (AeBþ), and A

and B (AþBþ) in Table 1.

In practice, joint effect is often evaluated by including a

product term for the two exposures in the model. A linear

regression model in observational studies adjusting for cova-

riates might take the form:

Y¼b0þb1Aþb2Bþb3AB

where AB simply denotes the product of the two expo-
sures, and b0, b1, b2, and b3 are the corresponding regres-
sion coefficients. The mean values of the outcome for the
four groups defined by A and B in Table 1 will be as follows.
The individual effect of A is: YAþBe¼b0þb1. The individual
effect of B is: YAeBþ¼b0þb2. The combined effect (doubly
exposed) is: YAþBþ¼b0þb1þb2þb3. The effect of no A and no
B (doubly unexposed) is: YAeBe¼b0. The assessment of in-
teractions using the interaction contrast (IC) is to measure
the extent to which the combined effect of the two expo-
sures exceeds the sum of the individual effects.26 In other
words, the IC is a measure of the difference between the
observed YAþBþ estimate and the expected YAþBþ estimate
(based on individual effects).27 This could be measured by:

IC ¼observedðYAþBþÞ�expectedðYAþBþÞ
¼ðYAþBþ�YA�B�Þ�½ðYAþB��YA�B�ÞþðYA�Bþ�YA�B�Þ�
¼ðb0þb1þb2þb3�b0Þ�½ðb0þb1�b0Þþðb0þb2�b0Þ�

¼b3

If the IC (¼b3) is not zero, we conclude that there is

interaction. Positive interaction is defined by the extent to

which the combined effect is larger than the sum of their in-

dividual effects, whereas negative interaction is defined by the

extent to which the combined effect is less than the sum of

their individual effects (Fig. 3).28e30

In addition, in joint effect analysis clinicianswould bemore

interested in whether there is synergism or antagonism when

two drugs are administered, rather than just to say there is

positive or negative interaction. However, although the terms

synergism and antagonism have specific meanings, they are

often used ambiguously.28,30 It is generally straightforward to

evaluate synergism or antagonism when both exposures

affect outcomes in the same direction. However, for opposing

individual effects (b1>0 and b2<0, or b1<0 and b2>0), there are

cases in which the definition of synergism (or antagonism)

varies based on the magnitude of the effects of exposures.31

For simplicity, if we assume that two exposures affect the

outcome in the same direction,28 we can define synergism and



Fig 3. A diagram for conceptualising the joint effect of drug A and B on opioid consumption. Synergism is when the effect of [AþBþ] > AþB,

and antagonism is when the effect of [AþBþ] < AþB.
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antagonism as follows. When a primary exposure is positively

associated with the outcome (b1>0), IC<0 indicates antago-

nism and IC>0 indicates synergism. In contrast, when a pri-

mary exposure is inversely associated with the outcome

(b1<0), IC<0 indicates synergism and IC>0 indicates antago-

nism. If IC¼0 (the 95% CI of b3 includes 0), the combined effect

of A and B is defined as having insufficient evidence of

interaction.27
Table 2 Example of synergism. Coefficients of a linear regression m
product of NSAIDs and acetaminophen in a hypothetical dataset. O
confidence interval.

Parameter Coefficient

NSAIDs b1
Acetaminophen b2
NSAIDs � Acetaminophen b3
Constant b0

Table 3 Example of antagonism. Coefficients of a linear regression m
product of NSAIDs and acetaminophen in a hypothetical dataset. Out
interval.

Parameter Coefficient

NSAIDs b1
Acetaminophen b2
NSAIDs � acetaminophen b3
Constant b0
Example

Multimodal analgesia plays a critical role with the goal of

reducing opioid use and associated side-effects. Multimodal

analgesics commonly include regional analgesia, NSAIDs, se-

lective cyclooxynegase-2 inhibitors, acetaminophen, gaba-

pentinoids, and ketamine, which can all lead to reduction of

acute pain through differing receptor pathways. A key ques-

tion is whether specific combinations of multimodal analge-

sics have joint effects when they are used together.32 In a

hypothetical dataset, consider NSAIDs and acetaminophen as

‘risk factors’ for decreased opioid consumption on the day of
odel with NSAIDs and acetaminophen as binary exposures and
utcome is opioid consumption on the day of surgery (mg). CI,

Estimate Lower CI Upper CI

e2.0 e2.1 e1.9
e5.0 e5.1 e4.9
e3.0 e4.6 e1.4
70 69.0 71.0

odel with NSAIDs and acetaminophen as binary exposures and
come is opioid consumption on the day of surgery. CI, confidence

Estimate Lower CI Upper CI

e2.0 e2.1 e1.9
e5.0 e5.1 e4.9
3.0 1.4 4.6
70 69.0 71.0



404 - Krishnamoorthy et al.
surgery. NSAIDs and acetaminophen are binary variables, and

opioid consumption is a continuous variable. NSAIDs, acet-

aminophen, and a product term of NSAIDs and acetamino-

phen are entered in a linear regression model. Examples of

synergism and antagonism are presented in Tables 2 and 3. In

practice, b3 is directly obtained by statistical software so that

the IC is readily available in this setting. Table 2 shows nega-

tive interaction because of IC<0 and synergism because of b1<0
and IC<0. Table 2 shows positive interaction because of IC>0
and antagonism because of b1<0 and IC>0.
Joint effects: summary

We have discussed interaction analyses in terms of the mea-

sures, estimation procedures, and interpretation. The

methods and formulas are intended to assist clinical re-

searchers who plan to evaluate joint effect between two binary

exposures on a continuous outcome. These tools are based on

classical theories of interaction analysis. We have not been

able to describe all methods related to interaction analysis, but

we hope that the reader will consult the relevant papers and

we also hope that this section provided useful information on

how to perform and interpret analyses of joint effects.
Conclusion

To appropriately utilise the vast amount of data available to

clinical researchers, and to fill gaps in knowledge where high-

quality evidence from RCTs are lacking, rigorous observational

research designs continue to have an important role in clinical

medicine and public health. We have discussed several

methods to improve causal inference using observational

research designs in perioperative medicine. With growing

data, statistical knowledge, and computing power, we expect

further techniques to emerge in the coming decades. Despite

the proliferation of methodologic and analytic techniques to

help support causality, the clinician should remember that

causal inference is both a quantitative and qualitative exer-

cise. With a solid understanding of the fundamentals, and

utilisation of advanced techniques in clinical research,

observational research in perioperative medicine will

continue to advance at a rapid pace.
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