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Abstract

Graphical models have emerged as a tool to map out the interplay between multiple measured and unmeasured vari-

ables, and can help strengthen the case for a causal association between exposures and outcomes in observational

studies. In Part 1 of this methods series, we will introduce the reader to graphical models for causal inference in peri-

operative medicine, and set the framework for Part 2 of the series involving advanced methods for causal inference.
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Editor’s key points

� This review provides an introduction to graph theory as

applied to perioperative medicine.

� Concepts of causality, bias, and confounding are

addressed.

� The biggest threats to validity in observational research

are spurious correlations and systematic bias.

� A graph theoretical approach can be useful in miti-

gating these threats.
The clinician’s goal is to directly improve the health of the

patient in their care; unfortunately, the research data available

to clinicians for decision-making can vary in methodological

rigour. Among the myriad of ‘associations’ between variables

reported in the clinical literature, it is imperative for clinicians

and researchers to identify true causal relationships. There-

fore, we need to understand which exposures are causally

connected to better health outcomes.
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The validity ofmedical research can be compromised by two

potential sources of error: (1) spurious correlation (or spurious

lack of correlation), which are akin to Types 1 and 2 statistical

errors, respectively, and (2) systematic biases, which involve

biases in theprocess of theoverall studydesign, lead to spurious

interpretation/evaluation, and are non-random in nature. Sta-

tistics provides the tools to establish a correlation (or associa-

tion) between variables, and this is required before delving into

causality. Using the language of probability, statistics allows us

to distinguish signal from noise. Examining births in London

between 1664 and 1757, and finding 737 629 male and 698 958

females (anexcessof 38671malebirths),wecould conclude that

something is amiss.1 However, scale this back 10 000-fold, and

observing 74 male and 70 female births, we might have little to

say. The probability of the former occurring by chance is

1.08ee228, while the latter is 0.40 (40%). These probabilities are

numerical estimates of plausibility, and the machinery to

calculate themdeveloped frominvestigating gamesof chance in

the 18th century. From this follows classical statistical hypoth-

esis testing, Bayesian techniques, and machine learning.
rved.
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Table 1 Commonly used terms in graphical modelling.

Term Definition

Directed Acyclic
Graph

Causal model; no node is visited twice
(acyclic)

Node Variable of interest
Edge Arrow demonstrating relationship

between two variables, indicating a
possible causal effect between two
variables

Children Downstream variables (at the head of
the arrow)

Descendants Downstream variables beyond ‘children’
Parents Upstream variables (at the tail of the

arrow)
Ancestors Upstream variables beyond ‘parents’
Path Sequence of nodes and edges
Confounder Variable that is associated with an

exposure and outcome, but is not on
the causal pathway

Collider Variable that is influenced by two other
(potentially unrelated) variables

Backdoor path A non-causal relationship between two
variables
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Unfortunately, statistics often does not have the tools to

handle systematic bias, which can impair the ability to

establish a causal association between variables. For example,

we can be confident that people carrying cigarette lighters are

likely to have higher rates of lung cancer, but we do not know

whether banning cigarette lighters will save lives. Not only

does association not imply causation, but it provides no

insight into the direction of causality. The association would

be identical whether the lung cancer causes a craving for

cigarettes, or cigarettes cause lung cancer. Thus, the observed

association between two variables may be explained by a

causal pathway in either direction or a non-causal association.

Systematic biases can result from a conceptual model that has

misspecified the relationship of key biological variables,

despite the fact that the statistical analyses are sound

(mathematical equations are equivalent whether written for-

wards or backwards). The solution to this problem has been

rigorous experimental design, where the process allows us to

distinguish cause from effect. Just as we are warned that ‘as-

sociation is not causation’, there is a complementary truism

that, there is ‘no causation without manipulation’.2

The grammar for causality abandons algebra and proba-

bility for a theory of graphs. The field of graphical models has

been developed by Judea Pearl,3 and won him the Turing Prize

(the ‘Nobel prize of computing’) in 2011. The graph invites us

first to add cigarettes as a common cause of carrying lighters

and lung cancer. It provides tools to decide whether we can be

confident that the observed relationship is free from system-

atic bias or not. Finally, it offers guidance on the measure-

ments we need to make to determine whether the flow of

causality is from the cigarette or the lighter. The joy of this

visual approach is its accessibility, although there has

beendas yetdlittle penetration of these methods into the

clinical literature.4

This review will introduce this language through a worked

example developed from a study of long-term survival after

major surgery.5 We will then use this new tool to discuss the

causal estimation of treatment effects. This will provide a

framework for Part 2 of this series, which introduces the

reader to advanced methods for causal inference in perioper-

ative medicine.
Graphical causal models

Worked example: long-term survival after major
surgery

Khuri and colleagues5 published a report in 2005 from the

Veterans Affairs hospitals in the USA examining the rela-

tionship between postoperative complications and long-term

survival. This was an observational study, not an RCT. Mea-

sures of preoperative risk, surgical severity, and postoperative

complications were linked with long-term outcome data.

Postoperative complications were seen as a proxy for poor

perioperative care, and the authors wished to quantify the

importance of this period of care. For expository purposes, we

will only consider a small subset of the measurements used.
Fig 1. Worked example of graphical causal model highlighting

the relationship between the exposure (perioperative care) in

green, and the outcome (mortality) in blue. The green arrow

highlights the causal relationship we are trying to estimate. The

red arrows highlight paths that create non-causal (biasing)

connections between the exposure and the outcome.
Graphical models: the syntax of a model

Before we sketch the graphical model of this study, we need to

introduce the vocabulary. Graphs are composed of ‘nodes

(variables) and edges (arrows).’ The arrow indicates a possible

causal effect between two variables. Downstream variables (at
the head of the arrow) are often called children; upstream

variables (at the tail) are ancestors. The direct ancestors are

the ‘parents’ of a variable.

The absence of an arrow is a statement of a strong

assumption that there is no causal effect.4 Conversely, the

presence of an arrow does not mandate that the parent is a

cause of the child; the causal effect may be zero. Therefore,

where we cannot assume there is no causal relation, we must

include an arrow. A path is a sequence of arrows. For causality

to be possible, a path cannot be circular (egg/chicken/ egg);

each node on a path can only be visited once. Where this is

true, then the model may be called a Directed Acyclic Graph

(DAG). Because of the assumption that the absence of an arrow

implies the absence of an effect, then a Causal DAG is a

statement of everything that is known about a particular

process.
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That completes the formal definition of the components of

a graphical model, as discussed in Table 1. However, one will

often see additional colouring and shadingwhich is used to aid

discussion. Nodes are often drawn as squares to indicate that a

variable is observed, or as circles where the variable is unob-

served or unmeasured. In our worked example (Fig 1), we

highlight the exposure (perioperative care) in green, and the

outcome (mortality) in blue. We use a green arrow to highlight

the causal relationship we are trying to estimate (the effect of

perioperative care on long term outcomes). Finally, we may

use red to highlight paths that create non-causal connections

between the exposure and the outcome.
Fig 2. Worked examples of graphical causal model highlighting the rel

the outcome (mortality) in blue. These examples illustrate the relations

and how adjusting for confounders can mitigate this. For example, (c

confounders has inadvertently opened up a backdoor/biasing path th

adjusted for, resulting in bias. AKI, acute kidney injury.
The use of graphical models

Each model starts with the two nodes, the exposure and the

outcome, linked by one edge: the causal relationship of in-

terest. Remember that the arrow is only indicating a possible

effect; this may be zero in the final analysis. We then add all

other possible relationships to the graph, allowing us to decide

if we can identify the causal relationship. This is only possible

if we can eliminate all non-causal paths between the exposure

and the outcome. This means finding a set of measures that

controls for confounding, without introducing selection bias

through a collider. We will now expand our model of periop-

erative care and mortality to illustrate this process.
ationship between the exposure (perioperative care) in green, and

hips that confounding influences have on exposures and outcomes,

, i)–>(c, ii) is a situation where uncritically adjusting for potential

rough a variable which is unmeasured and therefore cannot be
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Confounding and backdoor paths

Two variables may be associated where they share a common

cause. For example, smoking is a common cause (confounder)

for carrying cigarette lighters and for lung cancer so there is a

biasing or backdoor path from cigarette lighters to lung cancer

(cigarette lighters)smoking/lung cancer). Importantly, back-

door paths exist without regard to the direction of the arrows.

Wemust control for smoking (either via statistical adjustment

of study design choice) to get at the true causal effect of ligh-

ters on lung cancer.

In our example (Fig 2a), perioperative care might be used

more often for older individuals, and the mortality would also

be higher for older individuals so we have a red biasing path

from perioperative care back through age to mortality. If we

‘control’ for age, indicated by shading the square grey in Fig

2a(ii), then we ‘block’ the backdoor path. If the graph is com-

plete (a causal DAG), then controlling for age is sufficient to

identify the true effect of perioperative care on mortality.

Where important variables are unmeasured (e.g. frailty in Fig

2b), then confounding will persist.
Selection and colliders

Confounding and backdoor paths create the temptation to

include all potentially related variables as controls; in addi-

tion, there is an added temptation of only selecting a popula-

tion that has experienced an outcome of interest. While

restricting a study population based on the presence/absence

of a key confounding variable may help to control for the

confounder (albeit, at the risk of decreasing generalisability),

restricting a population based on the presence/absence of the

outcome can introduce bias into a study. Consider investi-

gating the relationship between smoking, asbestos exposure,

and lung cancer, but only studying patients with a diagnosis of

lung cancer. For a patient to have lung cancer without asbestos

exposure, we would expect heavier smoking histories.

Conversely, for patients to have lung cancer without smoking,

we would expect greater asbestos exposure. Within this

selected population, we will therefore find an inverse rela-

tionship between smoking and asbestos exposure. This subtle

problem is also called Berkson’s paradox.6 In the language of

graphical models, we say that lung cancer is a collider on the

path between smoking and asbestos

(smoking/lung cancer)asbestos exposure ) because two arrows

collide onto the same variable. By knowing the participant’s

lung cancer status, we can detect a relationship between

smoking and asbestos in any given patient, even though they

are not causally connected. Therefore, conditioning the study

population on the collider can introduce bias into the study.

In our example in perioperative medicine (Fig 2c), we could

consider using measures of acute kidney injury (AKI) in the

ICU as a variable that should be controlled for. However, AKI is

likely partly genetically determined and related to standards

of perioperative care. Controlling for AKI (which is a collider in

the causal diagram), as shown in Fig 2c(ii), creates a biasing

pathway of perioperative care and mortality through the

development of AKI. Similarly, by making AKI status part of

the inclusion criteria (restricting the population to only pa-
tients who experience perioperative AKI, as a way to control

for AKI incidence) we would also open the same biasing path.
Causal estimation of treatment effects

These concepts allow us to inspect a graphical model and

decide whether the relationship between two variables is free

from systematic bias. Where we can block all backdoor paths

without inducing false associations by conditioning on a

collider, the relationship is said to be identifiable. We can sim-

plymap the study design to the graphicalmodel to decide if we

have achieved that aim. In Part 2 of this series, we will discuss

examples of study designs that may help to strengthen a claim

of causality between variables. Ultimately, establishing cau-

sality is both a quantitative and qualitative process. In this

vein, evaluation of causality through established frameworks

(such as the Bradford-Hill criteria7) require examination of the

data through both a quantitative and qualitative lens.
Conclusion

Observational research in perioperative medicine faces

threats to validity and establishing causality, primarily

through two sources: spurious correlations and systematic

bias. While spurious correlations can be handled through

advanced statistical methods, reducing systematic bias in-

volves knowledge of plausible biological pathways, and

directionality and interplay between multiple measured and

unmeasured variables. Graphical models have emerged as a

tool to map out the interplay between variables, and can help

strengthen the case for a causal association between an

exposure and outcome variable.
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