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postoperative cognitive dysfunction
The burden of Alzheimer’s disease is enormous: it has been

estimated to be as high as the third leading cause of death and

carries with it tremendous societal costs.1 There are no

effective treatments to delay the progression of Alzheimer’s

disease, and thus, prevention efforts are paramount.

The potential contribution of anaesthesia and surgery to

the development of Alzheimer’s disease is not clear. However,

a growing body of literature suggests that older adults

commonly experience cognitive changes after surgery,

including delirium and longer-term cognitive decline.2 Fortu-

nately, many acute cognitive changes resolve, but there is

likely a subset of vulnerable patients who suffer long-term

cognitive sequelae. As more older adults undergo surgery,

the importance of defining the perioperative contribution to

postoperative cognitive decline is paramount.

A hallmark of Alzheimer’s disease pathology is accumula-

tion of amyloid beta (Ab) in the brain. A leading conceptual

model suggests that accumulation of Ab is a very early event,

starting decades before symptom onset. This is followed by

appearance of neurofibrillary tangles, consisting largely of the

protein tau, and neurodegeneration reflected by cortical

thinning. Symptoms of memory impairment make their

appearance at this stage.3 Preclinical research has shown that

surgery and anaesthesia contribute to the accumulation of Ab,
neuroinflammation, and functional impairment, but it is un-

clear if these processes occur in humans and are clinically

relevant. Additionally, although enormous scientific effort has

focused on the prevention of Ab accumulation, the results of

anti-amyloid therapies in clinical trials focused on cognitive
loss have been almost entirely negative, suggesting either poor

timing of the therapy or that other mechanistic pathways are

better targets for therapy.

In this issue of the British Journal of Anaesthesia, Sprung and

colleagues4 report a study that examined the association be-

tween exposure to surgery/general anaesthesia (GA) and Ab
deposition in a group of 585 older adults (70e91 yr old) in the

Mayo Clinic Study of Aging (MCSA). The authors measured

brain Ab using Pittsburgh compound B (PiB) positron emission

tomography (PET), and used data from the Rochester Epide-

miology Project medical records linkage system to identify

surgery/GA in 84% of participants retrospectively (n¼493). The

authors used multiple approaches to characterise surgery/GA

exposure, including as a yes/no dichotomous variable, by the

number of anaesthetic exposures, and by the duration of

anaesthesia exposure. Parallel analyses were conducted

examining two different windows for surgery/GA exposure:

within the prior 20 yr and since age 40.

Regardless of how surgery/GA was defined and the time

window used to define the exposure, the authors found no

association between exposure to surgery/GA and elevated

brain Ab deposition in later life. The authors also examined

how prior surgery/GA related to two neuroimaging-defined

markers of neurodegeneration: MRI-defined cortical thick-

ness and 18-fluorodeoxyglucose (FDG) PET, a measure of

glucose metabolism that typically shows region-specific ab-

normalities years before onset of clinically defined Alz-

heimer’s disease. Whilst the authors did find evidence for an

association between past surgery/GA exposure and reduced

cortical thickness in brain regions known to be vulnerable to

atrophic changes in the context of Alzheimer’s disease, no

association was found with FDG PET.

http://refhub.elsevier.com/S0007-0912(20)30452-9/sref21
http://refhub.elsevier.com/S0007-0912(20)30452-9/sref21
http://refhub.elsevier.com/S0007-0912(20)30452-9/sref21
http://refhub.elsevier.com/S0007-0912(20)30452-9/sref21
http://refhub.elsevier.com/S0007-0912(20)30452-9/sref22
http://refhub.elsevier.com/S0007-0912(20)30452-9/sref22
http://refhub.elsevier.com/S0007-0912(20)30452-9/sref22
http://refhub.elsevier.com/S0007-0912(20)30452-9/sref22
https://doi.org/10.1016/j.bja.2020.06.010
https://doi.org/10.1016/j.bja.2020.06.010
mailto:cbrownv@jhmi.edu
http://10.1016/j.bja.2020.01.015
https://doi.org/10.1016/j.bja.2020.01.015


Editorials - 233
Contextualisation of results

The authors should be commended for conducting this study

and a series of other studies that address important questions

relevant to preserving brain health in older adults. Longitudi-

nal cohort studies, such as the MCSA and others, are particu-

larly suited to research questions focused on brain health and

often require long-term follow-up or expensive imaging. As

with all studies, there are important limitations, including a

geographically distinct and predominantly Caucasian sample,

complicated selection biases for patients included in the study

sample, and lack of imaging before surgery.

Thus far, studies that have examined the putative associ-

ations between surgery/GA and dementia in older adults have

yielded mixed results.5 Whereas a recent study provided evi-

dence for a modest increase in dementia risk associated with

surgical hospitalisation,6 other studies, including a nested

case-control study conducted within the MCSA cohort, found

no such association.7 However, using data from nearly 2000

participants in the MCSA cohort, this group did show that

surgery/GA exposure in the prior 20 yr was associated with a

steeper rate of cognitive decline, particularly in domains of

attention/executive function and memory.8

An association between past surgery/GA exposure and

increased brain amyloid would provide support for the hy-

pothesis that surgery or anaesthesia exposure increases risk

for cognitive decline by promoting Alzheimer’s-specific pro-

cesses within the brain. Indeed, numerous preclinical studies

have shown an association between exposure to surgery/an-

aesthetics and increased oligomerisation9 and accumulation10

of brain amyloid. Whilst human studies have also been con-

ducted to address this hypothesis, these studies have been

small and have generally relied on CSF measurements. One

study that measured CSF the day before and 24 h after open-

heart surgery reported increases in Ab1e42 after surgery in a

group of 10 patients. More striking, however, were the in-

creases in CSF measures of inflammation, including tumour

necrosis factor alpha (TNF-a), interleukin (IL)-6, and IL-8.11

Another study of CSF samples from 11 patients undergoing

idiopathic nasal CSF correction found no increases in post-

operative Ab1e42 within 48 h, but did find longitudinal in-

creases in CSFmeasures of neuronal and glial injury (total tau,

phosphorylated tau, and S100beta) and inflammation (IL-10,

IL-6, and TNF-a).12 Despite evidence that surgery may not

affect brain amyloid concentrations, several studies suggest

that patients with elevated brain amyloid at the time of sur-

gery may be at greater risk for adverse postoperative neuro-

cognitive outcomes. For example, low Ab1e42 in the CSF and

plasma (suggestive of higher concentrations of brain amyloid)

has been associated with increased risk for postoperative

delirium13 and cognitive decline,14 respectively.

With the increasing availability of PET tracers for Ab, in-
vestigators have been able to test hypotheses about Alz-

heimer’s disease-specific neurobiological mediators of

postoperative cognitive decline in large cohorts. The results of

the current analysis do not support an association between

surgery or GA and increased deposition of Ab. These findings

are largely consistent with recently published results from the

Atherosclerosis Risk in Communities study, which showed that

exposure to surgical hospitalisation within the prior two de-

cades was not associated with elevated concentrations of PET-

defined brain Ab in a group of 300 non-demented older adults.15

An important contribution of the current study was the use

of a multimodal imaging approach to provide insight about the
relative contributions of surgery/GA to changes in discrete

neurobiological pathways associatedwith cognitive decline and

dementia. Although past surgery/GA was not associated with

cortical Ab or cerebral metabolism, the association between

surgery/GA and lower cortical thickness in brain regions

vulnerable to Alzheimer’s disease16 is supportive of the notion

that exposure to surgery/GA may promote regional neurode-

generative processes that occur independent of amyloidogenic

processes or metabolic disruption. Taken as a whole, these

findings suggest that surgery and anaesthetic exposure may

cause neuronal damage in a process that is independent of

brain Ab deposition, but observable via CSF in the days imme-

diately after surgery and measurable via MRI many years later.
Theoretical outlook

Whilst studies suggest that there may be a modest association

between surgery/anaesthesia and neurodegenerative brain

changes, acute or long-term cognitive decline, or dementia

risk, the biological pathways connecting these events have yet

to be fully elucidated. The results of the current study suggest

important directions of future research, but also need to be

interpreted in the context of the current understanding of the

timeline of amyloid deposition.

First, amyloid deposition is an early event in the develop-

ment of Alzheimer’s disease, with a requirement for subse-

quent tau deposition for disease progression. It is now clear

that amyloid alone is poorly correlated with neuro-

degeneration and cognitive loss, whilst tau accumulation and

spreading are. In this regard, it should be recalled that several

clinical studies now have shown large increases in CSF tau in

the days after surgery, and it is conceivable that this reflects

alterations in tau accumulation or spreading in the brain. Thus,

information on tau deposition, using currently available tau

PET tracers, may be more informative than amyloid. Finally,

patients in this study were at least 70 yr old at the time of their

PET scan and the prevalence of abnormal PiB was >50%, so it is

conceivable that any alteration in amyloid accumulation tra-

jectory as a result of surgery and anaesthesia decades earlier

may no longer be apparent as amyloidosis tends to plateau.

Second, there are many other mechanisms for cognitive

changes after surgery that need investigation. Human CSF

studies, such as those described previously, and animal

models17 18 strongly suggest a role for inflammatory signalling. It

is hypothesised that damage-associated molecular patterns

distributed throughout the body as a result of surgery-induced

tissue injury act as peripheral inflammatory triggers, which

can, through neural or humoral routes, propagate a neuro-

inflammatory response. Indeed, increased pro-inflammatory

signalling has been shown to occur after surgery in animal and

human studies.17e20 These inflammatory mediators have

enhanced access to the CNS in the older adult because of both

age and any ongoing pathologies. Moreover, these same in-

dividuals may have impaired ability to resolve inflammation;

these pathways are currently an area of intense interest. A

central role for inflammation is further emphasised by reports

showing that hospitalisation alone, especially for acute in-

fections and critical illness (both potent inflammatory triggers),

is consistently associated with subsequent dementia risk and

neurodegenerative changes.21e24 If immunepathways define the

link between surgery and adverse neurocognitive outcomes,

then individual differences in the immunogenic response to

tissue injury and anaesthesia exposure may be an important

determinant of postoperative neurocognitive outcomes.
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Finally, there may be a smaller subset of individuals who

have particularly poor long-term neuropsychiatric outcomes

who are masked in group-level analyses. Stated differently,

some brains may be particularly vulnerable to acute stressors,

including peripheral immune challenges, such as that which

comes with tissue injury or exposure to GA. As an example,

age-related immunological changes (i.e. immunosenescence)

and the deposition of proteinaceous aggregates, such as Ab,
may prime or sensitise microglia, the brain’s resident immune

cells, so that they respond abnormally in the context of

stressors, such as surgery or anaesthesia exposure.25,26 Sen-

sitised microglia can propagate a prolonged and potentially

harmful neuroinflammatory response that may promote

neurodegeneration through tau-mediated or alternative

pathways with little to no effect on amyloid processing.

Consistent with this notion, human and non-human studies

have shown a reliable link between neuroinflammation and

tau deposition.27,28 Thus, a seminal challenge is to identify

specific biomarkers of the vulnerable or sensitised brain. Such

biomarkers will be important in future studies to determine

whether the association between surgery/GA and neuro-

degeneration/cognitive decline is stronger in individuals with

brain vulnerabilities because of age, genetics, or pre-existing

morbidities. They will also allow us to appropriately risk

stratify, and to inform, our older patients.

Understanding the mechanisms of postoperative delirium

and longer-term cognitive changes and dementia is critically

important for the growing number of older adults undergoing

surgery. This study provides mechanistic insights using an

epidemiologic approach and demonstrates the value of this

type of study design. It is our hope that integrating details of

surgical hospitalisations with novel biomarkers, brain imag-

ing, and long-term cognitive and dementia assessments in

this and other cohorts will provide important information to

develop and optimise strategies to preserve brain health after

surgery.
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Advances in precision anaesthesia may be found by testing our
resistance to change
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anaesthesia
Anaesthetic depth changes spontaneously over the course of

an anaesthetic for pharmacological and physiological reasons.

Traditional methods for determining the efficacy of anaes-

thetic agents in individuals rely on population statistics,

which limits progress towards precision anaesthesia for each

individual. The laboratories of Proekt and Kelz have begun to

quantify this variability in anaesthesia in mice, both at the

level of the individual mouse1,2, and also regarding differ-

ences between specific anaesthetic agents.2 In a study from

their groups published by Wasilczuk and colleagues2 in this

issue of British Journal of Anaesthesia, three volatile anaesthetics

(isoflurane, sevoflurane, and halothane) were quantitatively

assessed with regard to stability over time of the loss of

righting reflex, a surrogatemeasure of loss of consciousness in

rodents.3 Steady-state concentrations at the minimum alve-

olar concentration dose for each agent were administered, and

the ability to right was determined at 3-min intervals in each
mouse over 2 h. Although the responses of the population of

mice resulted in a calculable half maximal effective concen-

tration (EC50) for each anaesthetic, the response dynamics of

each individual mouse were highly variable. Over the 2-h

measurement period, some mice exhibited the righting re-

flex on amajority of trials, while other mice failed to right on a

majority of trials. Themajority of themice, however, exhibited

seemingly random fluctuations between responsiveness and

unresponsiveness during anaesthetic administration. The

authors quantified this as a resistance to state transitions (Rst)

using models of stochastic processes (Fig. 1).

Interestingly, different volatile agents exhibited differing

degrees of Rst. Halothane produced the most stable behav-

ioural responses during anaesthesia (highest Rst), whereas

sevoflurane, and more so isoflurane, produced lower re-

sistances (i.e. higher fluctuations between response and no-

response trials). Wasilczuk and colleagues2 argue that phar-

macokinetic factors could not have played a role since animals

were held at fixed inhaled concentrations for more than 2 h

before behavioural measures commenced. Thirty minutes
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