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EditordWe write with an update regarding our recent article

in the British Journal of Anaesthesia1 describing a deep-learning

model for intraoperative prediction of postoperative death.

While performing additional work with the retrospective

dataset we had used to train and test the described model,

we discovered that many deceased patients had not had

their records updated to reflect their death. We believe that

all (or nearly all) the deaths reported in our previous work

were true deaths (which we confirmed via manual chart

review on a random subset of 50 patients). In the updated

dataset, 2296 of 96 968 patients (2.4%) died within 30 days

after surgery, including 1355 previously unlabelled deaths.

We repeated the model training, hyperparameter tuning,

andmodel testing steps as described.1 During hyperparameter

tuning, our multipath convolutional neural network model

performed better using 45-min epochs of intraoperative time

series data than 60-min epochs. All the models, including our

multipath convolutional neural network model and the com-

parison models, performed better in the updated dataset than

in the original dataset. Area under the receiver operating

characteristic curve and area under the precision-recall curve

are shown in Table 1. As we described, an uninformative

model will have area under the precision-recall curve equal to

the incidence of the target, which was 0.024 in this population.

The improvement in performance with the updated dataset

was more marked for area under the precision-recall curve

than for area under the receiver operating characteristic curve.

As was true in our initial publication, the confidence intervals
Table 1 Performance of multipath convolutional neural network mo
time series, random forest (RF), support vector machine (SVM), and l
and convolution neural network (CNN) methods of handling time-s
characteristic curve; AUPRC, area under precision-recall curve; CI, c

Model Published results

AUROC (95% CI) AUPRC (95% C

MPCNN-LSTM 0.867 (0.835e0.899) 0.095 (0.085e0
MPCNN-CNN 0.855 (0.822e0.887) 0.089 (0.077e0
DNN 0.825 (0.790e0.856) 0.078 (0.068e0
RF 0.848 (0.815e0.882) 0.078 (0.067e0
SVM 0.836 (0.802e0.870) 0.072 (0.062e0
LR 0.837 (0.803e0.871) 0.085 (0.074e0
for the various models overlapped substantially for both per-

formance metrics.

We also repeated the model calibration process using the

histogram binning technique.1 The observed incidence of mor-

tality increased from 0.4% to 62% as the predicted probability of

mortality increased, as shown in Fig. 1. The data points remain

close to the diagonal, representing good calibration. The

observed mortality in the highest-risk bin was much greater

using the updated dataset (62%) than using the original dataset

(18%), consistent with the model’s overall better performance.

The model was more likely to predict that patients would die if

they had poor functional status or higher ASA physical status

score; underwent emergency or cardiac surgery; or had coro-

nary artery disease, congestive heart failure, deep venous

thrombosis, diabetes mellitus, pulmonary hypertension, or

chronic obstructive pulmonary disease. If the model predicted

mortality, the prediction was more likely to be a true positive if

the patient had poorer functional capacity or higher ASA

physical status score, underwent emergency surgery, or had no

history of hypertension or diabetes mellitus. If the model pre-

dicted survival, the prediction was more likely to be a false

negative if the patient was older or male; had poorer functional

capacity; underwent thoracic or vascular surgery; or had a car-

diac comorbidity, chronic kidney disease, cancer, or anaemia.

In summary, the identification of additional patient deaths

led to improved model performance by multiple metrics. The

improved performance may be attributed partly to the more

accurate labels for death in the updated dataset and partly to
del (MPCNN) compared with deep neural network (DNN) without
ogistic regression (LR). Both the long short-term memory (LSTM)
eries data are presented. AUROC, area under receiver operating
onfidence interval

Updated results

I) AUROC (95% CI) AUPRC (95% CI)

.109) 0.910 (0.897e0.924) 0.325 (0.280e0.372)

.100) 0.907 (0.894e0.920) 0.294 (0.251e0.339)

.088) 0.917 (0.905e0.930) 0.342 (0.296e0.389)

.088) 0.923 (0.911e0.935) 0.409 (0.360e0.460)

.081) 0.913 (0.900e0.926) 0.314 (0.271e0.359)

.096) 0.916 (0.904e0.929) 0.323 (0.279e0.368)
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Fig. 1. Observed incidence of mortality vs calibrated predicted probability of mortality amongst patients in the test set (n¼19 394). Predicted

probabilities have been calibrated by applying the histogram binning technique in the validation set.
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the increased incidence of death in the updated dataset. Our

novel deep-learning model performed similarly to several

comparison models, as indicated by the overlapping confi-

dence intervals for area under the receiver operating charac-

teristic curve and area under the precision-recall curve. The

similarity in performance among the various models is qual-

itatively unchanged from the originally published results. It is

easy for data quality issues to arise, particularly when large

volumes of data are used or when datasets created for other

reasons are repurposed for research use. Although the issue

that we found did not lead to patient harm, similar issues in

other clinical decision support situations may cause clinicians

to take inappropriate actions that do lead to patient harm.

Vigilance regarding data quality is a key step in machine

learning, and this process does not stop once amodel has been

trained. Models intended for use in the clinical space must be

continuously re-evaluated and updated. In our case, reusing a

dataset for multiple analyses exposed a systematic error in

outcome labels. A key takeaway from our experience is that

incomplete labelling of the target variable can impair the
performance of prediction models, even when robust analytic

methods are applied.
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