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a b s t r a c t

Background: The Emergency Surgery Score (ESS) is an accurate mortality risk calculator for emergency
general surgery (EGS). We sought to assess whether ESS can accurately predict 30-day morbidity,
mortality, and requirement for postoperative Intensive Care Unit (ICU) care in patients with missing data
variables.
Methods: All EGS patients with one or more missing ESS variables in the 2007e2015 ACS-NSQIP database
were included. ESS was calculated assuming that a missing variable is normal (i.e. no additional ESS
points). The correlation between ESS and morbidity, mortality, and postoperative ICU level of care was
assessed using the c-statistics methodology.
Results: Out of a total of 4,456,809 patients, 359,849 were EGS, and of those 256,278 (71.2%) patients had
at least one ESS variable missing. ESS correlated extremely well with mortality (c-statistic ¼ 0.94) and
postoperative requirement of ICU care (c-statistic ¼ 0.91) and well with morbidity (c-statistic ¼ 0.77).
Conclusion: ESS performs well in predicting outcomes in EGS patients even when one or more data
elements are missing and remains a useful bedside tool for counseling EGS patients and for bench-
marking the quality of EGS care.

© 2020 Elsevier Inc. All rights reserved.
Introduction

The burden of emergency general surgery (EGS) has been
steadily increasing over the years, with EGS now accounting for
7e11% of all hospital admissions in the United States.1e5 Similarly,
the healthcare costs associated with EGS are increasing and are
expected to continue to rise in the years to come.6e8 When
compared to elective general surgery, EGS is associated with a
significantly higher risk of postoperative morbidity and mortal-
ity.9e13 The heterogenous nature of EGS patient population has
made prediction of the outcome of this patient population difficult
and benchmarking of the quality of their surgical care
challenging.3,4,14

Our research team recently developed and validated a novel
vision of Trauma, Emergency
eneral Hospital and Harvard
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.M.A. Kaafarani).
score called the Emergency Surgery Score (ESS, previously ESAS) for
prediction of postoperative mortality.15 ESS is a point-based score,
ranging from 0 to 29, that derives from 3 demographic, 10 comor-
bidities and 9 laboratory data variables. Patients with missing data
were not included in the analysis for the derivation and validation
study.15 Since its inception, ESS has been retrospectively validated
as an accurate, reliable and stepwise predictor of mortality,
morbidity, infection and the need for intensive care in EGS
patients.15e19,40 In all previously mentioned studies higher ESS has
been correlated with worse EGS patient outcomes.15e19,40

One of the criticisms of ESS is the large number of variables
needed for its calculation, specifically when some of these variables
(e.g. laboratory variables) might not be known or readily available
preoperatively. In other words, the predictive accuracy of ESS in the
setting of missing data elements remains unknown. In this study,
we aimed to examine whether ESS can accurately predict post-
operative morbidity, mortality, and need for postoperative Inten-
sive Care Unit (ICU) level of care in patients with missing data
points, if all missing variables are assumed to be normal (i.e. the
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Table 1
Emergency general surgery procedures performed in the patients included in our
analysis.

Procedure Number of patients (%)

Laparoscopic appendectomy 119,210 (46.5%)
Open appendectomy 17,225 (6.7%)
Laparoscopic cholecystectomy 20,087 (7.8%)
Open cholecystectomy 2,091 (0.8%)
Colectomy 25,347 (9.9%)
Hernia repair 15,700 (6.1%)
Small bowel resection 10,216 (4.0%)
Lysis of adhesions 7,450 (2.9%)
Drainage of abscess/hematoma/fluid collections 6,550 (2.5%)
Gastrointestinal tract perforation 4,562 (1.8%)
Exploratory laparotomy 4,535 (1.8%)
Debridement of soft tissues 2,797 (1.1%)
Volvulus/Internal hernia 1,308 (0.5%)
Breast surgery 839 (0.3%)
Miscellaneous 18,687 (7.3%)
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default value; no additional ESS points).

Material and methods

To assess the predictive value of ESS in EGS patients with
missing data, we used the 2007e2015 American College of Sur-
geons National Surgical Quality Improvement Program (ACS-
NSQIP). The ACS-NSQIP is a well-validated national database that
includes more than 400 hospitals. It collects de-identified infor-
mation for patients undergoing surgical procedures (except trans-
plant and trauma procedures), capturing preoperative,
intraoperative and 30-days postoperative data.20e22 Definitions of
the variables are standardized and distributed to all participating
hospitals.23

Patient population

EGS was defined using the ACS-NSQIP variables “SURGSPEC”
and “EMERGENCY”. ACS-NSQIP defines emergency operation as a
case performed within a short interval of time between patient
diagnosis or the onset of related preoperative symptomatology,
otherwise the patient’s well-being and outcomes are potentially
threatened by unnecessary delay and the patient’s status could
deteriorate unpredictably or rapidly. Cases coded as emergency
and performed by a general surgeon were included in the
analysis.

Calculating ESS

Patients that did not have any missing data for ESS calculation
were excluded from the analysis. Statistical algorithms were
created to calculate ESS score for each patient using the de-
mographic data, comorbidities and laboratory values captured in
the ACS-NSQIP database. Demographic and comorbidity data were
dichotomized, while preoperative laboratory values were classi-
fied as low, normal or high based on the cutoffs used in ESS.
Variables with missing data were assumed to have the default
value; i.e. they were assigned the value that did not increase the
final ESS value.

Defining 30-day postoperative morbidity and mortality

The definition of 30-day postoperative morbidity included the
presence of one or more of the postoperative complications docu-
mented in ACS-NSQIP. These included deep venous thrombosis,
pulmonary embolism, superficial, deep, and organ/space surgical
site infections, wound dehiscence, pneumonia, unplanned intuba-
tion, progressive renal insufficiency, acute renal failure, urinary
tract infection, cerebrovascular accident (stroke), cardiac arrest
requiring cardiopulmonary resuscitation, myocardial infarction,
bleeding necessitating postoperative blood transfusions, sepsis,
septic shock, ventilator required for >48 h, coma >24 h, peripheral
nerve injury and graft/prosthesis/flap failure. The ACS-NSQIP vari-
able “DOPERTOD”was used to identify patients that died in the 30-
days period following the procedure.

Defining need for postoperative ICU level of care

The definition of postoperative need for ICU level of care was
based on Kongkaewpaisan et al. and included presence of any of the
following: 30-day mortality, unplanned intubation, postoperative
ventilator requirement >48 h, cardiac arrest requiring cardiopul-
monary resuscitation, septic shock, and coma >24 h.19 This defini-
tion was derived from a panel of 6 board-certified surgical critical
care experts that reviewed all the postoperative complication
included in ACS-NSQIP.
ESS versus 30-day morbidity, mortality, and postoperative ICU level
of care

We assessed the ability of ESS to accurately predict 30-day
morbidity, mortality, and postoperative requirement for ICU level
of care in patients undergoing an EGS procedure. The receiver
operative characteristic curve was computed and the c-statistic
[area under the curve (AUROC)] was determined. C-statistic rep-
resents the probability that a randomly chosen subject with the
studied outcome receives a higher score than a randomly chosen
subject without the studied outcome (30-day complications or
mortality).24 Multivariable regression models were constructed to
assess which of the variables included in ESS calculation are inde-
pendent predictors of morbidity and mortality in this subset of
patients with missing variables.
Sensitivity analyses

As a sensitivity analysis, we first conducted the same analysis for
the patients missing a maximum of 4 ESS variables and subse-
quently for the patients that had a minimum of 5 ESS variables
missing. We decided to choose 4 variables as the cut-off for this
analysis, since the vast majority of EGS patients included in ACS-
NSQIP were missing up to 4 variables. To quantify the impact of
missing variables on AUROC, we then repeated the same analysis in
the ACS-NSQIP subset of patients with no missing variables
assuming that the 5 most common missing variables were indeed
not available, simultaneously (i.e. the 5 most common variables
turned into missing for all these patients).
Statistical analyses

The variables are presented using frequencies and percentages.
All statistical analysis was performed by using the Stata v15.1
(StataCorp 2017. Stata Statistical Software: Release 15. College Sta-
tion, TX: StataCorp LLC).
Ethical oversight

The institutional review board (IRB) at our institution waived
permission as this is a deidentified national database.



Table 2
Preoperative characteristics of patients with missing data.

Variables Points Number of patients (%)

Demographics
Age > 60 years 2 67,252 (26.2%)
White race 1 171,742 (67.0%)
Transfer status
Outside emergency department 1 10,909 (4.3%)
Acute care hospital inpatient facility 1 8,271 (3.2%)
Comorbidities
Ascites 1 3,888 (1.5%)
BMI < 20 kg/m2 1 28,907 (11.3%)
Disseminated cancer 3 3,811 (1.5%)
Dyspnea 1 10,591 (4.1%)
Functional dependence 1 12,786 (5.0%)
History of COPD 1 8,680 (3.4%)
Hypertension 1 70,684 (27.6%)
Steroid use 1 7,357 (2.8%)
Ventilator requirement within 48 h preoperatively 3 4,378 (1.7%)
Weight loss > 10% in the preceding 6 months 1 3,271 (1.3%)
Laboratory values
Albumin <3.0 U/L 1 16,593 (6.5%)
Alkaline phosphatase > 125 U/L 1 18,115 (7.1%)
Blood urea nitrogen > 40 mg/dL 1 9,281 (3.6%)
Creatinine > 1.2 mg/dL 2 30,204 (11.8%)
International normalized ratio > 1.5 1 5,283 (2.1%)
Platelets < 150 � 103/mL 1 16,193 (6.3%)
SGOT > 40 U/L 1 23,336 (9.1%)
Sodium > 145 mmol/L 1 2,380 (0.9%)
WBC 103/mL
<4.5 1 6,413 (2.5%)
>15 and � 25 1 64,884 (25.3%)
>25 2 5,482 (2.1%)
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Results

Out of a total of 4,456,809 patients, 359,849 underwent an EGS,
and of those 256,278 (71.2%) patients had at least one missing data
point for the calculation of ESS, thus meeting our inclusion criteria.
The most common procedures performed in the patients included
in our analysis are summarized in Table 1. The 5 variables that were
most often missing were preoperative INR (192,140 patients), pre-
operative albumin (97,153 patients), preoperative SGOT (73,268
Fig. 1. Number of patients in
patients), preoperative ALP (66,590 patients) and race (50,782 pa-
tients). The range of number of missing variables was 1e12, with
91% of patients missing 1e4 variables. The mean age of the popu-
lation was 47 years, 48% were males and 67% were white (Table 2).
The vast majority (98%) of patients had an ESS less than 10 and only
21 patients had a score from 19 to 22 (Fig.1). No patients had an ESS
higher than 22. Briefly, higher ESS was associated with worse
clinical outcomes in EGS patients with missing at least one data
element used in its calculation.
each ESS score group.



Fig. 2. The ESS score versus mortality.

Fig. 3. Receiver operative characteristic (ROC) curves for the Emergency Surgery Score (ESS) versus 30-day postoperative mortality.

L. Naar et al. / The American Journal of Surgery 220 (2020) 1613e16221616
ESS vs. Mortality

The overall mortality was 2.9%. Fig. 2 shows the association of
ESS with mortality in this subset of patients with missing data.
Mortality rates steadily and gradually increased with higher ESS
and reached 100% in patients with an ESS higher than 20. For
example, ESS of 1, 10, 12 and 22 correlated with mortality rates of
0.1%, 30%, 46% and 100%, respectively. The c-statistic for the
prediction of postoperative mortality was 0.94 (Fig. 3).
ESS vs. Morbidity

Table 3 shows the incidence of specific complications included
in our study definition. Fig. 4 shows the association between ESS
and morbidity. In summary, morbidity rates increased in a step-
wise fashion as ESS increased from 1 to 12, with a plateau reached
in patients with scores higher than 12. For example, ESS of 1, 10, 12
and 22 were associated with morbidity rates of 7%, 73%, 81% and
100%, respectively. The c-statistic for the prediction of



Table 3
Postoperative complication rates.

Postoperative complications Number of patients (%)

Deep venous thrombosis 1,869 (0.7%)
Pulmonary embolism 876 (0.3%)
Superficial surgical site infections 7,067 (2.8%)
Deep surgical site infections 2,201 (0.9%)
Organ/space surgical site infections 7,005 (2.7%)
Wound dehiscence 1,794 (0.7%)
Pneumonia 6,297 (2.5%)
Unplanned intubation 4,282 (1.7%)
Progressive renal insufficiency 1,043 (0.4%)
Acute renal failure 4,219 (1.7%)
Urinary tract infection 3,522 (1.4%)
Cerebrovascular accident (stroke) 512 (0.2%)
Cardiac arrest requiring cardiopulmonary resuscitation 1,537 (0.6%)
Myocardial infarction 1,187 (0.5%)
Bleeding necessitating postoperative blood transfusions 9,910 (3.9%)
Sepsis 10,406 (4.1%)
Septic shock 7,226 (2.8%)
Ventilator required for >48 h 9,611 (3.8%)
Coma >24 h 196 (0.2%)
Peripheral nerve injury 13 (0.01%)
Graft/prosthesis/flap failure 20 (0.01%)

Fig. 4. The ESS score versus morbidity.
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postoperative morbidity was 0.77 (Fig. 5).

ESS vs. postoperative need for ICU level of care

Fig. 6 shows the association between ESS and postoperative
requirement of ICU level of care. Briefly, rates of postoperative
required ICU level of care increased gradually as ESS increased
with a plateau reached at scores �13. Interestingly, out of the
almost 2,000 patients that had an ESS�13, 1,762 patients (88.2%)
had a postoperative event that required ICU level of care. The c-
statistic for the prediction of ICU required level of care was 0.91
(Fig. 7).
Multivariable analyses

Tables 4 and 5 summarize the multivariable regression models
constructed for mortality and morbidity. In summary, all 22 ESS
variables independently predicted mortality, and 21 out of the 22
ESS variables independently predicted morbidity in the subset of
EGS patients with missing variables.

Sensitivity analysis

The vast majority of patients included in ACS-NSQIP (91%)
undergoing EGS had 1-4 missing ESS variables. Therefore, we



Fig. 5. Receiver operative characteristic (ROC) curves for the Emergency Surgery Score (ESS) versus 30-day postoperative morbidity.

Fig. 6. The ESS score versus need for postoperative ICU level of care.
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initially plotted the AUROC curves for patients missing 1e4 vari-
ables (n ¼ 232,576) and the c-statistics were nearly unchanged at
0.94, 0.77, and 0.90 for mortality, morbidity, and postoperative
requirement for ICU level of care respectively (Fig. 8). Subse-
quently, we plotted the AUROC curves for patients missing at least
5 variables (n ¼ 23,702) and the c-statistics were 0.93, 0.70, and
0.88 for mortality, morbidity, and postoperative requirement for
ICU level of care, respectively.

In the subset of patients that had no missing data (n ¼ 103,571
patients), the 5 most common missing variables (INR, albumin,
SGOT, ALP and race) were all considered to be missing simulta-
neously from all patients (i.e. their value was assumed to be
normal; the null value). ESS still correlated very well with mor-
tality (c-statistic ¼ 0.86), morbidity (c-statistic ¼ 0.78), and need
for ICU level of care (c-statistic ¼ 0.85), in accordance with its
original derivation and validation studies.15,19

Discussion

In this study, we demonstrate that ESS can still accurately



Fig. 7. Receiver operative characteristic (ROC) curves for the Emergency Surgery Score (ESS) versus postoperative requirement for ICU level of care.

Table 4
Multivariable regression model for mortality.

Mortality Odds Ratio p-value 95% Confidence Intervals

Age >60 years 4.39 <0.001 4.09e4.70
White 1.17 <0.001 1.10e1.24
Transfer from outside emergency department 1.51 <0.001 1.36e1.68
Transfer from an acute care hospital inpatient facility 1.26 <0.001 1.15e1.39
Ascites 2.35 <0.001 2.11e2.61
BMI <20 kg/m2 1.69 <0.001 1.57e1.82
Disseminated cancer 3.97 <0.001 3.59e4.40
Dyspnea 1.53 <0.001 1.42e1.65
Functional dependence 2.51 <0.001 2.35e2.68
History of COPD 1.76 <0.001 1.63e1.91
Hypertension 1.38 <0.001 1.30e1.47
Steroid use 1.59 <0.001 1.44e1.74
Ventilator requirement within 48 h preoperatively 4.08 <0.001 3.73e4.46
Weight loss >10% in the preceding 6 months 2.16 <0.001 1.92e2.43
Albumin <3.0 U/L 2.15 <0.001 2.01e2.29
Alkaline phosphatase >125 U/L 1.42 <0.001 1.32e1.53
Blood urea nitrogen >40 mg/dL 1.72 <0.001 1.59e1.86
Creatinine >1.2 mg/dL 2.57 <0.001 2.41e2.75
International normalized ratio >1.5 2.68 <0.001 2.46e2.92
Platelets <150 � 103/mL 1.51 <0.001 1.41e1.63
SGOT >40 U/L 1.45 <0.001 1.34e1.56
Sodium >145 mmol/L 1.87 <0.001 1.63e2.14
WBC <4.5 103/mL 1.96 <0.001 1.76e2.18
WBC >15 and � 25,103/mL 1.15 <0.001 1.07e1.23
WBC >25,103/mL 1.78 <0.001 1.60e1.98
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predict postoperative morbidity, mortality, and requirement for
ICU level of care in EGS patients with missing variables, if all
missing data points are replaced with the null value. In other
words, when a real-life patient does not have all the data elements
needed to calculate ESS, as a result of bedside clinical judgment,
limited resources or simply the urgency of the clinical situation,
assuming that these missing data points are null is safe and does
not negatively impact the accuracy of ESS. The c-statistics for
morbidity and mortality documented in this analysis were even
higher than the original derivation and validation study of ESS (c-
statistic of 0.78 and 0.86 for morbidity and mortality, respectively),
likely due to the higher number of patients included.15,16

Furthermore, the multivariable regression models constructed
confirmed that ESS’s predictive value is not based on a few select
variables driving the association with morbidity and mortality, but
all of them.

The shared surgical decision-making model requires that both
the patients and the surgeons have a reasonable understanding
and judgment of the potential postoperative risks and alterna-
tives. In the literature, the existing risk scoring systems
commonly focus on certain procedures or elective surgery.25,26

Such systems (e.g. American Society of Anesthesiologists, ACS



Table 5
Multivariable regression model for morbidity.

Morbidity Odds Ratio p-value 95% Confidence Intervals

Age >60 years 1.86 <0.001 1.81e1.91
White 0.86 <0.001 0.84e0.88
Transfer from outside emergency department 1.52 <0.001 1.45e1.60
Transfer from an acute care hospital inpatient facility 1.76 <0.001 1.67e1.87
Ascites 1.68 <0.001 1.55e1.82
BMI <20 kg/m2 1.03 0.071 1.00e1.07
Disseminated cancer 2.08 <0.001 1.93e2.24
Dyspnea 1.44 <0.001 1.37e1.51
Functional dependence 2.01 <0.001 1.92e2.10
History of COPD 1.70 <0.001 1.61e1.79
Hypertension 1.45 <0.001 1.41e1.49
Steroid use 1.76 <0.001 1.66e1.86
Ventilator requirement within 48 h preoperatively 4.44 <0.001 4.03e4.89
Weight loss >10% in the preceding 6 months 1.91 <0.001 1.76e2.08
Albumin <3.0 U/L 2.70 <0.001 2.59e2.81
Alkaline phosphatase >125 U/L 1.29 <0.001 1.24e1.35
Blood urea nitrogen >40 mg/dL 2.21 <0.001 2.09e2.33
Creatinine >1.2 mg/dL 1.96 <0.001 1.90e2.03
International normalized ratio >1.5 1.94 <0.001 1.80e2.08
Platelets <150 � 103/mL 1.17 <0.001 1.12e1.23
SGOT >40 U/L 1.04 0.038 1.01e1.09
Sodium >145 mmol/L 1.55 <0.001 1.40e1.73
WBC <4.5 103/mL 1.93 <0.001 1.81e2.05
WBC >15 and � 25,103/mL 1.41 <0.001 1.38e1.45
WBC >25,103/mL 2.91 <0.001 2.72e3.11

Fig. 8. Receiver operative characteristic (ROC) curves for the Emergency Surgery Score (ESS) versus 30-day postoperative mortality, morbidity, and postoperative requirement for
ICU level of care in patients with 1e4 missing variables.
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colorectal surgery risk calculator, APACHE, P-POSSUM, SORT and
the Surgical Risk Scale) have been shown to predict morbidity
and mortality in select groups of hospitalized patients but most
fail to account for the disease acuity at presentation, a major
factor that affects outcome in EGS patients.27e30 Specifically,
patients undergoing an emergency procedure often have an
altered disease pathophysiology that drives the increase in
postoperative morbidity and mortality, when compared to
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patients undergoing an elective procedure.9e13 ESS’s focus on
emergency surgery is still its major strength and what makes it
stand out from all other risk calculators: it is derived from and
for EGS patients.

The ACS-NSQIP Surgical Risk Calculator has contradictory results
in patients undergoing different surgical procedures, with Golden
et al. showing that its performance (c-statistic) in predicting post-
operative morbidity and mortality in the acute care surgery setting
is reasonable but falls short of ESS performance.31e36 As impor-
tantly, the ACS-NSQIP Surgical Risk Calculator fails to account for
the different impact of different risk factors on outcome in the
elective vs. emergent setting.37

The Centers for Medicare and Medicaid Services are taking
steps towards “outcome-based funding”.38 As such, deriving ac-
curate risk-prediction tools specific for EGS, such as ESS, is crucial
for acute care surgeons across the country. Otherwise, if the care
of EGS is lumped with the elective surgery practice, we risk
penalizing clinically and financially the surgeons that take care of
the highest risk patients, specifically acute care surgeons. This can
subsequently provide a perverse incentive for some to avoid the
care of these patients who need care the most, by encouraging
cherry-picking and transfer of the higher-risk patients to other
hospitals. Our data provides additional strong evidence of the
usefulness of ESS in risk modeling and benchmarking the quality
of care of the EGS patient. Similarly, recent efforts using artificial
intelligence and machine learning techniques, such as the “Pre-
dictive OpTimal Trees in Emergency Surgery Risk” (POTTER)
calculator, are promising in providing even more advanced tools
for risk prediction in EGS.39

Our study has a few limitations. First, it is a retrospective anal-
ysis of a prospectively collected national database. Second, the
definition of EGS was based on the variables coded in ACS-NSQIP
that are subject to documentation error and differ from the
American Association for the Surgery of Trauma (AAST) definition
of emergency surgery. Third, preoperative data collected and re-
ported by ACS-NSQIP do not cover all potentially residual con-
founders that may affect clinical outcomes.

Conclusions

Our study suggests that ESS performs well in predicting
morbidity, mortality, and need for postoperative requirement of
ICU level of care in EGS patients with missing data elements, and
thus maintains its value as a bedside tool for counseling EGS pa-
tients and families, as well as for benchmarking quality of care.
Assuming the missing data elements are null (thus adding no
extra points to the ESS calculation) is safe and does not affect the
accuracy of ESS in predicting the outcome of the EGS patient.
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