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a b s t r a c t

Background: Using the American College of Surgeons National Surgical Quality Improvement Program
(NSQIP) complication status of patients who underwent an operation at the University of Colorado
Hospital, we developed a machine learning algorithm for identifying patients with one or more com-
plications using data from the electronic health record (EHR).
Methods: We used an elastic-net model to estimate regression coefficients and carry out variable se-
lection. International classification of disease codes (ICD-9), common procedural terminology (CPT)
codes, medications, and CPT-specific complication event rate were included as predictors.
Results: Of 6840 patients, 922 (13.5%) had at least one of the 18 complications tracked by NSQIP. The
model achieved 88% specificity, 83% sensitivity, 97% negative predictive value, 52% positive predictive
value, and an area under the curve of 0.93.
Conclusions: Using machine learning on EHR postoperative data linked to NSQIP outcomes data, a model
with 163 predictors from the EHR identified complications well at our institution.

© 2019 Elsevier Inc. All rights reserved.
Introduction

Assessment of quality of surgical care and monitoring of patient
postoperative complications is an important concept in current
health care delivery. Surveillance of postoperative complications
has been traditionally conducted through clinical registries such as
the American College of Surgeons (ACS) National Surgical Quality
Improvement Program (NSQIP), which began in 2005 with the goal
of identifying and preventing surgical complications. The currently-
available NSQIP data provide high quality outcomes data on 18
different complications for more than 6.6 million patients under-
going surgery in over 720 hospitals in the United States and
internationally. At participating centers, trained surgical clinical
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reviewers collect preoperative and operative characteristics and
30-day postoperative complications on a representative sample of
patients undergoing major surgeries. Thirty-day postoperative
outcomes are determined through chart reviews and by patient and
family contact after the index operation. Although the NSQIP data
are considered to be of high quality, the data collection methods
greatly limit the number of patients who can be assessed (~15% of
those patients undergoing surgery at most large hospitals) because
the process is time-consuming and costly, and participating hos-
pitals must pay to participate.

There is a large literature regarding the use of statistical
models applied to the electronic health record (EHR) to
identify surgical complications: surgical site infections,1e4 urinary
tract infections,5e15 sepsis,16 bleeding,17,18 and any type of
complication.19e21 Most work on the identification of postoperative
complications using EHR data has used structured data for the
identification of specific types of complications, but because of the
chosen statistical models for these analyses, the authors only
explored a small number of explanatory variables.1,2,22,23 Other
work has included the addition of natural language processing
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(NLP) of text records in the EHR.5,7,10,19,21 Overall morbidity sur-
veillance has been a major goal of the NSQIP, and it is a good
measure of overall quality of care across hospitals.24,25 Further-
more, because each of the 18 complications tracked by the NSQIP
occur infrequently, it is difficult to build models for each compli-
cation separately, and therefore, a single overall model has poten-
tial to achieve higher positive predictive value.

In this study, we used structured data from the EHR and ma-
chine learning to identify surgical patients who experienced one or
more of the 18 ACS NSQIP postoperative complications: bleeding,
superficial surgical site infection (SSI), deep incisional SSI, organ
space SSI, wound disruption, sepsis, septic shock, pneumonia, un-
planned intubation, ventilator dependence greater than 48 h after
surgery, urinary tract infection (UTI), deep vein thrombosis (DVT)/
thrombophlebitis requiring treatment, pulmonary embolism, car-
diac arrest requiring cardiopulmonary resuscitation, myocardial
infarction, acute renal failure, progressive renal insufficiency, and
stroke. This is a novel application of high-dimensional machine
learning to identify postoperative complications using EHR data.
The model developed could be used for electronic postoperative
complication surveillance to supplement manual chart review.

Material and methods

Data

In the present study, we used the 6840 patients who underwent
surgery at the University of Colorado Hospital (UCH) between July
1, 2013 and November 1, 2016, whose records were abstracted for
inclusion in the ACS NSQIP. These patients’ EHR data were obtained
and linked by our institution’s data repository team, Health Data
Compass. The EHR data included demographic characteristics, In-
ternational Classification of Disease versions nine and ten (ICD-9/
10) codes, Current Procedural Terminology (CPT) codes, and
medication codes and names. ICD-10 codes reported for patients
who underwent treatment after October 1, 2016, were back-coded
to ICD-9 codes. We coded ICD-9 and CPT independent variables as
positive only if the codes were observed between 0 and 30 days
after initial operation. We coded medications as positive only if
they were observed between 3 and 30 days after the initial oper-
ation to avoid coding prophylacticly-delivered medications as in-
dicators of postoperative complications. Surgical complication
status, i.e. presence or absence of the 18 ACS NSQIP complications,
came from the UCH ACS NSQIP database. Informed consent was not
required for this study. This studywas approved by our institutional
review board.

Statistical methods

We designed our analysis to follow the recommendations of the
Transparent Reporting of a multivariable prediction model for In-
dividual Prognosis or Diagnosis (TRIPOD) statement.26 The dataset
was temporally split into training and test datasets. Using a non-
random technique (i.e., using a temporal split rather than resam-
pling techniques, such as bootstrap or cross-validation) to divide
the dataset is recommended by TRIPOD. The prevalence of com-
plications did not change considerably over time (Table 1), there-
fore the temporal split allowed us to test whether the model fit to
the training set was valid on a future held-out sample.

The training data consisted of operations performed from 2013
to 2015 (N¼ 5194; patients with no complication¼ 4484 [86.3%],
patients with �1 complication¼ 710 [13.7%]) and the test set
consisted of operations performed in 2016 (N¼ 1646; patients with
no complication¼ 1434 [87.1%), patients with �1 complica-
tion¼ 212 [12.9%]). We formulated a comprehensive model
consisting of all ICD-9 codes, CPT codes, and medications that were
observed in at least five patients and had a bivariable association
with one or more complications of p� 0.1. In addition, we included
the CPT-specific overall complication rate, defined as the rate of one
or more complications experienced by ACS NSQIP patients for each
particular surgical procedure calculated from the national ACS
NSQIP dataset of more than 6.6 million patients. A binomial
generalized linear model with an elastic-net penalty was used to
conduct supervised learning on the ACS NSQIP outcomes data, to
estimate coefficients and to carry out variable selection. The elastic-
net penalty uses a combination of the least absolute shrinkage and
selection operator (lasso) and ridge penalties, therefore some co-
efficients were permitted to be equal to zero (as in the lasso) and
correlated covariates were reweighted appropriately (as in the
ridge).27 Penalized regression was used primarily because the
number of covariates outnumbered the number of individuals who
had a complication in this dataset. Furthermore, elastic-net regu-
larization reduces the chance of overfitting to the training data and
performs variable selection in a continuous manner by allowing
some coefficients to be equal to zero (as opposed to discarding
variables based on p-value, like stepwise selection). Ten-fold cross-
validation was performed to determine the optimal value for the
lasso penalty (i.e., lambda) using the glmnet package28 in R (R
Foundation for Statistical Computing, Vienna, Austria). In other
words, the training datawere divided into ten equally sized subsets,
models were fit to 9/10 of the data and tested on the 1/10 held out,
and this was repeated ten times for each of the ten subsets. The
lambda value that minimized the test set misclassification error
from this procedure was chosen. The elastic-net tuning parameter
(i.e., alpha) was set at 0.5. We estimated the predicted probabilities
of one or more complications in the test set using the fitted model
and performed classification using the Youden’s J threshold29

estimated in the training dataset. Models were compared with
respect to sensitivity, specificity, area under the curve (AUC), ac-
curacy, negative predictive value (NPV), positive predictive value
(PPV), false negatives and false positives when classifying one or
more complications in the test data. We also evaluated the cali-
bration and discrimination graphically for the final model. Youden’s
J and all other performance statistics were estimated using the
pROC package30 in R.

Results

Of the 6840 patients who underwent operations at UCH be-
tween 2013 and 2016 and who were entered into the UCH ACS
NSQIP database, the majority were women (56.2%), white (72.8%),
and a little more than half underwent either an orthopedic surgery
(26.2%) or a general surgery (24.4%) procedure (Table 1). Patients
who had any complications tended to be older (58.6 years vs. 52.7
years, p< 0.0001). Patients undergoing vascular surgery (33.2%,
p< 0.0001) or neurosurgical (17.2%, p¼ 0.005) operations had
higher rates of complications while patients undergoing otolar-
yngologic (4.9%, p< 0.0001) or orthopedic surgery (10.6,
p< 0.0001) operations had lower rates than patients undergoing
other surgical specialty procedures. The overall complication rate
for 2014 was slightly higher than all other years (14.7% in 2014, vs.
14.3% in 2013, 12.2% in 2015, and 12.9% in 2016, p¼ 0.04). There
were no significant differences in overall complication rate by race/
ethnicity or gender (Table 1).

The most common complications in this patient population
were bleeding (6.8% of 6840 patients), UTI (2%), superficial SSI
(1.6%), pneumonia (1.4%), sepsis (1.3%), DVT/thrombophlebitis
(1.1%), and organ space SSI (1.0%; Table 2). All other complications
occurred in less than 1% of patients (Table 2).

Of the 838 explanatory variables included in the comprehensive



Table 1
Selected Characteristics of University of Colorado Hospital National Surgical Quality Improvement Program sample by Any Complication Status, July 1, 2013 to November 1,
2016.

All Patients Patients with Any Complications Patients with No Complication P valuea

N (%) N (%) N (%)

Characteristics 6840 922 (13.5) 5918 (86.5)
Age, years, mean (SD) 53.5 (16.4) 58.6 (15.0) 52.7 (16.4) < 0.0001
Gender
Female 3843 (56.2) 527 (13.7) 3316 (86.3) 0.54
Male 2997 (43.8) 395 (13.2) 2602 (86.8)
Race/Ethnicity
White, not of Hispanic origin 4981 (72.8) 690 (13.9) 4291 (86.2) 0.14
Hispanic origin 801 (11.7) 94 (11.7) 707 (88.3) 0.14
Black, not of Hispanic origin 490 (7.2) 72 (14.7) 418 (85.3) 0.41
Asian or Pacific Islander 143 (2.1) 14 (9.8) 129 (90.2) 0.22
American Indian or Alaska native 20 (0.3) 1 (5.0) 19 (95.0) 0.51
Null/unknown 405 (5.9) 51 (12.6) 354 (87.4) 0.65
Primary surgeon specialty
Orthopedic surgery 1795 (26.2) 191 (10.6) 1604 (89.4) < 0.0001
General surgery 1666 (24.4) 239 (14.4) 1427 (85.7) 0.23
Gynecologic surgery 664 (9.7) 96 (14.5) 568 (85.5) 0.44
Urology 662 (9.7) 95 (14.3) 567 (85.7) 0.47
Neurosurgery 640 (9.4) 110 (17.2) 560 (82.8) 0.005
Otolaryngology 586 (8.6) 29 (4.9) 557 (95.1) < 0.0001
Thoracic surgery 345 (5.0) 56 (16.2) 289 (83.8) 0.12
Vascular surgery 250 (3.7) 83 (33.2) 167 (66.8) < 0.0001
Plastic surgery 232 (3.4) 23 (9.9) 209 (90.1) 0.12
Year of operation
2013 984 (14.4) 141 (14.3) 843 (85.7) 0.39
2014 2136 (31.2) 315 (14.7) 1821 (85.3) 0.04
2015 2.074 (30.3) 254 (12.2) 1820 (87.8) 0.05
2016 1646 (24.1) 212 (12.9) 1434 (87.1) 0.43

Values are n (row percent) unless otherwise specified. Abbreviations: SD, standard deviation. aFisher’s exact or t-test. For multiple categories, p-value indicates comparison to
all other categories. P-value in bold if< 0.05.

Table 2
Frequency and Percent of each of the 18 National Surgical Quality
Improvement Program (NSQIP) complications in the University of Col-
orado Hospital NSQIP sample (n¼ 6840), July 1, 2013 to November 1,
2016.

Complication N (%)

Bleeding 462 (6.8)
Urinary tract infection 134 (2.0)
Superficial SSI 106 (1.6)
Pneumonia 97 (1.4)
Sepsis 86 (1.3)
DVT/thrombophlebitis 77 (1.1)
Organ space SSI 66 (1.0)
Unplanned intubation 55 (0.8)
Septic shock 45 (0.7)
Deep incisional SSI 40 (0.6)
Ventilator >48 h 38 (0.6)
Wound disruption 37 (0.5)
Pulmonary embolism 35 (0.5)
Cardiac arrest requiring CPR 19 (0.3)
Acute renal failure 18 (0.3)
Myocardial infarction 14 (0.2)
Stroke 14 (0.2)
Progressive renal insufficiency 13 (0.2)

Abbreviations: CPR, cardiopulmonary resuscitation; DVT, deep vein
thrombosis; SSI, surgical site infection.
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model, 163 had non-zero coefficients: 60 ICD-9 codes, 63 CPTcodes,
39 medications, and the CPT-specific complication event rate. All
variables were dichotomous, except for CPT-specific complication
event rate, which was continuous. The relationship between CPT-
specific complication event rate and the probability of any
complication was approximately linear when visually inspected
using a cubic smoothing spline (Fig. s1). The selected variables and
their coefficient values are provided in Supplementary Table 1.
Table 3 summarizes any complication status for the binary in-
dicators of any of the 60 ICD-9 codes, any of the 63 CPT codes, and
any of the 39medications. The presence of any of the selected ICD-9
codes (19.7% vs. 7.9%, p< 0.0001), CPT codes (19.4% vs. 1.8%,
p< 0.0001), or medications (33.1% vs. 3.7%, p< 0.0001) was highly
associated with higher rates of complications. In addition, the
median CPT-specific complication rate was much larger (22.7 vs.
5.9, p< 0.0001) for patients having a complication compared to
patients who did not have a complication.

Table 4 summarizes the classification performance of the model
fit to the training data and applied to the test data set. Confidence
intervals (CI) were estimated using 1000 bootstrap samples. The
AUC was 0.93, sensitivity 0.83 (95% bootstrap CI [0.79, 0.88]),
specificity 0.88 (0.87, 0.90), and accuracy 0.88 (0.86, 0.89). PPV was
0.52 (0.48, 0.56) and NPV was 0.97 (0.97, 0.98). In addition, we
examined models to test for temporal changes by using the first
two years as a training data set and the last two years separately as
test sets. The results were very similar (data not shown).

The discrimination plot of the observed and fitted values from
the test set displays the predicted probabilities from the model fit
to the test set by the observed values for any complication or no
complication (Fig. 1a). There was good discrimination, as the pre-
dicted probabilities were much higher for those with a complica-
tion than those without. The discrimination slope was 0.44 (i.e., the
difference in mean predicted probabilities between the two clas-
ses). The Hosmer-Lemeshow calibration plot of the observed and
fitted values from the test set displays the observed and expected
rates by deciles of predicted risk of any complications (Fig. 1b). The
model had good calibration since the expected rates were almost
identical to the observed rates, and a Pearson chi-square statistic
with eight degrees of freedom was not statistically significant
(p¼ 0.7).



Table 3
Electronic Health Record Predictors (Categorized by type) by National Surgical Quality Improvement Program Complication Status.

Variable Type All Patients Patients with Any Complication Patients with No Complication

N (%) N (%) N (%)

(n¼ 6840) (n¼ 922) (n¼ 5918)

At least one of the 60 ICD-9 codes
No 3596 (52.6) 283 (7.9) 3313 (92.1)
Yes 3244 (47.4) 639 (19.7) 2605 (80.3)

At least one of the 63 CPT codes
No 2306 (33.7) 41 (1.8) 2265 (98.2)
Yes 4534 (66.3) 881 (19.4) 3653 (80.6)

At least one of the 39 medications
No 4561 (66.7) 168 (3.7) 4393 (96.3)
Yes 2279 (33.3) 754 (33.1) 1525 (66.9)

CPT-specific Complication event rate, median (IQR) 7.0 (3.1e15.8) 22.7 (12.4e38.6) 5.9 (2.3e13.2)

Abbreviations: CPT, common procedural terminology; ICD, international classification of disease; IQR, interquartile range.
Fisher’s exact p-values for binary variables and Wilcoxon rank sum for CPT-specific complication event rate. All p values were <0.0001.

Table 4
Performance of the Model Fit to the Test Data Set using Youden’s J Statistic as the Decision Threshold.

Performance measure Performance Statistic (95% Bootstrap CI)

Training set years 2013e2015
Sample size 5194
Any complication rate (%) 710 (13.7)

Test set year 2016
Sample size 1646
Any complication rate (%) 121 (12.9)

Threshold 0.11
Specificitya 88 (87, 90)
Sensitivitya 83 (79, 88)
Accuracya 88 (86, 89)
NPVa 97 (97, 98)
PPVa 52 (48, 56)
False negatives 35 (25, 45)
False positives 165 (142, 190)
AUCa 93

Abbreviations: AUC, area under the curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value.
a Values multiplied by 100.
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Discussion

We developed a model for the surveillance of surgical patients
with one or more of the 18 ACS NSQIP postoperative complications
using patients’ EHR data and machine learning that correctly clas-
sified 83% of patients with a postoperative complication, 88% of
those who did not have a complication, 88% of the overall out-
comes, and achieved an area under the ROC curve of 0.93. This
model could be used to scale-up surveillance of postoperative
complications for all patients undergoing surgery at a medical
center beyond the small sample of patients assessed by the ACS
NSQIP protocol, without the need to hire additional dedicated staff
to do time consuming chart reviews and call backs to patients and
their families. Furthermore, implementation of this model at other
institutions would be relatively cheap. At least at our institution,
EHR data extraction is free, and the data analyst on this project
spent about 10 h cleaning and manipulating the data for analysis.
Creation of the variables is also EHR-platform independent; it
simply requires creation of dummy indicators for each variable
from a vector of codes. For a given patient, these variables can then
be multiplied by the coefficients (Supplementary Table 1) and
summed, then applying the logit transformation to this sum gives
the predicted probability of a complication.

At UCH, we use the ACS NSQIP data of approximately 2500 cases
annually to monitor 30-day postoperative mortality, overall
morbidity, readmission, and specific types of complications
(cardiac, pneumonia, unplanned intubation, ventilator depdend-
ence for greater than 48 h, VTE, renal failure, UTI, SSI, and sepsis)
across all non-cardiac and nontransplantation surgery, for indi-
vidual surgical specialties and selected specific types of operations.
Sample sizes are large enough to obtain reliable results for all of
surgery combined and selected large surgical specialties, but not for
lower volume specialties, individual providers’ outcomes, or for the
selected specific types of operations. An automated machine-
learning surveillance system using EHR data for all surgical oper-
ations would have annual sample sizes of nearly 30,000 operations
at UCH and >80,000 operations in the UCHealth system31, and
could potentially obtain reliable results for the lower volume sur-
gical specialties and for the specific types of operations. In addition,
we could also potentially obtain reliable results to support perfor-
mance measures for individual surgeons. Once machine-learning
models are developed for 30-day mortality and all of the individ-
ual types of complications (some of which we have already per-
formed22,23) we plan to use these automated EHR derived data in
conjunction with our ACS NSQIP data in our quality improvement
efforts.

The strength of the approach we have taken is that it utilizes
available structured data from the EHR for all UCH NSQIP patients,
unlike previous approaches that applied down-sampling of the
majority class (those who did not have a complication).1,19

Furthermore, we used a temporal split validation, which would
logically apply to the implementation of this algorithm, requiring



Fig. 1. a) Discrimination plot. Values on the x-axis are postoperative complication
status from the NSQIP test set and values on the y-axis are predicted probabilities from
the model fit to the test set. b) Hosmer-Lemeshow Calibration plot. Values on the x-
axis are deciles of predicted risk of any complication and values on the y-axis are rates
of complications for each decile. The two different lines are observed and expected
rates.
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identification of future complications in patients. Limitations of our
approach include: 1) The lack of claims data and the fact that some
patients live out of state and therefore might have missing data;
and 2) That we only used data from one hospital. In future studies,
we would ideally obtain claims data for each patient, include
additional hospitals, and we would attempt to extract additional
data from patients’ medical records using NLP, as has been done
successfully by several other groups.5,7,10,21

This model is likely only generalizable to hospitals with similar
outcome definitions (i.e., ACS NSQIP outcomes, not necessarily
complications defined by the National Healthcare Safety
Network, NHSN or Vizient/University HealthSystem Consortium).
However, the statistical methodology and validation approach are
sound and generalizable to individuals interested in developing
their own models using gold standard data (e.g., ACS NSQIP, VAS-
QIP, NHSN/Vizient) for the purpose of postoperative complication
surveillance.
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