
S
Accepted fo

From the D
France (P.Z.
Research in

Inquiries t
25 rue Mani

0002-9394/$
https://doi.or
Corneal Topography Raw Data Classification
Using a Convolutional Neural Network
PIERRE ZÉBOULON, GUILLAUME DEBELLEMANIÈRE, MAGALIE BOUVET, AND DAMIEN GATINEL
� PURPOSE: We investigated the efficiency of a convolu-
tional neural network applied to corneal topography raw
data to classify examinations of 3 categories: normal,
keratoconus (KC), and history of refractive surgery (RS).
� DESIGN: Retrospective machine-learning experimental
study.
� METHODS: A total of 3,000 Orbscan examinations
(1,000 of each class) of different patients of our institu-
tion were selected for model training and validation.
One hundred examinations of each class were randomly
assigned to the test set. For each examination, the raw nu-
merical data from ‘‘elevation against the anterior best fit
sphere (BFS),’’ ‘‘elevation against the posterior BFS’’
‘‘axial anterior curvature,’’ and ‘‘pachymetry’’ maps
were used. Each map was a square matrix of 2,500 values.
The 4 maps were stacked and used as if they were 4 chan-
nels of a single image.A convolutional neural network
was built and trained on the training set. Classification ac-
curacy and class wise sensitivity and specificity were
calculated for the validation set.
� RESULTS: Overall classification accuracy of the valida-
tion set (n [ 300) was 99.3% (98.3%-100%). Sensi-
tivity and specificity were, respectively, 100% and
100% for KC, 100% and 99% (94.9%-100%) for normal
examinations, and 98% (97.4%-100%) and 100% for RS
examinations.
� CONCLUSION: Using combined corneal topography
raw data with a convolutional neural network is an effec-
tive way to classify examinations and probably the most
thorough way to automatically analyze corneal topog-
raphy. It should be considered for other routine tasks
performed on corneal topography, such as refractive sur-
gery screening. (Am J Ophthalmol 2020;219:33–39.
� 2020 Elsevier Inc. All rights reserved.)

D
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networks (CNNs) is currently the state-of-the-
art technique for image recognition. It has been

used successfully in a wide range of applications, both
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outside of medicine and in various medical fields.1–3

Modern ophthalmology uses many image rendering tools
to analyze various ocular structures and is thus a good
candidate to benefit from deep learning. CNNs showed
good accuracy in several different ophthalmology tasks,
such as fundus photograph�based diagnosis for age-related
macular degeneration,4 diabetic retinopathy,5 or glaucoma.6

Moreover, optical coherence tomography�based diagnosis
of retinal conditions7,8 and image segmentation9–11 has
also been successfully achieved. Most of the research using
deep learning in ophthalmology currently focuses on
retinal diseases, probably because of the precedence of the
widespread use of medical imaging in retinal disease
compared with anterior segment disease.
Computerized corneal topography is probably one of the

oldest digital anterior segment examination tools12 and is
still considered the gold standard for many corneal diseases
(eg, keratoconus [KC]). Several screening and diagnostic
algorithms have been developed based on corneal parame-
ters engineered by humans.13–22 In contrast, CNNs
automatically generate relevant features from the data to
perform a required task and can sometimes outperform
algorithms based on human-derived features.
Corneal tomography presents the results as color maps of

the different corneal parameters. Although these maps are
not images of the eye per se, they are nonetheless presented
as color images, and it is only natural to try to harness the
power of CNNs for corneal tomography analysis. Two
studies23,24 applied such algorithms on corneal tomography
color maps to classify examinations into different diagno-
ses. Although these approaches showed good results, one
could argue that using color map images instead of the
actual raw numeric values constituting these maps might
lead to a loss of information. In addition, color map
rendering depends highly on the chosen color scale, which
can vary from one tool to another, or even from one patient
to the another. This issue might hamper the generaliz-
ability of algorithms trained on color maps. Raw topo-
graphical numeric data are usually square matrixes of
10,000 elements in which each number is then color coded
to render the color map. From a computer’s point of view,
this is similar to a gray-scale image and can therefore be fed
to a CNN. Color images are seen by computers as 3 ma-
trixes of the same size stacked together, each representing
a color channel (red, green, and blue). The color of each
pixel results from 3 numbers, 1 for each color channel.
Therefore, color channels represent different information
33LL RIGHTS RESERVED.
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of the same spatial location of an image. Similarly, the
different corneal tomography maps can also be seen as
different information of the same corneal locations. Clini-
cians routinely compare the same locations on each map to
make their diagnoses. For example, in a KC, the steepest
area is usually approximately in the vicinity of the thinnest
area and the highest elevation of both anterior and poste-
rior corneal surfaces.

Therefore, in this study, we investigated the possibility of
using numeric data matrixes instead of color maps to train a
CNN for a classification task. Specifically, we used 4 maps
that are frequently used in clinical practice, stacked
together as if they were 4 color channels of a single image
to classify examinations into 3 categories: normal, KC, and
history of refractive surgery (RS).
METHODS

� DATA AND PATIENTS: This experimental machine-
learning study was approved by the Institutional Review
Board at the Rothschild Foundation and followed the te-
nets of the Declaration of Helsinki. Informed consent
was obtained from all patients. Our Orbscan (Bausch &
Lomb, Bridgewater, NJ) database was exported using the
batch export functionality both as image files and the un-
derlying numeric data matrixes represented by each color
map. We selected 3,000 examinations in total, 1,000 per
class (normal, KC, history of RS). All 3,000 examinations
were obtained from different patients, and only 1 eye per
patient was selected. We balanced the examinations to
have exactly 500 left eyes and 500 right eyes in each class.
The selection process was as follows: consecutive examina-
tions were preselected by a resident and reviewed by a
corneal tomography expert with at least 5 years of experi-
ence in a corneal and RS department. The preselection
criteria for KC were: an anterior curvature map showing
1 of the classic KC patterns described by Rabinowitz
et al.25 associated with corneal thinning. The criteria for
RS examinations were an oblate anterior surface (flat in
its center), a prolate posterior surface (steep in its center),
central corneal thinning, and lower central curvature
values compared with the periphery (cases of myopic laser
surgery). Finally, normal examinations were preselected if
no corneal condition could be detected. If the case seemed
to match 1 of the 3 desired diagnoses, the patient’s elec-
tronic file was retrieved to confirm the diagnosis, and the
examination was excluded or included in the study dataset.
This process was iterated until the target number of 3,000
examinations that were evenly distributed was reached.
Bad quality examinations with many artefacts or too
many missing values were not included.

� DATA PREPROCESSING: The numeric data from 4
commonly used maps in clinical practice were selected
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for each examination: ‘‘elevation against the anterior best
fit sphere (BFS)’’; ‘‘elevation against the posterior BFS’’;
‘‘axial anterior curvature’’; and ‘‘pachymetry.’’ In an
attempt to mimic the human diagnostic process, we specif-
ically chose these 4 maps because they are the most
commonly used routinely in our institution. Furthermore,
because CNNs are great tools to detect patterns, we used
elevation relative to BFS maps because they tend to high-
light diagnosis specific patterns. Each map was a square ma-
trix of 100 3 100 numerical values. To account for the
numerous missing values in the periphery of the curvature
maps, all matrixes were cropped to their central 503 50 el-
ements. The 4 maps thus constituted a total of 43 2,500¼
10,000 numerical values. The four matrixes were stacked to
constitute a 3-dimensional matrix with dimensions of 503
503 4 elements (Figure 1). Each matrix was padded with 3
rows of zeros on each side to obtain a 56 3 56 3 4 matrix
and to match the network architecture. We randomly sepa-
rated the dataset in a training and a test set of 2,700 and 300
examinations, respectively, with a strict balance of class in
each set (900 examinations of each class in the training set
and 100 in the test set).We used 10-fold cross validation on
the training set to assess internal validity but not for hyper-
parameter selection. Missing values were replaced from all
maps from the training set by the mean value for each ma-
trix element, which was the simplest data replacement
strategy. Data from each type of map were scaled between
0 and 1 using data from all patients in the training set.
Missing value replacement and data scaling was performed
on the test set using the parameters acquired from the
training set. This process was performed in the exact
same way in each cross-validation set.

� MACHINE-LEARNINGMETHODOLOGY: We built a CNN
with an architecture inspired by the ResNet26 with fewer
hidden layers and 4 input channels. The complete architec-
ture is detailed in Figure 1 (also see Supplemental
Material). An Adam27 optimizer and the binary cross en-
tropy loss function were used. Initialization of the model’s
weights was performed as described by He et al.28 The
training set was trained during 15 epochs with a learning
rate of 0.0001 and a batch size of 2 (see Glossary in
Supplemental Material). Overall accuracy was used to
assess performance in both the training and validation
sets during learning. Training data augmentation was
performed as follows-for each epoch, all matrixes were fed
to the network both in their original orientation and flipped
horizontally. In addition, a random rotation within a �10-
to 10-degrees range was applied to the input matrix, chang-
ing the angle for each epoch. This augmentation process
helps increase accuracy and decrease the risk of overfitting.

� MEASUREMENTS: For each cross-validation set, we re-
ported the training and validation results of the epoch
yielding the highest validation set accuracy. Class wise
sensitivity and specificity of the test set were reported.
NOVEMBER 2020OPHTHALMOLOGY



FIGURE 1. Method used to create the input matrixes and of the architecture of the convolutional neural network used. Each matrix
was padded by three rows of zeros. Every convolution layer was followed by a batch normalization layer. Ant BFS[ anterior best fit
sphere matrix, Avg[ average; conv[Convolution; Fc[ fully connected; Pachy[ pachymetry matrix; Post BFS[ posteriori best
fit sphere matrix; pReLu [ leaky ReLu with a learnable parameter; ReLu [ rectified linear unit.
Bootstrapping was performed with 2,000 iterations on the
test set of 300 examinations to compute 95% confidence
intervals for each measurement.

For demographics purpose, KC examinations were sepa-
rated into 4 severity categories according to the mean kera-
tometry, using the cutoffs of the Amsler-Krumeich
VOL. 219 DEEP LEARNING WITH CORNEAL TOM
classification. The x2 test was used to compare the number
of examinations of these categories on the training and test
sets. A P value <.05 was considered significant.

� CLASSACTIVATIONMAPPING: We performed class acti-
vation mapping as described previously29 to visualize which
35OGRAPHY RAW NUMERICAL DATA



TABLE 1. Patients and Topography Main Characteristics

Steep Axis

Keratometry (D) (mean

6 SD)

Flat Axis Keratometry

(D) (mean 6 SD)

Astigmatism (D) (mean

6 SD)

Minimum Pachymetry

(mm) (mean 6 SD)

Patient Age (y) (mean

6 SD) Fraction of Males (%)

Normal

(n ¼ 1,000)

44.7 6 1.7 43.4 6 1.6 1.2 6 1.0 550.0 6 38.4 47.0 6 16.5 42.9%

Keratoconus

(n ¼ 1,000)

50.3 6 5.3 45.3 6 4.3 4.3 6 2.6 431.4 6 68.3 39.6 6 12.0 63.9%

RS (n ¼ 1,000) 40.2 6 2.1 39.3 6 2.1 0.9 6 0.6 453.7 6 74.9 46.4 6 12.6 39.3%

D ¼ diopter; RS ¼ history of refractive surgery.

TABLE 2. Keratoconus Severity Repartition in the Training
and Test Sets Based on Mean Keratometry

Mean Keratometry

Keratoconus examinations, D <48 48-53 53-55 >55

Training set (n ¼ 900) 543 232 46 79

Test set (n ¼ 100) 64 24 6 6

D ¼ diopter.
part of the input matrix was used to predict each class and
present graphic examples. The results are presented as a co-
lor heatmap in which hotter colors represent the matrix el-
ements that were the most useful to the model for making
the prediction.

� PROGRAMMING LANGUAGE AND LIBRARIES: All calcu-
lations, algorithms, and figures were done in Python 3.6.
PyTorch library was used to build and train the neural
network. Matplotlib library was used for plotting of class
activation maps.
RESULTS

PATIENTS’ AGE, SEX, AND MAIN TOPOGRAPHICAL CHARAC-

teristics are reported in Table 1.
Severity repartition of the KC examinations in the

training and test sets are shown in Table 2. KC severity dis-
tribution was comparable in both sets (P ¼ .99).

Overall accuracy for each cross-validation training and
validation set is shown in Table 3. Overall accuracy of
the test set (with its 95% confidence interval) was 99.3%
(98.3%-100%). (Learning curves are available in the
Supplemental Material).

Class-wise sensitivity and specificity with their 95% con-
fidence intervals are shown in Table 4 (receiver-operating
characteristics curves for each class are available in the
Supplemental Material). Only 2 examinations of the 300
test sets were misclassified, which were 2 RS examinations
that were classified as normal.

Class activation mapping (Figure 2) showed that the re-
gion used by the network to predict the KC class was the
region that combined the steepest curvature, the thinnest
point, and the highest elevations of the anterior and poste-
rior surfaces. For RS examinations, the network used the re-
gion that combined the flattest curvature, the thinnest
point, and the lowest and highest elevations of the anterior
and posterior surfaces, respectively.
36 AMERICAN JOURNAL OF
DISCUSSION

WE FOUND THAT A CNN USED ON THE COMBINED NUMERIC

data matrixes from 4 corneal tomography maps could accu-
rately classify examinations of 3 diagnoses: normal, KC,
and history of RS.
To our knowledge, only 2 other studies applied CNNs to

corneal tomography map classification. In both studies,
different technologies than Orbscan were used for data
acquisition. Because each tool had its own spatial resolu-
tion and coverage, it could affect the results and their
comparability to this work. In the first study,23 authors
used only curvature color maps and trained a model on a
3,000 examinations dataset, half of which were KC and
the other half normal corneas. The model reached an accu-
racy of 99.33% on the test set after 38 epochs.
In the second study,24 6 different color maps for each of

the 543 participants were used to train 6 different models
and combined the results of each model to classify exami-
nations between normal and KC. The resulting model
reached an accuracy of 99.1%.
When considering only KC and normal examinations,

our model reached a 100% accuracy after only 9 epochs.
Also, we used input matrixes with >10 times fewer ele-
ments (50 3 50 3 4 elements in our case compared with
1803 2403 3 and 2243 2243 3 elements, respectively).
We showed we could achieve a similar accuracy with an
additional third diagnostic class, smaller input matrixes,
and a smaller model architecture. This was mainly due to
NOVEMBER 2020OPHTHALMOLOGY



TABLE 3. Accuracy of the Training Set and Validation Set of Each Cross-Validation Set

Cross-Validation Set Number

1 2 3 4 5 6 7 8 9 10

Training set accuracy (n ¼ 2,430), % 98.8 99 98.8 99.2 99 99.4 99.2 99.2 98.5 99

Validation set accuracy (n ¼ 270), % 98.9 99.6 99.6 98.9 98.8 99.6 98.9 99.6 98.5 99.6

TABLE 4. Class Wise Results in the Validation Set With 95%
Confidence Intervals

Sensitivity Specificity

Keratoconus (n ¼ 100), % 100 (100-100) 100 (100-100)

Normal (n ¼ 100), % 100 (100-100) 99 (94.9-100)

History of refractive surgery

(n ¼ 100), %

98 (97.4-100) 100 (100-100)
the fact that we were able to use the numeric data matrixes
instead of color map images and combined them in a single
matrix. This approach had several advantages. First, it
required a much smaller computational cost and was
more efficient. Second, it is probably easier to generalize
to other topographs. We could probably use transfer
learning to retrain our algorithm on other numeric data
matrixes of topographs with a little number of examina-
tions. Variations in color scales in the different topographs
might make this process more complicated in the other
cited approaches. Finally, our model used spatial concor-
dance of features on each map as human experts would,
when analyzing an examination. In addition, using only
the central part of each map was at least as efficient as using
the whole map for this classification task.

We believe that using the numeric data matrixes instead
of the color maps derived from them was a more accurate
and natural approach. Color maps are simplified represen-
tations of the matrixes that necessarily imply a loss of
data and may be altered by the image compression process
if they are exported in a compressed format. Moreover,
resizing the image to fit the CNN architecture can alter
the original data. Therefore, when numeric matrixes are
available, they should be used instead of the color maps
to train CNN models.

The use of class activation mapping (Figure 2) helped to
understand how the network made its prediction. It showed
that our model classified KC and RS examinations by using
the same regions of the input matrix as a human would
have on the color maps. Because the 4 matrixes were com-
bined in 1 single input matrix, the class activation mapping
result was the same for each map and did not distinguish
which information from each map had been used by the
network. Nonetheless, the area of activation included the
VOL. 219 DEEP LEARNING WITH CORNEAL TOM
regions of interest from each map. For the normal class,
most of the input seemed to activate the network; this
probably occurred because there was no specific character-
istic of a normal examination.
Regarding the classification results of KC examinations,

we found 100% accuracy despite having 64% of KCs with a
mean keratometry of <48 diopters. This result suggested
that the algorithm was efficient even for mild stages of
the disease.
Many other algorithms have been developed to classify

tomography examinations.13–22 Most of them use human
defined or selected features. CNNs create features
automatically and are not biased by human assumptions,
which make them more likely to discover unknown
relationships in the data. Previous studies that described
algorithms to classify normal and KC examinations were
hardly comparable due to differences in methodology,
population, and sample size. Nonetheless, most models
were trained and tested on smaller samples, and reported
accuracies were between 80%14 and 100%.15

This study had several limitations. First, the matrixes
were cropped to their 503 50 central elements to account
for the limitation in coverage of the Placido of the Orbscan
and the resulting frequent missing values. This might
impair the model’s performance if the region of interest
(eg, the apex of a KC) is located outside the analyzed
zone. We did not exclude those patients, but we did not
specifically evaluate the classification performance in these
cases, either. It could be interesting to see if the model per-
forms as well in eccentric KC. In addition, of the relatively
small area analyzed, Orbscan is known to generate artefacts
of the posterior surface after RS. Nonetheless, the good per-
formance of our model suggested that combining the
numeric data of 4 different maps to the power of CNN
might be sufficient to overcome those limitations. Also,
the initial selection of cases was made by reading the tomo-
graphic maps. This could have induced a selection bias, and
harder or subtle cases might have been overlooked. Finally,
we did not evaluate the performance of the model on forme
fruste KC (FFKC). This kind of model could nonetheless be
a powerful tool for FFKC detection. Therefore, we plan to
retrain the model, with FFKC as an additional class, using
the pretrained model as it is now. We could probably
retrain the last layer only because most features must
have been learned from the current dataset. This would
dramatically improve training time.
37OGRAPHY RAW NUMERICAL DATA



FIGURE 2. Examples of examinations of each class with the corresponding class activation maps generated from the model. Left:
keratoconus; center: history of refractive surgery; right: normal; bottom row: class activation maps overlay. Hotter colors on the
activation maps means more activation.
In summary, we showed that analyzing combined corneal
tomography numeric data matrixes with a CNN was effec-
tive to classify examinations. We believe that it is the most
comprehensive way to automatically analyze corneal to-
mography, and that it should be extended to the diagnosis
and screening of other diseases and be used routinely in
clinical practice.
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