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Association of Cardiovascular Mortality and
Deep Learning-Funduscopic Atherosclerosis
Score derived from Retinal Fundus Images
JOOYOUNG CHANG, AHRYOUNG KO, SANG MIN PARK, SEULGGIE CHOI, KYUWOONG KIM,
SUNGMINKIM, JAEMOONYUN,UK KANG, ILHYUNGSHIN, JOOYOUNGSHIN, TAEHOONKO, JINHOLEE,

BAEK-LOK OH, AND KI HO PARK
� PURPOSE: The prediction of atherosclerosis using
retinal fundus images and deep learning has not been
shown possible. The purpose of this study was to develop
a deep learning model which predicted atherosclerosis by
using retinal fundus images and to verify its clinical impli-
cations by conducting a retrospective cohort analysis.
� DESIGN: Retrospective cohort study.
� METHODS: The database at the Health Promotion Cen-
ter of Seoul National University Hospital (HPC-SNUH)
was used. The deep learning model was trained using
15,408 images to predict carotid artery atherosclerosis,
which was named the deep-learning funduscopic athero-
sclerosis score (DL-FAS). A retrospective cohort was
constructed of participants 30-80 years old who had
completed elective health examinations at HPC-SNUH.
Using DL-FAS as the main exposure, participants were
followed for the primary outcome of death due to CVD
until Dec. 31, 2017.
� RESULTS: For predicting carotid artery atherosclerosis
among subjects, the model achieved an area under
receiver operating curve (AUROC) and area under the
precision-recall curve (AUPRC), accuracy, sensitivity,
specificity, positive and negative predictive values of
0.713, 0.569, 0.583, 0.891, 0.404, 0.465, and 0.865
respectively. The cohort consisted of 32,227 partici-
pants, 78 cardiovascular disease (CVD) deaths, and
7.6-year median follow-up visits. Those with DL-FAS
greater than 0.66 had an increased risk of CVD deaths
compared to those with DL-FAS <0.33 (hazard ratio:
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8.33; 95% confidence interval [CI], 3.16-24.7). Risk as-
sociation was significant among intermediate and high
Framingham risk score (FRS) subgroups. The DL-FAS
improved the concordance by 0.0266 (95% CI, 0.0043-
0.0489) over the FRS-only model. The relative inte-
grated discrimination index was 20.45% and net reclassi-
fication index was 29.5%.
� CONCLUSIONS: A deep learning model was developed
which could predict atherosclerosis from retinal fundus
images. The resulting DL-FAS was an independent pre-
dictor of CVD deaths when adjusted for FRS and added
predictive value over FRS. (Am J Ophthalmol
2020;217:121–130. � 2020 Elsevier Inc. All rights
reserved.)

C
ARDIOVASCULARDISEASE (CVD) IS THEMOSTCOM-

mon cause of death worldwide and accounts for
32% of all deaths.1 In 2015, CVD affected more

than 400 million patients and caused more than 17 million
deaths worldwide.2 Thus, the assessment of CVD risk and
the prevention thereof is of clinical importance.
Retinal fundus imaging contains valuable information

regarding vascular health,3–6 and with the emergence of
computer-assisted retinal imaging, various measurements
that use this modality have been shown to correlate with
the severity of heart failure,7 with certain stoke subtypes,8

and with hypertension.9

Recent developments in deep learning have revealed
that CVD risk factors such as age, sex, and smoking status
could be predicted by using retinal fundus images.10 How-
ever, the prediction of atherosclerosis, a subclinical
marker of CVD, using retinal fundus imaging and deep
learning has not been shown possible yet. Furthermore,
the clinical implications of prediction of cardiovascular-
related risk factors by retinal fundus imaging have not
been addressed in terms of reclassification of patients at
risk of CVD and time-to-event analysis. A formal analysis
of additional benefits to the risk stratification of patients
and time-to-event analysis can provide clinicians evi-
dence to consider retinal fundus imaging for assessing pa-
tients of borderline CVD-risk.
This study developed and validated a deep model which

used retinal fundus images to predict whether a patient has
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atherosclerosis. The predicted value was named the deep-
learning funduscopic atherosclerosis score (DL-FAS).
Furthermore, analysis determined whether DL-FAS added
value to the prediction of cardiovascular death relative to
that of the Framingham risk score (FRS), and a retrospec-
tive cohort of more than 30,000 patients was conducted for
incident cardiovascular deaths.
SUBJECTS AND METHODS

� STUDY POPULATION: Data of participants who had
completed medical examinations at the Health Promotion
Center of Seoul National University Hospital (HPC-
SNUH),11 between January 2005 and December 2016
and received a retinal fundus image examination, were
used for this study. HPC-SNUH offers elective medical
health examinations including a survey, physical examina-
tions, laboratory testing, and medical imaging. Participants
must subscribe to one of many medical examination pack-
ages available at HPC-SNUH and are not offered based on
any indication. Retinal fundus imaging is included in all
packages; however, carotid artery sonography is only
offered for more expensive packages. Participant data
were merged with the National Death Certificate database
to ascertain the death status and cause of death up to
December 31, 2017. Patients were anonymized before anal-
ysis was performed, and the need for patient consent was
waived by the institutional review board at SNUH (IRB:
H-1703-044-837).

The deep learning model was validated using a 2-phase
approach. First, during the training phase, participants
with retinal fundus examinations plus carotid artery sonog-
raphy were used to develop the deep model for prediction of
atherosclerosis (n ¼ 6,597). These patients were divided
into training, validation, and testing sets, where the testing
set patients were used to determine whether the model
accurately predicted atherosclerosis. The deep model
makes predictions for 1 eye image at a time, and the final
averaged score of both eyes was named the DL-FAS. Sec-
ond, during the cohort phase, those with only retinal
fundus examinations but without carotid artery sonography
(n ¼ 32,227) were used to validate whether the DL-FAS
could predict future cardiovascular deaths. The 2-phase
validation approach is essential, first, because of the ability
to predict atherosclerosis must be verified with cardiovas-
cular mortality studies to draw meaningful clinical implica-
tions and contribute to clinical decision making, and
second, a single-phase approach to directly predict cardio-
vascular death would ignore time-to-event analysis and
provide no meaningful insights about causation.

� CAROTID ARTERY ATHEROSCLEROSIS MEASUREMENT:

The carotid artery intima media thickness (CIMT) and ex-
istence of carotid artery plaque was used as the
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proxymarker for atherosclerosis. CIMTwas measured using
ultrasonography by averaging 3measurements made 10mm
proximal to the bifurcation.12 The far-wall intima media
thickness (IMT) was identified as the region between the
lumen-intima interface and the media-adventitia interface.
Those with CIMT measurements of 0.9 mm or more13 or
carotid artery plaque14 were considered to have atheroscle-
rosis. Although thresholds of higher than 0.9 mm are better
correlated to CVD outcomes,15 a conservative threshold of
0.9 mmwas used because atherosclerosis develops gradually
over time and retinal features may be present in earlier
stages of disease. Carotid artery plaque was defined as a
focal increase in thickness of 0.5 mm or 50% of the sur-
rounding CIMT value. Both the left and the right carotid
arteries were measured. The carotid artery findings were
based on the sonography reports written by board-trained
radiologists. For confirmation and data cleaning, all ultra-
sonographic images and corresponding reports were
reviewed by 4 board-trained family medicine physicians.

� ACQUISITION OF RETINAL FUNDUS IMAGES: A CR-2
model (Canon, Tokyo, Japan) digital nonmydriatic fundus
camera16 was used to obtain retinal fundus images. Patients’
pupils were not dilated, and 1 color fundus picture was
taken of each eye. The field of view included both the
disc and the macula and was limited to a 458 angle of view.

� DEEP LEARNING MODEL DEVELOPMENT AND VALIDA-
TION: Patients with both retinal fundus imaging and ca-
rotid artery sonography on the same health examination
were used to train and tune the deep model. The training,
validation, and testing sets were divided by patient level as
outlined in Supplemental Figure 2. A total of 15,408 im-
ages were used in the training process of the model. A total
of 5,296 patients were used for training, 647 patients were
used for tuning, and 654 patients were used for testing
(Supplemental Table 1). Each set had a similar proportion
of atherosclerosis-positive images (Supplemental Table 1).
Training a deep learning model was carried out in 3 basic

steps. First, the retinal fundus image was put into the deep
learning model, which produces a prediction score between
0 and 1. Second, the prediction score is compared to the
correct label of either atherosclerosis (1) or no atheroscle-
rosis (0), measured by carotid artery sonography. Third, the
model’s weights are adjusted to minimize its prediction
error.
The Xception model (Cornell University, Cornell, New

York)17 was used as the feature extractor followed by two
fully connected layers. To speed up training, transfer learning
was used with Keras software library (version 2.3.1; Burlin-
game, California), where the model weights are initialized
with pretrained weights learned from ImageNet (Stanford,
California).18 Image pre-processing such as random zoom
or horizontal flip were used to prevent over-fitting.
During validation, the deep-learning model produces a

prediction ranging between 0 and 1 for each eye, which
SEPTEMBER 2020OPHTHALMOLOGY



FIGURE 1. The performance metric curves and saliency map of deep-learning funduscopic atherosclerosis score for prediction of
atherosclerosis and Cox model fit statistics beyond Framingham risk score. (A) The ROC for prediction of atherosclerosis using
DL-FAS among the test set patients. (B) The PRC for prediction of atherosclerosis using DL-FAS among the test set patients.
(C) The time-dependent AUROC of FRS only and FRS plus DL-FAS Cox models among cohort patients calculated by Uno’s method
based on 50 perturbed samples. (D) Saliency map representation using guided backpropagation for contributions toward positive DL-
FAS. AUROC[ area under receiver operating curve; DL-FAS[ deep-learning funduscopic atherosclerosis score; FRS[ Framing-
ham risk score; PRC [ precision recall curve; ROC [ receiver operating curve.
results in 2 prediction values for each patient per visit. To
prevent duplicating patients, the DL-FAS was calculated
for each patient visit and defined as the average of predic-
tions for both eyes. The area under receiver operating curve
(AUROC) and area under the precision-recall curve
(AUPRC) were calculated. The accuracy, sensitivity, spec-
ificity, positive predictive value, and negative predictive
value were calculated using a threshold resulting in the
maximum F1 score. The F1 score is calculated as [23 (pre-
cision 3 recall)/(precision þ recall)]. We identified sa-
liency features using guided backpropagation
(Supplemental Figure 1).19,20

� COHORT CONSTRUCTION: A retrospective cohort study
was performed using patients 30-80 years old, with the in-
dex date set to their first medical health examination be-
tween 2005 and 2016. Participants who were used for
training the deep model were excluded in the cohort study.
Those with missing nonsurvey covariates were excluded.
These patients were referred to as the cohort set and
VOL. 217 DEEP LEARNING-FUNDUSCOPIC ATH
were mutually exclusive to the training, validation, and
test sets.
The primary exposure was the DL-FAS, determined by

using retinal fundus images taken on the day of enrollment.
Because the DL-FAS ranged between 0 and 1, the model
thresholds were chosen so that each score category had
an equal range, namely 0-0.33, 0.33-0.67, and 0.67-1.0.
For the stratified analysis, score categories were used result-
ing in an equal number of people per category (ie, terciles).
The primary endpoint of the study was cardiovascular

mortality, defined according to the International Classifi-
cation for Diseases, 10th revision, codes I00 to I99. Patients
were followed until December 31, 2017. The secondary
endpoint of the study was all-cause mortality.

� EXPOSURE AND COVARIATES: For adjustment of con-
ventional risk factors, FRS was calculated using age, sex,
high-density lipoprotein cholesterol, systolic blood pres-
sure, and current smoker status.21 For stratified analysis,
high-, intermediate-, and low-risk patients were defined
123EROSCLEROSIS SCORE AND CVD



FIGURE 2. Design of cohort caption.
as FRS >_20%, FRS 10%-19%, and FRS <10%,
respectively.

For additional adjustment, body mass index, alcohol
consumption, exercise frequency, diabetes, hypertension,
and dyslipidemia were considered. Diabetes was defined
as self-reported diabetes, self-reported diabetic medication
history, fasting blood glucose >126 mg/dL, or HbA1c >_

6.5%; hypertension as self-reported antihypertensive medi-
cation history; and dyslipidemia as low-density lipoprotein
>160 mg/dL or self-reported medication history. Missing
survey variables were considered a category of their own.

� STATISTICAL ANALYSIS: The discrimination, calibra-
tion, and reclassification of predicted atherosclerosis scores
over FRS risk levels was assessed for predicting cardiovascu-
lar deaths among cohort-phase patients. Logistic regression
was used to model cardiovascular deaths using, first, FRS
risk levels or, second, FRS risk levels plus DL-FAS. The
relative integrated discrimination improvement (IDI),22

category-free net reclassification improvement (NRI),22

and Hosmer-Lemeshow chi-squared test with 10 groups23

was performed by comparing the logits of these 2 models.
For a time-to-event analysis, a multivariate Cox regres-

sion model was used to estimate the hazard ratios (HR)
and 95% confidence intervals (CI). To show whether the
DL-FAS significantly added to the CVD mortality predic-
tion of FRS risk scores,21 the C-statistic estimates were
calculated for Cox regression models using FRS risk levels
versus FRS risk levels plus DL-FAS. The differences be-
tween these concordances were calculated to see whether
the addition of the DL-FAS significantly improved the
concordance estimate. Concordance estimates and differ-
ences between concordance estimates were calculated
using Uno’s method.24 All statistical analyses were
performed using SAS version 9.0 software (SAS Institute,
Cary, North Carolina).
124 AMERICAN JOURNAL OF
RESULTS

AMONG 751 TESTING SET PATIENT VISITS IN WHICH 276 PA-

tients tested positive for carotid artery atherosclerosis
(prevalence, 0.368), the model was able to predict the
sonographically confirmed carotid artery atherosclerosis
with an AUROC of 0.713 and an AUPRC of 0.569
(Figure 1A and B). The model achieved an F1 score of
0.611 at the optimal DL-FAS threshold of 0.368. The accu-
racy, sensitivity, specificity, positive predictive value, and
negative predictive value were 0.583, 0.891, 0.404, 0.465,
and 0.865, respectively, indicating a predictive model
driven by low specificity. Saliency maps positively identi-
fied the retinal vessels contributing to positive atheroscle-
rosis prediction as well as pathologic findings including
disc rim narrowing, increased cup-to-disc ratio, peripapil-
lary atrophy, and cotton wool spots (Figure 1D and
Supplemental Figure 1).
For the validation of the atherosclerosis score to predict

cardiovascular mortality, the deep model was used to pre-
dict the atherosclerosis of cohort set patients and conduct-
ed prediction analysis and a time-to-event analysis. The
cohort consisted of 32,227 patients (Figure 2) with varying
characteristics with respect to their DL-FAS (Table 1). Of
32,227 patients in the cohort, only 74 patients (0.23%) had
only 1 eye imaged, and 99.8% had images for both eyes.
The resulting DL-FAS variations were similar, 0.025 and
0.021, respectively. There were strong associations be-
tween the DL-FAS and age, sex, and FRS risk level. The
median follow-up for the study was 7.6 years, with 78 inci-
dent CVD deaths.
The prediction modeling was performed for cardiovascu-

lar mortality of a logistic model using only FRS risk levels
versus a model using FRS risk levels plus DL-FAS. The
IDI analysis showed that the model using FRS risk levels
plus DL-FAS had IDI of 0.0007 (P ¼ 0.008) and relative
SEPTEMBER 2020OPHTHALMOLOGY



TABLE 1. Characteristics of Cohort Participants 30-80 Years Old Whose Retinal Fundus Photographs Were Not Used for Training the
Deep Model

Total

DL-Funduscopic Atherosclerosis Score

0-0.33 0.33-0.67 0.67-1.0

Number of participants 32,227 13,057 18,310 860

Mean age, y (SD) 52.6 (10.6) 44.2 (7.0) 57.6 (8.3) 71.7 (6.3)

Males, % 49.5 44.8 52.6 57.0

Body mass index, %

<23 kg/m2 41.9 46.6 38.6 40.9

23-25 kg/m2 25.9 23.9 27.3 25.0

>_25 kg/m2 32.2 29.5 34.1 34.1

FRS risk level, %a

Low 58.9 82.5 44.1 15.0

Intermediate 26.3 14.8 34.2 32.4

High 14.8 2.6 21.8 52.6

Cigarette Smoking, %

Never 47.1 48.9 46.1 43.5

Past 20.3 15.8 23.1 29.0

Current 16.6 19.4 14.9 9.8

Missing 16.0 16.0 15.9 17.8

Alcohol Consumption, %

Nondrinker 41.3 41.8 40.4 51.6

Current drinker 37.4 35.4 39.2 29.5

Missing 21.3 22.8 20.3 18.8

Exercise frequency, %

Regular 31.6 35.9 28.7 27.6

None 39.2 35.0 42.4 36.4

Missing 29.2 29.1 29.0 36.0

Diabetes, %b

Yes 19.1 12.2 23.2 37.1

Hypertension, %c

Yes 17.3 6.1 23.7 49.7

Dyslipidemia, %d

Yes 31.8 33.0 30.8 33.8

DL ¼ deep learning; FRS ¼ Framingham risk score.
aCalculated using age, sex, high-density lipoprotein cholesterol, systolic blood pressure, and smoker.
bSelf-reported diabetes, self-reported diabetic medication history, concentrations of fasting blood glucose >126 mg/dL or HbA1c >_6.5%.
cSelf-reported history of antihypertensive medication.
dLow-density lipoprotein >160 mg/dL or self-reported history of the medication.
IDI of 20.45% relative to the model using FRS risk levels
alone. Category-free NRI was 29.5% (P ¼ 0.009).
Hosmer-Lemeshow chi-squared test results showed a P value
of 0.427 for the FRS model and P ¼ 0.609 for the FRS plus
DL-FAS model, indicating no evidence for poor fitting.

For the time-to-event analysis, the HR for each DL-FAS
score group was calculated for CVDmortality, adjusting for
FRS and other baseline risk factors (Table 2). Compared to
the lowest atherosclerosis score group, those with scores
0.33-0.67 and 0.67-1.00 had significantly higher risk of
CVD mortality (HR, 8.83; 95% CI, 1.41-6.15; and HR,
8.83; 95% CI, 3.16-24.7, respectively). This positive asso-
ciation showed a significant trend (P for trend <.001).
DL-FAS was associated with CVDmortality when adjusted
VOL. 217 DEEP LEARNING-FUNDUSCOPIC ATH
for all baseline covariates in their single covariate forms
(Supplemental Table 2). Among individual covariates in
the multivariate model, only age, systolic blood pressure,
and smoking status were significantly associated with
CVD mortality (Supplemental Table 2). The DL-FAS
was also associated with all-cause mortality
(Supplemental Table 3).
Because DL-FAS were highly correlated with FRS, age,

and sex, a stratified analysis was performed of subgroups
based on age, sex, and FRS levels (Table 3). For subgroups
of low, intermediate, and high risk, the highest tercile of
DL-FAS had significantly higher risk of CVD mortality
than the lowest tercile (HR, 4.76; 95%CI, 1.05-21.63;
HR, 3.14; 95% CI, 1.04-9.47; and HR, 5.11; 95% CI,
125EROSCLEROSIS SCORE AND CVD



TABLE 2. Risk of CVD Mortality According To Predicted Atherosclerosis Score Using a Multivariate Cox Regression Model

DL-Funduscopic Atherosclerosis Score Ranges

P Trend0-0.33 0.33-0.67 0.67-1

CVD mortality

Cases 10 59 9

Person-years, 103 118.7 123.2 4.0

Incidence rate, /103 person-years 0.08 0.48 2.25

aHR (95% CI)a 1 (ref.) 2.94 (1.41-6.15) 8.83 (3.16-24.7) <.001

aHR ¼ adjusted hazards ratio; CI ¼ confidence interval; CVD ¼ cardiovascular disease; DL ¼ deep learning.

Statistically significant values are given in bold.
aAdjusted for Framingham risk score 10-year CVD risk (including age, sex, high-density lipoprotein cholesterol, total cholesterol, systolic

blood pressure, smoker), body mass index, alcohol consumption, exercise frequency, diabetes, hypertension, and dyslipidemia.
1.94-13.5, respectively) with significant trend (P for trend:
.038, .032, and .001, respectively).

For subgroups of patients 30-49 years old, DL-FAS was
not significantly associated with CVD mortality (HR,
1.69; 95% CI, 0.39-7.25; HR, 0.34; 95% CI, 0.03-4.00,
respectively). Among those 50 years old or older, the high-
est and middle terciles had significantly higher risk of CVD
mortality than those in the lowest tercile (HR, 2.66; 95%
CI, 1.15-6.17; HR, 5.09; 95% CI, 2.25-11.6, respectively)
with significant trend (P for trend, <.001). Among both
male and female participants, the highest tercile of DL-
FAS was associated with a higher risk of CVD mortality
than those in the lowest tercile (HR, 3.03; 95% CI, 1.14-
8.09; HR, 9.61; 95% CI, 1.95-47.3, respectively).

The concordance estimates for the Cox regression model
fitted on FRS only had a concordance of 0.78 (95% CI,
0.73-0.82); the model fitted on FRS plus DL-FAS had a
concordance of 0.81 (95% CI, 0.76-0.85). Figure 1C shows
the concordance of both models over the follow-up period.
The improvement in concordance was 0.0266 with a P dif-
ference of .020 (Supplemental Table 4).
DISCUSSION

THE PURPOSE OF THIS STUDYWAS TO DEVELOP A MEASURE-

ment using retinal fundus images which could predict
atherosclerosis and stratify the cardiovascular risk of pa-
tients over conventional risk factors such as FRS, diabetes,
hypertension, dyslipidemia, and health habits. A deep
model was trained which predicted atherosclerosis with
moderate predictive performance, and the resulting DL-
FAS was significantly associated with an increased hazard
for CVD mortality among a cohort of otherwise healthy
participants after adjustment for FRS. Furthermore, the sig-
nificant risk association was evident in the stratified
analysis of intermediate-risk participants, and the addition
of the DL-FAS significantly improved the concordance es-
timate over the model using FRS only.
126 AMERICAN JOURNAL OF
Thiswork is novel in several points. First, the prediction of
atherosclerosis using retinal fundus images and deep learning
has not been done. Second, this work provides validation us-
ing not only a cross-sectional analysis but also a longitudinal
retrospective cohort for CVD mortality outcomes. Using a
cohort to verify newly developed deep-learning measure-
ments is uncommon. Third, this work shows that the DL-
FAS is an independent predictor of CVD mortality
compared to conventional risk estimates such as the FRS.
Some studies used deep learning to predict cardiovascular
risk factors such as age, sex, and blood pressure but did not
show the added diagnostic value of their models compared
with conventional risk-estimate models.10

� PREDICTIVE VALUE OF DL-FAS: Our results show not
only that retinal fundus images may be used to predict
the atherosclerosis of the carotid arteries but also that
this prediction may add to conventional risk-stratification
scores such as the Framingham risk score for longitudinal
outcomes of cardiovascular mortality. Previous meta-
analyses and cohort studies analyzed the added predictive
value of C-reactive protein,25 CIMT,26 computed tomogra-
phy coronary artery calcium score,27,28 and the ankle-
brachial index,29,30 beyond FRS. Improvement of C-statis-
tics above conventional risk factors and Framingham risk
score, determined by the difference between concordance
using conventional risk factors and concordance using con-
ventional risk factors plus the additional measurement,
were insignificant for CIMT (0.00-0.002),26,27 ankle-
brachial index (0.00-0.002),27,30 and C-reactive protein
(0.00),27 while improvements were mostly significant for
computed tomography coronary artery calcium score
(0.02-0.13).27,28 In our work, the improved concordance
estimate of DL-FAS for cardiovascular mortality was small
but significant (HR, 0.027; 95%CI, 0.004-0.049), and rela-
tive IDI and NRI measurements were also significant at
20.45% and 29.5%, respectively.
One important result of this study is that the DL-FAS

showed significant association even among intermediate-
SEPTEMBER 2020OPHTHALMOLOGY



TABLE 3. Risk of CVD Mortality by Predicted Atherosclerosis Score Stratified by FRS Risk and Age

DL-Funduscopic Atherosclerosis Score

P trendQ1 Q2 Q3

FRS low risk

Quantile limits 0.05, 0.25 0.25, 0.38 0.38, 0.8

Cases 3 5 7

Person-years, 103 61.1 47.9 35.3

Incidence rate, /103 person-years 0.05 0.10 0.20

aHR (95% CI)a 1 (ref.) 2.25 (0.51-9.96) 4.76 (1.05-21.6) .038

FRS intermediate risk

Quantile limits 0.12, 0.38 0.38, 0.5 0.5, 0.81

Cases 5 7 12

Person-years, 103 27.1 21.4 16.3

Incidence rate, /103 PY 0.18 0.33 0.74

aHR (95% CI)a 1 (ref.) 1.50 (0.46-4.84) 3.14 (1.04-9.47) .032

FRS high risk

Quantile limits 0.17-0.46 0.46-0.57 0.57-0.81

Cases 6 15 18

Person-years, 103 15.0 12.4 9.4

Incidence rate, /103 person-years 0.40 1.21 1.91

aHR (95% CI)a 1 (ref.) 3.09 (1.18-8.06) 5.11 (1.94-13.5) .001

Age 30-49 y

Quantile limits 0.05, 0.22 0.22, 0.3 0.3, 0.73

Cases 3 6 1

Person-years, 103 42.1 36.1 23.2

Incidence rate, /103 person-years 0.07 0.17 0.04

aHR (95% CI)a 1 (ref.) 1.69 (0.39-7.25) 0.34 (0.03-4.00) .5342

Age, 50 years or more

Quantile limits 0.13, 0.4 0.4, 0.51 0.51, 0.81

Cases, n 8 19 35

Person-years, 103 60.9 45.7 37.2

Incidence rate, /103 person-years 0.13 0.42 0.94

aHR (95% CI) a 1 (ref.) 2.66 (1.15-6.17) 5.09 (2.25-11.6) <.001

Males

Quantile limits 0.07, 0.32 0.32, 0.46 0.46, 0.81

Cases 7 10 37

Person-years, 103 48.7 40.5 32.9

Incidence rate, /103 person-years 0.14 0.25 1.12

aHR (95% CI) a 1 (ref.) 0.99 (0.36-2.75) 3.03 (1.14-8.09) .003

Females

Quantile limits 0.05, 0.29 0.29, 0.44 0.44, 0.81

Cases 2 5 17

Person-years, 103 51.3 40.7 31.7

Incidence rate, /103 person-years 0.04 0.12 0.54

aHR (95% CI)a 1 (ref.) 2.63 (0.49-14.0) 9.61 (1.95-47.3) .001

aHR ¼ adjusted hazards ratio; CI ¼ confidence interval; CVD ¼ cardiovascular disease; DL ¼ deep learning; FRS ¼ Framingham risk score;

Q ¼ quantile.

Statistically significant values are given in bold.
aAdjusted for Framingham risk score 10-year CVD risk (including age, sex, high-density lipoprotein cholesterol, total cholesterol, systolic

blood pressure, and smoker), body mass index, alcohol consumption, exercise frequency, diabetes, hypertension, and dyslipidemia.
risk patients. The risk stratification of such patients has
been an area of considerable research, as conventional
risk estimates may underestimate risk of patients with evi-
dence of asymptomatic preclinical atherosclerosis.31 The
VOL. 217 DEEP LEARNING-FUNDUSCOPIC ATH
American College of Cardiology Foundation/American
Heart Association32 and European Society of Cardiology33

guidelines recommend further investigation for intermedi-
ate- and moderate-risk patients to search for target organ
127EROSCLEROSIS SCORE AND CVD



damage including coronary artery calcium score, ankle-
brachial index, and atherosclerotic plaque detection by ca-
rotid artery scanning. Conducting a retinal fundus image
examination for all such patients may be premature at
this this stage, but the present results show the added
benefit of using the DL-FAS among intermediate risk pa-
tients. Because retinal fundus imaging is noninvasive
compared to blood testing, DL-FAS may find new possibil-
ities for use in stratifying intermediate risk patients.

� MECHANISMAND FEATURES: The mechanism by which
the deep-learning model predicts atherosclerosis is not
clear, but these authors believe that the deep model recog-
nized features of the retinal microvasculature to predict
atherosclerosis. Many studies have verified significant rela-
tionships between findings of retinal fundus images and
CVD. Retinal vascular pathology is associated with cere-
bral small-vessel disease.34 Arteriovenous nicking is associ-
ated with increased odds of cardiovascular mortality.35

Retinal vascular caliber is associated with greater risk of
death due to coronary heart disease.36 Retinal microvas-
cular hemorrhage, microaneurysms, soft exudates, and arte-
riovenous nicking are associated with an increased risk of
stroke.37 Tortuosity is associated with death due to
ischemic heart disease.38 These studies showed that the
retinal fundus images hold valuable information regarding
cardiovascular health, which the authors presume this
study was able to extract.

The saliency maps using guided backpropagation showed
that retinal vessels were making positive contributions to
the atherosclerosis prediction. Previous works have used
retinal fundus images to predict anemia20 or other cardio-
vascular risk factors,10 using deep learning and have pro-
vided similar saliency maps which identify vascular
anatomy. The present work suggests that certain changes
in the retinal vasculature may be biomarkers for atheroscle-
rosis. Furthermore, some saliency maps identified patho-
logic findings related to glaucoma, such as increased cup-
to-disc ratio, disc rim narrowing, peripapillary atrophy,
and cotton wool spots, which suggests the possible associa-
tion between glaucomatous and atherosclerotic changes
through overlapping mechanisms of hypertension.

� LIMITATIONS AND STRENGTHS: This study must be
interpreted considering the following limitations. First,
the database was constructed using single-center data and
consisted entirely of Korean nationals. The generalizability
of these results may be limited because CVD risk is depen-
dent on ethnicity.39 Further research is warranted of the
development of DL-FAS using multiethnic populations.
Second, although the threshold-independent metric of
DL-FAS for prediction of atherosclerosis was greater than
that in the baseline, the DL-FAS had low accuracy and
specificity at the designated threshold. At the current
threshold, the DL-FAS may not be fit for specific detection
of atherosclerosis. Third, the DL-FAS did not significantly
128 AMERICAN JOURNAL OF
increase the risk of cardiovascular death among those under
50 years old. Although this was most likely due to the small
number of cardiovascular deaths, the application of the DL-
FAS among younger age groups may not be appropriate.
Fourth, incident CVD, myocardial infarction, or stroke in-
formation was not available for the current study, and the
primary endpoint of the study was death due to CVDs.
Hence, such low event rates limit the interpretability of
event classification. These results may not accurately esti-
mate risk of incident sudden CVDs such as stroke, myocar-
dial infarction, or heart failure. Finally, the authors we not
have access to medical charts to verify the CVD mortality
outcomes in the death certificate database. Although by
law only medical professionals can issue death certificates,
the lack of a robust chart reviewmay cause misclassification
bias.
In this work, a classifier for atherosclerosis prediction was

trained and then used for a time-to-event Cox analysis, but
several alternative methods may improve the results. The
use of Cox directly as a loss function to train the deep
model or the incorporation of covariate factors as auxiliary
inputs may further improve the predictive value of the deep
model. Although these methods provide an opportunity for
improved performance, the purpose of the study was not to
produce the best model possible but, first, to predict and
screen atherosclerosis by using retinal fundus images by
deep learning and, second, to validate its clinical implica-
tions using analyses of risk stratification, association with
cardiovascular mortality, and improvement beyond FRS.
This purpose was achievable with a deep model using
retinal fundus images alone. However, technical optimiza-
tions for improvements in predictive power merits future
work.
The strengths of the present work include the cross-

sectional and longitudinal cohort study design, the analysis
of a novel measurement over conventional risk factors, and
the comparison of concordance estimates of the cohort
analysis. The DL-FAS was not only a good predictor of
atherosclerosis at one point in time but also associated
with incident cardiovascular deaths in the cohort analysis
of 245,900 person-years. The adjustment for multiple con-
ventional risk factors, namely, FRS, body mass index, dia-
betes, hypertension, dyslipidemia, and other health
habits, indicates the DL-FAS is an independent predictor,
even within the intermediate risk patient strata. Further-
more, the comparison of concordance estimates between
FRS-only and FRS-plus DL-FAS shows the added benefit
of adjusting for atherosclerosis score derived from retinal
fundus images.
CONCLUSIONS

THIS SINGLE-CENTER RETROSPECTIVE COHORT STUDY OF

Koreans showed that a deep-learning model could be
SEPTEMBER 2020OPHTHALMOLOGY



used to predict atherosclerosis, using retinal fundus images.
Furthermore, the study showed that the resulting DL-FAS
was associated with CVD mortality after adjustment of
VOL. 217 DEEP LEARNING-FUNDUSCOPIC ATH
conventional risk factors including FRS and increased
the C-statistic of the Cox model beyond FRS.
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