
S
Accepted fo

Viterbi Fa
Center and
Jolla, Califor

(Diagnost
Inquiries

Department
Jolla, Califor

0002-9394/$
https://doi.or
Gradient-Boosting Classifiers Combining Vessel
Density and Tissue Thickness Measurements for

Classifying Early to Moderate Glaucoma
CHRISTOPHER BOWD, AKRAM BELGHITH, JAMES A. PROUDFOOT, LINDA M. ZANGWILL,
MARK CHRISTOPHER, MICHAEL H. GOLDBAUM, HUIYUAN HOU, RAFAELLA C. PENTEADO,

SASAN MOGHIMI, AND ROBERT N. WEINREB
� PURPOSE: To compare gradient-boosting classifier
(GBC) analysis of optical coherence tomography angiog-
raphy (OCTA)-measured vessel density (VD) and OCT-
measured tissue thickness to standard OCTA VD and
OCT thickness parameters for classifying healthy eyes
and eyes with early to moderate glaucoma.
� DESIGN: Comparison of diagnostic tools.
� METHODS: A total of 180 healthy eyes and 193 glau-
comatous eyes with OCTA and OCT imaging of the mac-
ula and optic nerve head (ONH) were studied. Four
GBCs were evaluated that combined 1) all macula VD
and thickness measurements (Macula GBC), 2) all
ONH VD and thickness measurements (ONH GBC),
3) all VD measurements from the macula and ONH
(vessel density GBC), and 4) all thickness measurements
from the macula and ONH (thickness GBC). ROC curve
(AUROC) analyses compared the diagnostic accuracy of
GBCs to that of standard instrument-provided parame-
ters. A fifth GBC that combined all parameters (full
GBC) also was investigated.
� RESULTS: GBCs had better diagnostic accuracy than
standard OCTA and OCT parameters with AUROCs
ranging from 0.90 to 0.93 and 0.64 to 0.91, respectively.
The full GBC (AUROC[ 0.93) performed significantly
better than the ONHGBC (AUROC[ 0.91;P[ .036)
and the vessel density GBC (AUROC [ 0.90; P [
.010). All other GBCs performed similarly. The mean
relative influence of each parameter included in the full
GBC identified a combination of macular thickness and
ONH VD measurements as the greatest contributors.
� CONCLUSIONS: GBCs that combine OCTA and OCT
macula and ONH measurements can improve diagnostic
accuracy for glaucoma detection compared to most but
not all instrument provided parameters. (Am J
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O
PTICAL COHERENCE TOMOGRAPHY ANGIOG-

raphy (OCTA) is a relatively new optical imag-
ing technology that allows noninvasive

measurement of vessel density using 2 subsequent aligned
OCT images to detect between-image changes in relative
voxel position that indicate the presence of flowing blood.
OCTA vessel density measurements (percentage of OCTA
image occupied by regions of flowing blood) have been
shown to be lower in glaucoma suspect and glaucoma
eyes than in healthy eyes, to decrease with increasing glau-
coma severity as described by decreasing standard auto-
mated perimetry visual field (VF) mean deviation (MD)
and to be lower in the corresponding perimetrically unaf-
fected hemiretina of eyes with hemifield-specific VF de-
fects.1–10 In addition, baseline parapapillary and macular
vessel density measurements are reportedly predictive of
more rapid glaucoma-related thinning of the retinal nerve
fiber layer (RNFL),11 and a significant decrease in superfi-
cial macular vessel density has been reported over time in
glaucoma eyes in conjunction with a thinning of the gan-
glion cell complex (GCC) (Hou H. and colleagues.
IOVS 2019; 59:ARVO E-Abstract 3218).
Current OCTA instruments provide limited analytics

beyond global and local vessel density measurements ob-
tained from the perifoveal and peripapillary regions. Avail-
able numerical vessel density measurements are difficult to
assess in part because comparisons to standard normative
measurements from healthy eyes used to determine mea-
surements outside of normal limits are not available.
Therefore, vessel density measurements obtained using
OCTA currently are difficult to interpret beyond subjec-
tive visual inspection of en face images and comparison
of relative regional vessel densities.
Studies have shown over the last decades that machine

learning (ML) models developed from information avail-
able in optic nerve head photographs, optical imaging mea-
surements, and visual field measurements, alone and
combined, can improve classification of healthy and glau-
coma patient eyes compared to expert assessment, rawmea-
surements, and commercially available instrument-
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provided measurement parameters.12–34 Results provided
by ML models allow relatively easy assessment because
they can provide output in the form of probability of
disease based on information learned from training data.
The current study determined whether ML models
trained and tested using OCTA vessel density
measurements could improve disease classification
compared to vessels density measurements alone. The
authors also compared and combined localized OCTA
vessel density measurements with localized OCT tissue
thickness measurements to determine whether combining
available regional measurements would improve
classification, to evaluate whether combining macular
and optic nerve head measurements could contribute to
clinical decision making.
MATERIALS AND METHODS

THIS WAS A CROSS-SECTIONAL COMPARISON OF DIAG-

nostic tools involving a group of patients with primary
open-angle glaucoma, as defined below, and a group of
healthy control participants from the DIGS (Diagnostic In-
novations in Glaucoma Study) trial. The DIGS trial is an
ongoing prospective, longitudinal study conducted at the
Hamilton Glaucoma Center, University of California,
San Diego, designed to evaluate anatomical structures in
glaucoma. Details of the DIGS protocol have been
described elsewhere.34 All methods adhered to the tenets
of the Declaration of Helsinki and the Health Insurance
Portability and Accountability Act and were approved by
the Institutional Review Board of theUniversity of Califor-
nia, San Diego.

� PARTICIPANTS: Eligible participants had best corrected
visual acuity of 20/40 or better and open angles on gonio-
scopy at study entry. All participants were 40 years old or
older. Participants were excluded if they had a history of
intraocular surgery (except for uncomplicated cataract or
uncomplicated glaucoma surgery). Eyes with coexisting
retinal disease, uveitis, or nonglaucomatous optic neuropa-
thy also were excluded. Diabetic participants with no evi-
dence of retinal involvement were included.

Eyes of healthy participants had healthy appearing optic
discs and RNFLs OU based on masked assessment of digital
stereoscopic photographs with no history of repeatable,
abnormal VF results by Humphrey Visual Field Analyzer
II with 24-2 testing using the Swedish interactive thresh-
olding algorithm (Carl Zeiss Meditec, Dublin, California)
and no history of elevated intraocular pressure (all intraoc-
ular pressure was <_21 mm Hg) in either eye. Normal VFs
were defined as those with MD and pattern standard devi-
ation within 95% confidence interval (CI) and a glaucoma
hemifield test result within normal limits.
132 AMERICAN JOURNAL OF
Glaucoma patient eyes had at least 2 consecutive and
reliable VF examinations with either pattern standard de-
viation of >_5% or a glaucoma hemifield test result outside
of the 99% normal limits with similar patterns of
glaucoma-related defects in consecutive examinations.
Severity of glaucoma was restricted from early to moderate
with MD >_ �12 dB.

� VISUAL FIELDTESTING: All VFs were evaluated by Uni-
versity of California San Diego Visual Field Assessment
Center personnel based on a standardized protocol.35 VFs
with fixation losses of more than 33% or false negative er-
rors or more than 15% false positive errors were automati-
cally excluded. VFs exhibiting a learning effect (ie, initial
tests with reduced sensitivity followed by consistent
improvement in a series of tests) also were excluded. VFs
were further reviewed for lid and rim artifacts, fatigue ef-
fects, evidence that the visual field results were due to a dis-
ease other than glaucoma (eg, homonymous hemianopia),
and inattention. Test results indicating such characteristics
were excluded.

� OPTICAL IMAGING: The commercially available Avanti
Angiovue (Optovue Inc. Fremont, California) combines
OCTA and OCT imaging in a single system. Avanti
Angiovue OCTA (software version 2017.1.0.151) and
OCT (software version 5.6.3.0) images of the macula and
optic nerve head (ONH) were obtained using the Avanti
on the same day by the same instrument operator. The
Avanti system for measuring vessel density and tissue
thickness has been described previously.36

For OCTA vessel density measurements, each volume is
composed of 2 consecutive B-scans captured at each fixed
position. The instrument-specific split-spectrum amplitude
decorrelation angiography method is used to capture the
dynamic motion of the red blood cells between consecutive
B-scans to provide a high-resolution 3-dimensional visual-
ization of the perfused retinal vasculature.36 Vessel density
is calculated automatically as the proportion of measured
area occupied by flowing blood vessels defined as pixels
having decorrelation values acquired by the split-
spectrum amplitude decorrelation angiography algorithm
above the threshold level.
Avanti high-density 6- 3 6-mm2 field of view scans

centered on the macula and high density 4.5- 3 4.5-
mm2 field of view scans centered on the ONH were ac-
quired and included in the analysis. Macula scan parafo-
veal measurements were obtained within an annular
region with an inner diameter of 1 mm and an outer
diameter of 6 mm. To obtain OCTA vessel density mea-
surements, each scan was automatically segmented by the
Angiovue software to visualize the instrument-defined
macular superficial capillary plexus and deep capillary
plexus. The ONH circumpapillary measurements are ob-
tained from within a 10-pixel-wide annulus with an inner
diameter of 3.45 mm.
SEPTEMBER 2020OPHTHALMOLOGY



FIGURE 1. Area under the receiver operating characteristic
curve (AUROC) plots for each gradient-boosting classifier
(GBC).

FIGURE 2. Estimated probability of glaucoma from each
gradient-boosting classifier (GBC) for healthy and glaucoma
images.
GCC, composed of RNFL, ganglion cell layer, and inner
plexiform layer, thickness and circumpapillary RNFL
(cpRNFL) thickness measurements derived from the
OCTA scans also were included in the analyses. All mea-
surements were included in standard clinical printouts
that can be automatically exported from the Avanti
instrument.

To construct parsimonious ML models, 18 macula
OCTA parameters were selected from the superficial and
deep capillary plexuses; 8 ONH OCTA parameters
including parameters with and without large vessels
removal; 9 macula OCT GCC thickness parameters; and
3 ONH OCT cpRNFL thickness parameters. Chosen pa-
rameters Results are shown in Supplemental Tables 1 and
2.

OCTA and OCT image quality review was completed
according to University of California San Diego Imaging
Data Evaluation and Analysis reading center standard pro-
tocol. Images with a quality index (QI) of <4, poor clarity,
residual motion artifacts visible as irregular vessel patterns,
or disc boundaries on the enface angiogram, image crop-
ping, or local weak signal due to vitreous opacity, or seg-
mentation errors that could not be corrected were
excluded.

� GRADIENT-BOOSTING CLASSIFIER: The gradient-
boosting classifier (GBC) is an ensemble classifier that at-
tempts to decrease error by resampling and varying the
weights for individual weak learners in order to increase
classification accuracy.37 In an empirical comparison study
of supervised learning algorithms comparing random for-
ests and boosted decision trees, the GBC had the best over-
all performance.38 Motivated by this success, the authors
chose to use gradient boosting as the classifier. An advan-
VOL. 217 COMBINING OCTA AND OCT MEASUREMENTS USING MAC
tage of GBC is that it provides output in the form of prob-
ability of glaucoma that may be more useful for clinical
interpretation than global or local percentage of vessel
133HINE LEARNING FOR SUCCESSFUL GLAUCOMA CLASSIFICATION



FIGURE 3. Mean relative influence over each cross-validation fold in the full gradient-boosting classifier (Full GBC). The upper bar
represents the maximum relative influence observed.
density and tissue thickness measurements alone. GBCs
also provide a metric to assess the relative influence of
each parameter included in the classifier.39

Up to 5 images from each healthy and each patient eye
obtained longitudinally were included to increase the sam-
ple size and generate more generalizable models, resulting
in 169 images of healthy eyes and 364 images of glaucoma
eyes. Because multiple images were included from a single
studied eye, images were initially weighted by the number
of images available for each eye (eg, for an eye providing
5 images, each would be included in the model with an
initial weight of 0.2). Separate from the 10-fold cross-
validation used to assess model performance (described
below), a 5-fold cross-validation was used within each of
the 10 training sets to select the optimal number of boost-
ing iterations and prevent overfitting the training data.
Means and ranges of the relative influence of each variable
included in the full GBC across all cross-validation folds
are reported.

� STATISTICAL ANALYSES: We developed 4 GBCs
combining 1) all macula vessel density and thickness
measurements (macula GBC); 2) all ONH vessel density
and thickness measurements (ONH GBC); 3) all vessel
density measurements from the macula and ONH (vessel
density GBC); and 4) all tissue thickness measurements
from the macula and ONH (thickness GBC) to compare
models based on different location-specific measure-
ments from each other and to compare models based
on different structural measurements from each other.
A fifth full GBC was also developed combining all
Avanti parameters included in the above-described
GBCs to determine if combining macula and optic nerve
measurements would improve classification overall. An
134 AMERICAN JOURNAL OF
improvement in classification here would suggest that
imaging both the macula and the optic nerve could
improve diagnostic accuracy in patients with early to
moderate glaucoma.
Areas under receiver operating characteristic curves

(AUROCs) and sensitivities at fixed specificities of 80%,
85%, 90%, and 95% were used to describe and compare
the ability of individual vessel density and tissue thickness
parameters and GBCs to distinguish glaucomatous eyes
from healthy eyes. Estimates of the probability of glaucoma
given by GBCs were calculated by using logistic regression.
A 10-fold cross-validation was used to provide out-of-

sample predictions for each logistic and GBC to avoid
overly optimistic estimates of classification accuracy. First,
the full complement of healthy participants and glaucoma
patients (and each of their contributed images) was
randomly divided into 10 approximately equal, exhaustive,
and mutually exclusive subsets. Next, each model was
trained on 9 subsets and subsequently used to generate
out-of-sample predictions of the probability of glaucoma
on the tenth subset. This sequence was repeated 10 times,
with each subset serving as the test set once, so that each
tested subject was never part of its training set and was
tested only once.
Bias-corrected CI and hypothesis tests for AUCs were

conducted using a clustered bootstrap with 2,000 resam-
ples. Due to the exploratory nature of this analysis, no
type I error correction for multiple comparisons was applied
(as recommended by Bender and Lange40). GBC modeling
and all statistical analyses were performed using R version
3.5.2 software (R Foundation, Vienna, Austria). The R
programming language is an open-source statistical soft-
ware available free, as is the ‘‘gbm’’ application used for
GBC modeling herein.41,42
SEPTEMBER 2020OPHTHALMOLOGY



TABLE 1. Patient and Eye Characteristics by Diagnosis

Diagnosis

P ValueHealthy (n ¼ 60 Patients; 108 Eyes) Glaucoma (n ¼ 143 Patients; 193 Eyes)

Age, y 61.5 (58.9-64.1) 72.3 (70.6-73.9) <.001

Females 75.0% 50.3% .001

Race

Nonwhite 45.0% 35.0% .073

White 53.3% 65.0%

Unknown 1.7% 0.0%

Hypertension 40.0% 55.9% .046

Diabetes 3 (5.0%) 24 (16.8%) .024

MD, dB 0.05 (�1.17 to 1.27) �5.70 (�6.50 to �4.90) <.001

IOP, mm Hga 15.0 (13.9-16.1) 14.5 (13.8-15.2) .451

AL, mmb 23.9 (23.5-24.2) 24.4 (24.2-24.6) .014

CCT, mmc 547.7 (536.5-558.8) 536.8 (529.6-543.9) .109

Disc or BMO Area, mm2 1.9 (1.8-2.1) 1.9 (1.8-2.0) .672

AL ¼ axial length; BMO ¼ Bruch’s membrane opening; CCT ¼ central corneal thickness; dB ¼ decibel; IOP ¼ intraocular pressure.

Mean values and 95% confidence intervals are shown for continuous variables. Statistical significance of differences in continuous and cat-

egorical variables were determined by 2-sample t-tests and Fisher exact tests for patient level variables (respectively) and linear mixed effects

models for eye level variables. Missing a29, b7, and c11 values. Bolded P-values indicate statistically significant difference with P <_ .05.
RESULTS

THE STUDY INCLUDED 108 EYES OF 60 HEALTHY STUDY PAR-

ticipants and 193 eyes of 143 glaucoma patients. Summary
demographic variables and measurements are shown in
Table 1. Glaucoma patients were significantly older than
healthy participants (mean ¼ 72.3 years old [95% CI,
70.6-73.9 years] vs 61.5 years [95% CI, 58.9-64.1 years],
respectively; P < .001) at the time of first examination.
In addition, glaucoma patients had a significantly higher
rate of systemic hypertension (55.9% vs 40%, respectively;
P ¼ .046) and diabetes (16.8% vs 5.0%, respectively; P ¼
.024) than healthy participants. As expected, glaucoma
eyes had a lower VF MD than healthy eyes (�5.70 dB vs.
0.05 dB, respectively; P < .001; values presented in
Table 1 are MD at the time of first imaging visit if multiple
TABLE 2. Predictive Pe

AUROC (95% CI) 80% Spec. 85%

Full GBC 0.93 (0.89-0.96) 87.1% 86.

Macula GBC 0.91 (0.87-0.95) 87.6% 80.

ONH GBC 0.91 (0.86-0.94) 86.3% 81.

Vessel Density GBC 0.90 (0.86-0.93) 86.5% 81.

Thickness GBC 0.91 (0.87-0.95) 88.5% 87.

ONH ¼ optic nerve head.

Metrics are shown as areas under the receiver operating characteristic c

gradient boosting classifier (GBC). Significance was determined using a p

difference with P <_ .05.
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imaging visits were included). Glaucoma patients also had
a slightly longer mean axial length (24.4 mm [95% CI,
24.2-24.6 mm] for glaucoma eyes and 23.9 mm [95% CI,
23.5-24.2 mm] for healthy eyes; P ¼ .014).
The standard OCTA and OCT parameters with the

highest AUROC were whole-image GCC thickness
(AUROC ¼ 0.91; 95% CI, 0.86-0.94) and whole-
image vessel density (AUROC ¼ 0.91; 95% CI, 0.86-
0.94), followed by cpRNFL thickness (AUROC ¼
0.89; 95% CI, 0.84-0.93) and perifoveal superficial
vessel density measured within an annulus between 3
and 6 mm from the fovea (AUROC ¼ 0.84; 95% CI,
0.78-0.89). AUROCs and sensitivities at fixed specific-
ities of 80%, 85%, 90%, and 95% for all investigated
OCTA and OCT parameters are shown in
Supplemental Table 1.
rformance Metrics

Sensitivity At

AUROC P Value vs Full GBCSpec. 90% Spec. 95% Spec.

0% 79.1% 64.6% -

8% 78.0% 65.7% .105

3% 73.9% 66.2% .036

0% 76.1% 63.7% .010

4% 82.7% 61.5% .094

urves (AUROC) and sensitivities at fixed specificities (Spec.) for each

aired bootstrap test. Bolded P-values indicate statistically significant

135HINE LEARNING FOR SUCCESSFUL GLAUCOMA CLASSIFICATION



AUROCs for classifying eyes as healthy or glaucomatous
for all 5 evaluated GBCs and sensitivities at fixed specific-
ities are presented in Table 2 (see Figure 1 which also in-
cludes AUROC results for cpRNFL thickness). The
diagnostic accuracy of the full GBC (AUROC ¼ 0.93;
95% CI, 0.89-0.96) was significantly better than that of
both the ONH GBC (AUROC ¼ 0.91; 95% CI, 0.86-
0.94; P ¼ 0.036) and the vessel density GBC
(AUROC ¼ 0.90; 95% CI, 0.86-0.93; P ¼ .010). Sensitiv-
ities at each of the chosen fixed specificities were similar
across GBC models (Supplemental Tables 1 and 2).

All GBCs showed significantly better diagnostic accu-
racy than all superficial and deep layer macula OCTA
vessel density measurements (macula vessel density
AUROCs ranged from 0.64 to 0.84; all comparisons, P <_

.006) and the full GBC showed significantly better diag-
nostic accuracy than all ONH cpRNFL thickness measure-
ments (ONH cpRNFL thickness AUROCs ranged from
0.85 to 0.89; all comparisons P <_ .014). The full GBC did
not, however, improve classification compared to 1 of 9
GCC thickness measurements (whole-image GCC thick-
ness; P¼ .099) and 2 of 8 ONHOCTA vessel density mea-
surements (whole-image vessel density; P ¼ .113;
circumpapillary vessel density; P ¼ .095). AUROC com-
parisons among all GBCs and all investigated OCTA and
OCT parameters are shown in Supplemental Table 2.

Figure 2 shows the estimated probability of glaucoma dis-
tribution for all GBCs and indicates that images from glau-
coma eyes were more accurately identified than images
from healthy eyes. The distribution of probabilities was
most accurate for the full GBC, which estimated more
healthy eyes as having between 0% and 10% probability
of glaucoma and more glaucoma eyes as having between
90% and 100% probability of glaucoma than other
GBCs. Figure 3 shows the mean relative influence of
each investigated parameter included in the full GBC
and indicates that, for the current study population, the
best classifier model was a combination of macular GCC
thickness and ONH circumpapillary vessel density mea-
surements. This finding suggests that combining tissue
thickness and vessel density measurements obtained from
both macula and ONH images may improve the classifica-
tion of early to moderate glaucoma compared to any of the
investigated imaging protocols alone.
DISCUSSION

THE CURRENT STUDY COMPARED GBCS TRAINED USING

combinations of whole image and regional OCTA and
OCT macula and optic nerve head parameters to individ-
ual OCTA and OCT parameters for classifying images
from healthy and glaucoma eyes. In the best case, the full
GBC (which incorporated all OCTA and OCT parame-
ters) showed better diagnostic accuracy than all but 3 indi-
136 AMERICAN JOURNAL OF
vidual parameters. GBCs performed well at the
classification task with AUROCs ranging from 0.90 to
0.93. These results show promise for combining structural
measurements (ie, vessel density and tissue thickness) ob-
tained from 2 Avanti scanning protocols (ie, macula and
ONH) for improved detection of early to moderate glau-
coma. To the best of the current authors’ knowledge, this
is the first study to combine both vessel density and tissue
thickness in a single classifier model. However, it is unclear
whether the difference in whole AUROCs are of primary
clinical importance because high sensitivities at low speci-
ficities contribute substantially to AUROC areas. Rather,
sensitivities at high specificities may be more clinically
relevant. Results shown in Supplemental Table 1 indicate
that the full GBC was more sensitive at 90% specificity
than all standard parameters investigated. Two macula
GCC thickness parameters, 6 ONH vessel density param-
eter, and 1 cpRNFL parameter were more sensitive than
the least sensitive GBC (ONH GBC).
Other studies have investigated the combination of mul-

tiple individual structural parameters for classifying eyes as
healthy or glaucomatous.43–45 Blumberg et al.43 compared
the diagnostic performance of 19 individual ONH and
RNFL Cirrus OCT parameters to a multivariate predictive
model using logistic regression. The multivariate model
improved the discrimination between glaucomatous and
nonglaucomatous eyes (AUROC ¼ 0.892) compared to
the best single RNFL parameters (average RNFL,
AUROC ¼ 0.855). However, this improvement was not
statistically significant. Baskaran et al.44 showed that, in
early glaucoma (MD >_ �6.0 dB) the diagnostic perfor-
mances of linear discriminant analysis (LDA) and Classifi-
cation and Regression Tree combining Cirrus OCT ONH
and RNFL parameters were similar to those of any single
parameter investigated. For comparisons including eyes
with early to moderate glaucoma (MD >_ �12.0 dB); how-
ever, both the Classification And Regression Tree model
(AUROC ¼ 0.99) and the LDA (AUROC ¼ 0.94)
improved diagnostic accuracy compared to that of any of
the single parameters (AUROC range ¼ 0.61-0.89). Yosh-
ida et al.45 used random forest classification to discriminate
between glaucomatous and healthy eyes, using a total of
151 OCT (Topcon, Tokyo, Japan) peripapillary RNFL,
macular RNFL, and ganglion cell-inner plexiform layer pa-
rameters. Diagnostic performance of the random forest
combination of parameters (AUROC ¼ 0.985) was signif-
icantly better than any individual parameter. Classifier per-
formance reported in the study by Yoshida and associates45

should be compared to performance in the current study
with caution because of their inclusion of several advanced
glaucoma eyes (range, MD ¼ 1.8 to �23.2 dB) possibly
driving the very large AUROCs (although the average
MD was �5.6 dB, similar to that reported in the current
study).
Numerous other studies have attempted to improve diag-

nostic accuracy in glaucoma by combining both anatomical
SEPTEMBER 2020OPHTHALMOLOGY



and functional measurements and have shown these com-
binations to be superior to single structures or functional
measurements.12,46,47 In particular, several studies have
investigated different ML algorithms to combine structural
and VF measurements to assess diagnostic accuracy in
healthy and glaucomatous eyes.46,48–51 Combining
OCTA measurements with functional measurements
using ML classifiers is a future research topic of the
present group.

Results from the current study confirm that combining
structural measurements using machine learning classifiers
(and LDA) can improve classification of healthy and glau-
comatous eyes. The magnitude of the improvement varies
among methods based on the parameters used in the models
and the characteristics of the population, particularly dis-
ease severity. However, combining structural measurements
for detection of early to moderate disease, as suggested spe-
cifically by the current study, is not without limitations. For
instance, clinicians may be limited to a single imaging eval-
uation at each visit due to time constraints or technician
availability. This issue theoretically could be resolved by us-
ing a wide-angle imaging protocol with a field of view that
included both the macula and the ONH regions.

This study has limitations. It may be suggested that
including a large number of parameters in each GBC
resulted in classifier over-fitting. However, 10-fold cross-
validation was used to provide out-of-sample predictions
VOL. 217 COMBINING OCTA AND OCT MEASUREMENTS USING MAC
for each logistic and GBC to avoid overly optimistic esti-
mates of accuracy. In addition, an increased sample size
would allow division of available data into independent
training and test sets. These authors believe that the use
of cross-validation in the current study is an acceptable sub-
stitute and, given the limited sample size, likely is a better
method of assessing classifier performance. In addition,
significantly more glaucoma patients than healthy partici-
pants had hypertension and diabetes (Table 1), both of
which can affect blood flow. Following the recommenda-
tions of Janes and Pepe52 for adjusted AUROC (adjusting
for covariates which impact marker observations among
controls), an exploratory analysis of differences was
performed in vessel density measurements among healthy
subjects with and without hypertension. No significant dif-
ferences were found in any macula or ONH vessel density
measurements (all P > .104) and thus did not pursue an
adjusted analysis. Due to the low number of diabetic
healthy subjects, the authors were unable to adjust for
this covariate in any analysis.
In conclusion, the current results indicate that machine

learning gradient-boosting classifiers combining OCTA
and OCT macula and optic nerve head measurements
can improve diagnostic accuracy in early to moderate glau-
coma compared to most but not all single parameters. Such
techniques could be incorporated into instrument software
to improve clinical usefulness.
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