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� PURPOSE: To determine if combining clinical, demo-
graphic, and imaging data improves automated diagnosis
of nonproliferative diabetic retinopathy (NPDR).
� DESIGN: Cross-sectional imaging and machine learning
study.
� METHODS: This was a retrospective study performed at
a single academic medical center in the United States. In-
clusion criteria were age >18 years and a diagnosis of
diabetes mellitus (DM). Exclusion criteria were non-
DR retinal disease and inability to image the macula. Op-
tical coherence tomography (OCT) and OCT angiog-
raphy (OCTA) were performed, and data on age, sex,
hypertension, hyperlipidemia, and hemoglobin A1c
were collected. Machine learning techniques were then
applied. Multiple pathophysiologically important features
were automatically extracted from each layer on OCT
and each OCTA plexus and combined with clinical data
in a random forest classifier to develop the system, whose
results were compared to the clinical grading of NPDR,
the gold standard.
� RESULTS: A total of 111 patients with DM II were
included in the study, 36 with DM without DR, 53 with
mild NPDR, and 22 with moderate NPDR. When OCT
images alone were analyzed by the system, accuracy of
diagnosis was 76%, sensitivity 85%, specificity 87%,
and area under the curve (AUC) was 0.78. When OCT
and OCTA data together were analyzed, accuracy was
92%, sensitivity 95%, specificity 98%, and AUC 0.92.
When all data modalities were combined, the system
achieved an accuracy of 96%, sensitivity 100%, specificity
94%, and AUC 0.96.
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� CONCLUSIONS: Combining common clinical data
points with OCT and OCTA data enhances the power
of computer-aided diagnosis of NPDR. (Am J
Ophthalmol 2020;216:201–206. � 2020 Published by
Elsevier Inc.)

W
ITH AN ESTIMATE PREVALENCE OF OVER 450

million, diabetes mellitus (DM) has reached
epidemic proportions in the United States

and worldwide.1 Annual screening of diabetic patients pre-
sents a major public health problem both in the United
States and around the world. The demand for annual
screening and closer monitoring of those who develop dia-
betic retinopathy (DR) is taxing, particularly in resource-
poor settings with less access to care. A second, unrelated
problem in ophthalmology is the inherent subjectivity of
optical coherence tomography (OCT) and OCT angiog-
raphy (OCTA) interpretation. Objective metrics from
these imaging modalities are limited, and interpretation
thus suffers from some degree of subjectivity.
Machine learning is a branch of artificial intelligence in

which programs learn to classify data, such as medical im-
ages, based on repeated exposure to labeled datasets. The ap-
plications to medical imaging are legion, and the field has
exploded of late in ophthalmology, with particular foci on
retinal imaging. However, image analysis and diagnosis are
not the alpha and omega of machine learning in medicine.
These techniques can be applied to a range of data types,
including demographic and clinical data. Indeed, fundus im-
ages have already been used to predict clinical metrics like
blood pressure or demographic ones like age with fairly
high fidelity.2 Moreover, these 3 types of data—imaging,
clinical, and demographic—can also be combined to
enhance automated diagnosis via machine learning tech-
niques. Such an approach was undertaken herein.
The purpose of this study was to apply machine learning

techniques to multiple modes of data, namely OCT,
OCTA, and standard clinical and demographic data, in or-
der to improve upon existing computer-aided diagnostic
(CAD) systems that automate the diagnosis and grading
of nonproliferative diabetic retinopathy (NPDR).
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FIGURE 1. The pipeline of the computer-aided diagnostic system that incorporates clinical biomarkers, optical coherence tomogra-
phy (OCT), and optical coherence tomography angiography (OCTA) data to diagnose and grade diabetic retinopathy (DR). OCT and
OCTA images as well as demographic and clinical data are collected from patients in the clinic. The imaging data are then processed
and segmented. Key OCT features (curvature, reflectivity, and thickness of the individual layers) and OCTA features (area of the
foveal avascular zone, vessel density, vessel caliber, and number of bifurcation points) are extracted. These data are combined
with clinical and demographic data by a random forest classifier to arrive at a diagnosis of no DR, mild nonproliferative DR, or mod-
erate nonproliferative DR.
METHODS

THIS WAS A SINGLE-CENTER, RETROSPECTIVE, CROSS-

sectional imaging and machine learning study. This study
was conducted in accordance with the Declaration of
Helsinki and was approved by the institutional review
board of the University of Louisville. Data were collected
between November 2016 and January 2019 and analyzed
from February 1, 2019 to April 15, 2019. The need for
signed informed consent documents was waived by the
institutional review board because all data were collected
retrospectively as part of routine clinical practice.

� PATIENT SELECTION: Inclusion criteria were age >18
years and a diagnosis of DM. Exclusion criteria were a diag-
nosis of a retinal disease other than DR, media opacity pre-
cluding imaging, high myopia, and proliferative diabetic
retinopathy (PDR). PDR was excluded because of the low
prevalence of non-high-risk PDR in our population with
media sufficiently clear of vitreous hemorrhage to allow
for high-quality OCTA imaging. Clinical and demographic
data collected were age, sex, history of hypertension, his-
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tory of hyperlipidemia, and hemoglobin A1c. Patients un-
derwent a full dilated eye examination and OCT and
OCTA imaging with the Zeiss Cirrus AngioPlex (Carl
Zeiss AG, Oberkochen, Germany).

� THE COMPUTER-AIDED DIAGNOSTIC SYSTEM: Machine
learning techniques were then applied. Three pathophysio-
logically important features were extracted from each layer
on OCT: reflectivity, curvature, and thickness. For OCTA,
4 features were extracted: blood vessel caliber, vessel den-
sity, the size of the foveal avascular zone (FAZ), and the
number of bifurcation and crossover points. Details of the
previously validated segmentation process are available
elsewhere.3 The size of all OCTA images was 1024 3
1024 pixels, spanning a 6 mm 3 6 mm square centered
about the fovea. The OCT data were similarly 1024 3
1024 pixels, captured as raw grayscale files with 5 slices.
Only the superficial vascular plexus and deep vascular
plexus were analyzed (Figure). Established image process-
ing methods, including regional dynamic histogram equal-
ization and an adaptive gray level threshold estimation
with a generalized Gauss-Markov random field model,
AUGUST 2020OPHTHALMOLOGY



TABLE 1. Performance of the Computer-Aided Diagnostic
System for Stage 1, Distinguishing Diabetic Retinopathy

From No Diabetic Retinopathy, by Type of Imaging and/or

Clinical Data Used

Features ACC (%) Sens (%) Spec (%) DSC (%) AUC

OCT 86.5 92.3 84.8 76.2 0.885

OCTA 94.6 87.8 98.6 92.3 0.932

OCT þ OCTA 95.5 100 93.7 92.5 0.968

All features 98.2 100 97.4 97.2 0.987

ACC ¼ accuracy; AUC ¼ area under the curve; DSC ¼ dice

similarity coefficient; OCT ¼ optical coherence tomography;

OCTA ¼ optical coherence tomography angiography; Sens ¼
sensitivity; Spec ¼ specificity.

The first task of the system was to distinguish between dia-

betic retinopathy and no diabetic retinopathy. The system was

tested 4 times, first with data fromOCT images alone (OCT), sec-

ond from OCTA images alone (OCTA), third from images of both

modalities (OCT þ OCTA), and finally with all imaging, clinical,

and demographic data (all features). All features performed the

best in all metrics.

TABLE 2. Performance of the Computer-Aided Diagnostic
System for Stage 2, Grading of Diabetic Retinopathy for

Images Previously Identified as Having Diabetic Retinopathy,

by Type of Imaging and/or Clinical Data Used

Classifiers ACC (%) Sens (%) Spec (%) DSC (%) AUC

OCT 88.3 92.5 86.9 79.3 0.897

OCTA 94.7 91.3 96.2 91.3 0.937

OCT þ OCTA 97.3 95.4 98.1 95.4 0.967

All features 98.7 100 97.8 99.0 0.981

ACC ¼ accuracy; AUC ¼ area under the curve; DSC ¼ dice

similarity coefficient; OCT ¼ optical coherence tomography;

OCTA ¼ optical coherence tomography angiography; Sens ¼
sensitivity; Spec ¼ specificity.

The second task of the system was to grade the level of

nonproliferative diabetic retinopathy in those images identified

as having diabetic retinopathy in stage 1. The system was again

tested 4 times, first with data fromOCT images alone (OCT), sec-

ond from OCTA images alone (OCTA), third from images of both

modalities (OCT þ OCTA), and finally with all imaging, clinical,

and demographic data (all features). All features performed the

best in four out of five all metrics.
were applied to improve the signal-to-noise ratio of the
OCTA images, detailed elsewhere.4 All imaging features
were automatically extracted.

Data from these 7 extracted features as well as the 5 clin-
ical and demographic data points for each patient were
then fed into a 2-stage random forest classifier to train
the system. In the first step, the system classified the image
as having DR. In the second step, images already classified
as DR in step 1 were further classified into mild or moderate
NPDR.

� STATISTICAL ANALYSIS: The results of the system were
tested by 4-fold cross-validation and leave-1-subject-out
(LOSO) validation. Although only 1 testing method is
necessary to show that there has been no overfitting of
the data, both methods were performed in order to address
the effect of the size of the training data on system perfor-
mance. These results were then compared to the clinical
grading of DR, which was considered the gold standard.
The accuracy, sensitivity, specificity, dice similarity coef-
ficient (DSC), and area under the curve (AUC) of the sys-
tem were calculated with use of OCT data alone, OCTA
data alone, combined OCT and OCTA data, and finally
combined OCT, OCTA, clinical, and demographic data.

RESULTS

THE PROPOSED CAD SYSTEM WAS TRAINED AND TESTED ON

data collected from 111 subjects (48% female, age range
20-82 years). Thirty-six had DM without DR, 53 mild
NPDR, and 22 moderate NPDR.
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The first stage of the system was simply to classify images
as demonstrating DR or no DR. In this first stage, the sys-
tem was tested with 4 different sets of data inputs: OCT
data alone, OCTA data alone, OCT and OCTA data com-
bined, and OCT, OCTA, demographic, and clinical data
combined. Combining all data produced the best results,
with diagnostic accuracy of 97%-98% and an AUC of
0.981 by LOSO and 0.987 by 4-fold cross-validation
(Table 1). AUCs for OCT data alone were approximately
0.89, for combined OCT and OCTA 0.968, and for OCT,
OCT, and clinical and demographic data 0.987.
The second stage of the system was to grade the level of

NPDR. No cases of severe NPDR were included in the
dataset, so the 2 outputs were either mild or moderate
NPDR. By both LOSO and 4-fold cross-validation, the
system’s accuracy for the grading stage was 98.7%, sensi-
tivity 100%, specificity 97.8%, DSC 99%, and AUC
0.981 (Table 2). Again, a steady improvement in almost
all metrics was observed when the system was given only
OCT data, to OCT and OCTA data, to OCT, OCTA,
clinical, and demographic data, with AUCs increasing
from 0.897, to 0.967, to 0.981 (Table 2).
Of course, the final diagnosis involves performing both

stage 1 and stage 2 of the system in sequence.When running
the whole system on all data inputs, final accuracy was 96%,
sensitivity 100%, specificity 94%,DSC98%, andAUC0.960
(Table 3).When the systemwas givenOCT data only, AUC
was 0.783, increasing to 0.921 with combined OCT and
OCTA data, and finally to 0.960 when given all data modal-
ities (OCT, OCTA, clinical, and demographic data).
The random forest classifier has the capability to scruti-

nize the effect of each feature on diagnostic accuracy and
203DAL DATA FOR DIAGNOSIS OF DR



TABLE 3. Overall Performance of the Computer-Aided
Diagnostic System in Correctly Identifying and Grading

Diabetic Retinopathy by Type of Imaging and/or Clinical Data

Used

Classifiers ACC (%) Sens (%) Spec (%) DSC (%) AUC

OCT 75.6 84.6 86.9 72.2 0.783

OCTA 88.3 79.2 94.1 83.7 0.865

OCT þ OCTA 92.2 95.4 98.1 91.1 0.921

All features 96.0 100 94.1 98.0 0.960

ACC ¼ accuracy; AUC ¼ area under the curve; DSC ¼ dice

similarity coefficient; OCT ¼ optical coherence tomography;

OCTA ¼ optical coherence tomography angiography; Sens ¼
sensitivity; Spec ¼ specificity.

The overall performance of the automated diagnostic system

involves the combined results of stage 1 (diabetic retinopathy

[DR] vs no DR) and stage 2 (grading of nonproliferative DR). As

before, the systemwas tested with 4 different data sets: OCT im-

ages alone (OCT), OCTA images alone, both OCT and OCTA im-

ages (OCT þ OCTA), and all imaging, clinical, and demographic

data (all features). All features performed the best in 4 out of 5

metrics.
thereby assign relative weights or degree of importance to
each feature. Performing such experiments allows one to
understand the contribution that each of these features
makes to diagnosis. The obtained feature importance,
expressed as a contribution percentage, from the highest
to lowest, was as follows: blood vessel caliber, 16.1%; vessel
density, 15.9%; thickness, 15.8%; reflectivity, 14.6%; size
of the FAZ, 13.2%; number of bifurcations, 12.6%; curva-
ture, 11.7%.

Finally, the random forest classifier was also compared to
other state-of-the-art classifiers (classification tree, support
vector machines with linear kernel, and K-nearest
neighbor), and it outperformed them in all outcome
measures.
DISCUSSION

IN THIS STUDY,WEDESIGNEDANOVELCADSYSTEM FORTHE

diagnosis and grading of NPDR that integrates imaging
data from bothOCT andOCTAwith basic clinical and de-
mographic data for 111 patients. The AUC of the final
diagnosis was a mere 0.76 when analyzing structural OCT
data alone, improved dramatically to 0.92 with the addi-
tion of OCT angiographic data, and improved incremen-
tally still with the addition of clinical and demographic
data to 0.96.

Two points stand out from the results of this study. First,
OCT angiography imaging clearly adds significant value to
an automated diagnostic system for DR. This result is intu-
itive; DR is primarily a disease of the retinal vasculature,
204 AMERICAN JOURNAL OF
and OCTA provides instructive information about the sta-
tus of the vasculature that structural OCT does not. In our
particular system, the size of the FAZ and density of capil-
laries within the macula are both known to have diagnostic
value in diagnosing DR, consistent with the pathophysi-
ology of the disease, driving capillary nonperfusion and
eventually macular ischemia.5,6 OCTA’s ability to image
both the deep and superficial vascular plexuses (both
affected in DR), its noninvasive nature, ease of acquisition,
and presence on the same imaging platforms as OCT are
distinct advantages over fluorescein angiogram; thus, it is
a natural complement to conventional OCT. The relative
importance of each of the 7 features was also striking in 2
ways. First, vessel caliber and vessel density made the great-
est contributions. This is consistent with the pathologic
microvascular changes in diabetic retinopathy, which
causes capillary nonperfusion and frequently a degree of
arteriolar attenuation, culminating in ghost vessels. Sec-
ond, the range in contribution percentage was very narrow,
spanning only 4.4%. Thus, all of these features made a sig-
nificant contribution and added to the accuracy of the
system.
Second, the addition of simple clinical and demographic

data also had added value for the system, improving the
first-stage, second-stage, and overall performance by 2%-
4% of AUC. Systemic hypertension and hemoglobin A1c
are perhaps the oldest and most reliable predictors of DR
onset and progression.7,8 While these risk factors are well
known, what was unclear was to what extent, if any, this
additional information might add diagnostic value. If the
local effects of poor blood glucose and blood pressure con-
trol are already indirectly captured by OCTA imaging of
the retinal vasculature, for instance, one would not expect
these data to add any significant value. Indeed, providing
inputs of the patient’s age, sex, last hemoglobin A1c, and
history of systemic hypertension and/or hyperlipidemia
provided a small but appreciable improvement in diag-
nostic performance. While a 4% improvement in overall
accuracy and AUCmight not appear important prima facie,
a diagnostic system of clinical significance would ideally
have an AUC in the high 90s. With an improvement in
AUC from 0.92 to 0.96, the addition of clinical and demo-
graphic data helps us move closer to that goal.
While many studies have applied machine learning,

including deep learning, to fundus photographs to diagnose
DR, many fewer have focused on OCT and OCTA. Multi-
ple groups have applied machine learning to OCT to iden-
tify macular edema of various etiologies.9–12 Automated
systems for diagnosis of exudative age-related macular
degeneration and geographic atrophy on OCT have also
shown good results.13,14 One particularly impressive deep
learning system trained on over 14,000 OCT images in
the United Kingdom can provide probabilities of 10
different common OCT diagnoses and produced a correct
referral recommendation, the primary outcome, 95% of
the time.15 However, it also simply identified macular
AUGUST 2020OPHTHALMOLOGY



edema rather than diagnosing a particular etiology of
edema, and DR itself was not 1 of the 10 output diagnoses.

Despite tremendous advances in machine learning for
ophthalmic imaging, automated systems that diagnose
and grade DR via OCT are at present very rare. Kuwayama
and associates16 reported a deep learning system to diag-
nose multiple different macular diseases by OCT, including
DR. However, they explicitly tested their system on only 7
DR cases, and grading was not performed. To the best of our
knowledge, this is the first study to diagnose NPDR using
simultaneous OCT and OCTA data.

This study’s greatest limitation is that it deals with only
lower grades of nonproliferative diabetic retinopathy,
namely no DR, mild NPDR, and moderate NPDR. Any
clinically meaningful system with immediate real-world
application must be able to reliably diagnose severe
NPDR and PDR as well. Clearly, this system is not yet
ready for clinical use. Insufficient numbers of severe
VOL. 216 MACHINE LEARNING USING MULTIMO
NPDR patients and PDR patients with sufficiently clear
media for OCT and OCTA imaging were available in
the existing database to validate the system on those higher
grades of retinopathy. Collection of more data and valida-
tion of the system on severe NPDR and PDR are critical
next steps in this work. Presently, the point of this study
is proof of concept that combining multiple modes of
data is complementary and additive in improving machine
diagnosis.
In summation, automated diagnosis of NPDR using a

combination of OCT, OCTA, and clinical and demo-
graphic data is feasible and highly accurate. Combining
easily collectable clinical data points with imaging data en-
hances the power of computer-aided diagnosis and could be
considered as additional inputs into existing machine
learning and deep learning systems. As OCT technology
becomes more accessible and ubiquitous, these methods
could potentially be applied to screening.
FUNDING/SUPPORT: THIS RESEARCH PROJECTWAS SUPPORTED IN PART BY AL JALILA FOUNDATION, UNITED ARAB EMIRATES
(grant number AJF2018053). Financial Disclosures: Harpal Singh Sandhu, Mohammed Elmogy, Nabila El-Adawy, Ahmed Eltanboly, Ahmed Shalaby,
Robert Keynton, and Ayman El-Baz hold intellectual property in 1 of the segmentation algorithms employed by this system. Ayman El-Baz also holds
intellectual property in computer-aided diagnostic systems for malignant lung nodules on computed tomography (CT) scan, for autism based on magnetic
resonance imaging (MRI), for mild cognitive impairment based onMRI, for early detection of prostate cancer based on CT scan orMRI, for early diagnosis
of kidney allograft rejection based on CT or MRI, for detection of systemic hypertension based on MRI, and in computerized methods for controlling the
speed of cardiac ventricular assist devices. Robert Keynton holds intellectual property in capillary electrophoresis systems, microfluidic devices, neurosti-
mulators, self-assembly of nanoparticles, and, along with Ayman El-Baz, in computer-aided diagnosis of autism on brain MRI. Robert Keynton also holds
equity in 2 biomedical companies: PromiSight, which has developed a hydrogel to prevent vitrectomy-induced cataracts, and CoulSense, which has devel-
oped analytical instrumentation to provide remote, autonomous, calibration-free heavy metal sensing capabilities. All authors attest that they meet the
current ICMJE criteria for authorship.

Other Acknowledgments: The authors would like to acknowledge post-doctoral researchers Ahmed Taher Sharafeldeen, PhD, and Mohamed Elshar-
kawy, PhD, for performing additional experiments on the random forest classifier in order to determine relative feature importance.
REFERENCES

1. Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas:
global estimates of diabetes prevalence for 2017 and pro-
jections for 2045. Diabetes Res Clin Pract 2018;138:
271–281.

2. Poplin R, Varadarajan AV, Blumer K, et al. Prediction of car-
diovascular risk factors from retinal fundus photographs via
deep learning. Nat Biomed Eng 2018;2(3):158–164.

3. Sandhu HS, Eladawi N, Elmogy N, et al. Automated diabetic
retinopathy detection using optical coherence tomography
angiography: a pilot study. Br J Ophthalmol 2018;102(11):
1564–1569.

4. Eltanboly A, Ismail M, Shalaby A, et al. A computer-aided
diagnostic system for detecting diabetic retinopathy in optical
coherence tomography images. Med Phys 2017;44(3):
914–923.

5. Lu Y, Simonett JM,Wang J, et al. Evaluation of automatically
quantified avascular zonemetrics for diagnosis of diabetic reti-
nopathy using optical coherence tomography angiography.
Invest Ophthalmol Vis Sci 2018;59(6):2212–2221.

6. Samara WA, Shahlaee A, AdamMK, et al. Quantification of
diabetic macular ischemia using optical coherence tomogra-
phy angiography and its relationship with visual acuity.
Ophthalmology 2017;124(2):235–244.
7. Diabetes Control and Complications Trial Research
Group. The relationship of glycemic exposure to the risk
of development and progression of retinopathy in the Dia-
betes Control and Complications Trial. Diabetes 1995;
44(8):968–983.

8. Stratton IM, Kohner EM, Aldington SJ, et al. UKPDS 50: risk
factors for incidence and progression of retinopathy in type II
diabetes over 6 years from diagnosis. Diabetologia 2001;44(2):
156–163.

9. Samagio G, Estevez A, Moura J, et al. Automatic macu-
lar edema identification and characterization using OCT
images. Comput Methods Programs Biomed 2018;163:
47–63.

10. Alsaih K, Lemaitre G, Rastgoo M, et al. Machine learning
techniques for diabetic macular edema classification on SD-
OCT images. Biomed Eng Online 2017;16(1):68.

11. Syed AM, Hassan T, Akram MU, et al. Automated diagnosis
of macular edema and central serous retinopathy through
robust reconstruction of 3D retinal surfaces. Comput Methods
Programs Biomed 2016;137:1–10.

12. Li F, ChenH, Liu Z, et al. Fully automated detection of retinal
disorders by image-based deep learning.Graefes Arch Clin Exp
Ophthalmol 2019;257(3):495–505.

13. Treder M, Lauermann JL, Eter N. Automated detection of
exudative age-related macular degeneration in spectral
205DAL DATA FOR DIAGNOSIS OF DR

http://refhub.elsevier.com/S0002-9394(20)30023-4/sref1
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref1
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref1
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref1
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref2
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref2
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref2
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref3
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref3
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref3
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref3
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref4
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref4
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref4
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref4
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref5
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref5
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref5
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref5
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref6
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref6
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref6
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref6
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref7
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref7
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref7
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref7
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref7
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref8
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref8
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref8
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref8
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref9
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref9
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref9
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref9
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref10
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref10
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref10
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref11
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref11
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref11
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref11
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref12
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref12
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref12
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref13
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref13


domain optical coherence tomography using deep
learning. Graefes Arch Clin Exp Ophthalmol 2018;256(2):
259–265.

14. Treder M, Lauermann JL, Eter N. Deep learning-based detec-
tion and classification of geographic atrophy using a deep
convolutional neural network classifier. Graefes Arch Clin

Exp Ophthalmol 2018;256(11):2053–2060.
206 AMERICAN JOURNAL OF
15. De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically
applicable deep learning for diagnosis and referral in retinal
disease. Nat Med 2018;24(9):1342–1350.

16. Kuwayama S, Ayatsuka Y, Yanagisono D, et al. Automated
detection of macular diseases by optical coherence tomogra-
phy and artificial intelligence machine learning of optical
coherence tomography images. J Ophthalmol 2019;6319581.
AUGUST 2020OPHTHALMOLOGY

http://refhub.elsevier.com/S0002-9394(20)30023-4/sref13
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref13
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref13
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref14
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref14
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref14
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref14
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref15
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref15
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref15
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref16
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref16
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref16
http://refhub.elsevier.com/S0002-9394(20)30023-4/sref16

	Automated Diagnosis of Diabetic Retinopathy Using Clinical Biomarkers, Optical Coherence Tomography, and Optical Coherence Tomography Angiography
	Methods
	Patient Selection
	The Computer-Aided Diagnostic System
	Statistical Analysis

	Results
	Discussion
	References


