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Phenogrouping to Improve Risk Assessment for Patients
Undergoing Transcatheter Aortic Valve Implantation
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Semisupervised machine-learning methods are able to learn from fewer labeled patient
data. We illustrate the potential use of a semisupervised automated machine-learning
(AutoML) pipeline for phenotyping patients who underwent transcatheter aortic valve
implantation and identifying patient groups with similar clinical outcome. Using the
Transcatheter Valve Therapy registry data, we divided 344 patients into 2 sequential
cohorts (cohort 1, n = 211, cohort 2, n = 143). We investigated patient similarity analysis to
identify unique phenogroups of patients in the first cohort. We subsequently applied the
semisupervised AutoML to the second cohort for developing automatic phenogroup labels.
The patient similarity network identified 5 patient phenogroups with substantial varia-
tions in clinical comorbidities and in-hospital and 30-day outcomes. Cumulative assess-
ment of patients from both cohorts revealed lowest rates of procedural complications in
Group 1. In comparison, Group 5 was associated with higher rates of in-hospital cardio-
vascular mortality (odds ratio [OR] 35, 95% confidence interval [CI] 4 to 309, p = 0.001),
in-hospital all-cause mortality (OR 9, 95% CI 2 to 33, p = 0.002), 30-day cardiovascular
mortality (OR 18, 95% CI 3 to 94, p <0.001), and 30-day all-cause mortality (OR 3, 95%
CI 1.2 to 9, p = 0.02) . For 30-day cardiovascular mortality, using phenogroup data in con-
junction with the Society of Thoracic Surgeon score improved the overall prediction of
mortality versus using the Society of Thoracic Surgeon scores alone (AUC 0.96 vs AUC
0.8, p = 0.02). In conclusion, we illustrate that semisupervised AutoML platforms identifies
unique patient phenogroups who have similar clinical characteristics and overall risk of
adverse events post-transcatheter aortic valve implantation. © 2020 Elsevier Inc. All
rights reserved. (Am J Cardiol 2020;136:122−130)
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Transcatheter aortic valve implantation (TAVI) has
become the standard of care for patients with severe aortic
stenosis and a high or prohibitive surgical risk.1,2 Although
several risk scores to predict operative mortality have been
applied,3−5 there are no specific methods for disease group-
ings for aortic stenosis patients who underwent TAVI. Con-
temporary use of novel bioinformatics techniques, such as
automated machine learning (AutoML), are capable of
ingesting vast sets of data and developing improved risk
stratification models. We have recently explored the use of
unsupervised machine-learning technique for mapping car-
diac dysfunction.6 In the current study, we extend this
approach to investigate the development and validation of a
semisupervised AutoML algorithm that utilizes these 2
layers of analytical techniques: first, we use unsupervised
machine-learning framework that identifies unique patient
phenogroups, and second, we train a supervised learning
using an automated platform to label an unknown patient to
a specific phenogroup. We subsequently compared the
validity of the semisupervised AutoML pipeline for identi-
fying meaningful patient phenogroups by comparing the
clinical characteristics and outcomes for each group.
Methods

The West Virginia University Institutional Review Board
approved this study. An author (PPS) acted as the honest
data broker to ensure PHI (Protected Health Information)
and HIPAA (Health Insurance Portability and Accountability
Act) adherence during the data management, analytics, and
ML. Data scientists and research scientists in the project
used a single institution deidentified database from the
patients submitted to the Society of Thoracic Surgeon/ACC
(American College of Cardiology). Transcatheter Valve
Therapy registry (TVT) registry. All analyses were per-
formed using the deidentified data.

We included all patients who underwent TAVI at West
Virginia University Hospital from April 2014 to May 2019.
To account for the changing risk profile and improvement in

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amjcard.2020.08.048&domain=pdf
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TAVI procedural technique and devices over time, the
patients were divided into 2 cohorts: April 2014 to June 2018
(cohort 1) and July 2018 to May 2019 (cohort 2). First, we
used routinely clinical features in cohort 1 for identifying
unique patient groups (phenogroups) with aortic stenosis.
Next, to identify these phenogroups in cohort 2, we devel-
oped a supervised machine-learning classifier, which when
provided with the clinical features, would provide phe-
nogroup labels for new individuals. Phenogroup validation
was then performed in 2 steps: (1) Comparison of clinical
features between the phenogroups; (2) Outcome Validation:
The phenogroups were compared for their association with
TAVI outcomes (not used in development of the model).
This method used here is consistent with previous work
where authors have sought validation outside the derivation
cohort using a historical validation cohort.7 The severity of
aortic stenosis was determined following the recommenda-
tions of the European Association of Cardiovascular Imaging
and the American Society of Echocardiography.8

The outcomes were selected according to the Valve Aca-
demic Research Consortium Criteria-2.9 Our clinical end
points included all-cause mortality and cardiovascular mor-
tality both of which were expressed as in-hospital
and within 30 days. The other end points included atrial
fibrillation, stroke, transient ischemic attack, myocardial
Figure 1. Study flow diagram.

This figure illustrates the flow chart of the steps from the start to the end of the stu

valve implantation (TAVI) for severe aortic stenosis (AS) by looking at the institu

line, clinical, and echocardiographic variables from the electronic medical records

The unsupervised machine learning was then used to generate patient similarity n

ble each other based on their resemblance in baseline and outcomes variables. Th

learning algorithm, OptiML leading to formation of multiple models. Finally, the

validation cohort to predict the outcomes in this cohort that patients might have ex
infarction, major bleeding, acute kidney injury, stages I, II,
III and/or dialysis and major vascular complications, all
were reported within 30 days. We have used the latest ver-
sions of online STS calculator available online through the
whole course of the study (http://riskcalc.sts.org/stswebrisk
calc/calculate).

We first performed topological data analysis (TDA),
which uses unsupervised machine learning to aggregate
patient groups with similar clinical characteristics and stud-
ied in-hospital and 30-day adverse outcomes to delineate
the incumbent risk. TDA is based on topology, a mathemat-
ical discipline which measures and represents shape, to cre-
ate compact visual representations of high-dimensional
datasets.10−12 This is performed automatically within the
software, by deploying an ensemble machine-learning algo-
rithm that iterates through overlapping subject bins of
different sizes that resample the metric space (with replace-
ment), thereby using a combination of the metric location
and similarity of subjects in the network topology. The
algorithm returns the most stable, consensus vote for the
resulting “golden network” (Reeb graph), representing the
multidimensional data shape. The application of this
method to our dataset creates clusters of patients that appear
as nodes (points), and relations among clusters are repre-
sented by edges or lines as interconnections between the
dy. Step 1 is the search for the patients who underwent transcatheter aortic

tion’s STS/ACC/TVT registry. The second step was to collect all the base-

followed by data extraction and organization in the Microsoft Excel sheets.

etworks with subsequent formation of 5 distinct phenogroups which resem-

ese groups were randomly split in 70:30 fashion using supervised machine-

best fit models were then applied on a second cohort of patients serving as

perienced.

http://riskcalc.sts.org/stswebriskcalc/calculate
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nodes (Figure 1). TDA has been extensively validated and
successfully implemented in various diseases, such as aortic
stenosis, infectious diseases, genetic profiling of cancers
and spinal cord injury.12−15

To extend the ability of the unsupervised TDA network
to develop phenogroups for clinical features of the second
cohort, we used a cloud-based supervised AutoML platform
(OptiML, BigML.com, Corvallis, Oregon, http://bigml.com).
We first randomly split the first cohort to generate 70%
training set and 20% as a validation set. We used recursive
feature elimination to identify 23 best features and then
we evaluated multiple supervised machine-learning
algorithms, using automated Optimized Model (OptiML).
OptiML is an optimization process for model selection
and parametrization that automatically finds the best
supervised models to solve classification problems. Using
Bayesian parameter through using an optimization tech-
nique called sequential model-based algorithm configura-
tion optimization, OptiML creates and evaluates hundreds
of supervised models (decision trees, ensembles, logistic
regressions, and deep nets) and returns a list of the best
models for the data. Eliminating the need for manual
and trial-and-error-based exploration of algorithms and
parameters, OptiML saves significant time and provides
improved performance for AutoML practitioners of all
levels. This process was performed with Monte-Carlo
cross-validation in the training set. Finally, we identified
10 best models based upon their area under the curve
(AUC) scores, which included 9 models with L1 regulari-
zation and one with L2 regularization. Subsequently we
created an ensemble model (fusion model), which were
evaluated in the hold-out validation set. Such techniques
of making fusion models help combining diverse and inde-
pendent models for reducing the generalization error.

For the categorical variables, the comparisons between
the groups of interest and the remaining subjects were per-
formed using Pearson’s chi-square test or Fisher’s exact test,
whereas we used the nonparametric Kolmogorov-Smirnov
test for continuous variables. A p value of <0.05 was consid-
ered statistically significant. TDA was performed using the
Ayasdi cloud-based platform (version 7.13, Ayasdi, Inc.,
Menlo Park, California). The OptiML was performed using
the BigML cloud-based platform (BigML, https://bigml.
com). To assess the performance of our model, we used sev-
eral common performance measures, namely specificity, sen-
sitivity (recall), false-negative rate (miss rate), and area under
the receiver operating characteristics (ROC) curve. To test
the similarity of phenogroups performance for prediction of
the outcomes, the 2 groups were combined together, and a
multivariable logistic regression was performed with the phe-
nogroups and cohorts incorporated as independent variables
to predict the adverse outcomes. We also used sequential
logistic regression models with incorporation of STS risk
score over underlying phenogroups information from both
cohorts for predicting adverse outcomes. The improvement
in discrimination with the addition of variables was assessed
by the change in the c-statistic and the DeLong.16 All statisti-
cal analyses were performed using MedCalc Statistical Soft-
ware version 14.8.1 (MedCalc Software bvba, Ostend,
Belgium; http://www.medcalc.org; 2020) and maintained at
a significance level of 0.05 (p ≤0.05).
Results

We included 354 patients with severe aortic stenosis
(AS), divided into 2 cohorts. First, cohort 1 of 211 patients
(median age 80 [74 to 86 age range], 45% males) and
cohort 2 of 143 patients (median age 79 [75 to 84], 49.7%
males). The baseline clinical and echocardiographic param-
eters of the groups are shown in (Tables 1 and 2). We first
created a topological map of the cohort 1 patients who
underwent TAVI at our institution using preprocedural clin-
ical and echocardiographic parameters. The flow chart of
the study is shown in (Figure 1).

We delineated 5 patient phenogroups. Group 1 (n = 38)
had patients with a classic high gradient, normal Left ventric-
ular ejection fraction (LVEF), severe AS with aortic valve
area of 0.56 cm2 [0.50, 0.70] (p <0.001), LVEF of 63% [56,
65%] (p <0.001), and mean pressure gradient of 55.0 [46.0
to 61.0] (p <0.001) mmHg. The STS risk score classified this
group as intermediate with a median risk score of 4.70 [3.55,
5.44] and p <0.001. Group 2 (n = 41) is comprised of classic
high gradient as well as low gradient, normal LVEF, severe
AS patients. These patients had higher predominance of sin-
gle vessel CAD (33%, p = 0.01). The STS median risk was
6.00 [3.60, 7.40] which classified this group as intermediate
risk. Group 3 (n = 61) is the largest cohort with similar echo-
cardiographic parameters to Group 2. Group 4 (n = 41) had a
mix of patients with high and low gradients, normal and
reduced LVEF, severe AS patients. Patients in this group had
hostile chest anatomy (14.6%, p <0.001). The median STS
risk was (8.10 [5.20,11.33], p <0.003). Group 5 (n = 30) had
higher number of pacemakers and ICDs (23%, p = 0.016),
pre-TAVI cardiac procedures (43%, p = 0.04) and heart fail-
ure exacerbations before TAVI The details of the baseline
characteristics and echocardiographic parameters are shown
in (Tables 1 and 2).

To study the applicability of the phenogroups developed
in cohort 1, we developed a supervised classifier that could
predict new patient’s phenogroups. The performance of the
model was first verified. The fusion model was highly accu-
rate for predicting the presence of 5 phenogroups identified
using TDA with best prediction seen in Group 1 (AUC:
0.94, accuracy: 0.90) and Group 5 (AUC: 0.93, accuracy:
0.88). The performance of the algorithm was lower for
Group 3 (AUC: 0.74, accuracy: 0.73) followed by interme-
diate performance for Group 2 (AUC: 0.82, accuracy: 0.83)
and Group 4 (AUC: 0.82, accuracy: 0.81; Online Supple-
mental figures).

On applying the supervised fusion classifier to cohort 2
with more heterogenous population of patients with low-,
intermediate-, and high-risk STS risk scores, interestingly,
the model continued to predict in-hospital events of all-
cause mortality and cardiovascular mortality for Group 1 (0
for both) and Group 5 (2, 11.1%, p = 0.007), which was
similar to validation with outcomes seen in cohort 1 (see
Table 3). Also, major bleeding was closely predicted for
Group 5 (2, 11.1% vs 3, 10%; Table 3) between cohorts 1
and 2, respectively. The model performed well for predict-
ing all-cause mortality for Group 3 and in-hospital out-
comes for Group 5.

Overall on combining both cohorts, Group 1 was associ-
ated with the lowest rates of procedural complications post-

http://bigml.com
https://bigml.com
https://bigml.com
http://www.medcalc.org
www.ajconline.org


Table 1

Baseline clinical and echocardiographic characteristics (cohort 1)

Variable Overall Phenogroup

(1)

Phenogroup

(2)

Phenogroup

(3)

Phenogroup

(4)

Phenogroup

(5)

P Value

n-number of patients 211 38 41 61 41 30

Age (years) 80.00

[73.50, 86.00]

82.00

[73.25, 86.75]

79.00

[74.00, 83.00]

78.00

[74.00, 84.00]

80.00

[70.00,86.00]

82.00

[73.25, 87.00]

0.77

Male 95 (45%) 9 (24%)* 18 (44%) 30 (49%) 23 (56%) 15 (50%) 0.04

Prior pacemaker 21 (10%) 0 0 6 (10%) 8 (20%)* 7 (23%)* 0.001

Prior ICD 11 (5%) 0 0 1 (2%) 3 (7%) 7 (23%) <0.001
Prior PCI 75 (36%) 4 (11%)* 14 (34%) 26 (43%) 22 (54%)* 9 (30%) 0.001

Prior CABG 54 (26%) 2 (5%)* 4 (10%)* 20 (33%) 17 (42%)* 11 (37%) <0.001
Prior aortic valve 21 (10%) 0 2 (5%) 5 (8%) 6 (15%) 8 (27%)* 0.003

Prior stroke 45 (21%) 6 (16%) 9 (22%) 19 (31%)* 6 (15%) 5 (17%) 0.22

Prior TIA 25 (12%) 5 (13%) 7 (17%) 4 (7%) 4 (10%) 5 (17%) 0.44

Prior PAD 61 (29%) 4 (11%)* 16 (39%) 21 (34%) 14 (35%) 6 (20%) 0.02

Smoker 32 (15%) 4 (11%) 6 (15%) 12 (20%) 8 (20%) 2 (7%) 0.42

Hypertension 196 (93%) 38 (100%)* 38 (93%) 58 (95%) 37 (90%) 25 (86%) 0.19

Diabetes 95 (45%) 11 (29%)* 23 (56%) 27 (44%) 25 (61%)* 9 (31%) 0.01

ESRD on dialysis 11(5%) 0 2 (5%) 2 (3%) 6 (15%)* 1(3%) 0.03

Pre-TAVI Hb,

median (range)

11.70

[10.00,13.15]

11.95

[10.72,13.00]

11.90

[9.90,13.30]

11.50

[9.90,13.60]

11.40

[9.30,12.70]

12.20

[11.05, 13.00]

0.60

Pre-TAVI Cr,

median (range)

1.05

[0.83, 1.46]

0.99

[0.79,1.18]

1.00

[0.81,1.49]

1.06

[0.82,1.51]

1.23

[0.87,1.89]

1.02

[0.85, 1.36]

0.14

Chronic lung disease 0.26

0 − not present 115 (55%) 24 (63%) 21 (51%) 30 (49%) 19 (48%) 21 (72%)

1- mild 49 (23%) 10 (26%) 8 (20%) 15 (25%) 12 (30%) 4 (14%)

2 - moderate 24 (12%) 1 (3%) 6 (15%) 11 (18%)* 3 (8%) 3 (10%)

3- severe 21 (10%) 3 (8%) 6 (15%) 5 (8%) 6 (15%) 1 (3%)

Home O2 45 (21%) 7 (18%) 10 (24%) 13 (21%) 10 (24%) 5 (17%) 0.92

Hostile chest 10 (5%) 0 0 3 (5%) 6 (15%)* 1 (3%) 0.01

Prior MI 87 (41%) 8 (21%)* 14 (34%) 28 (46%) 23 (56%)* 14 (47%) 0.01

Prior CHF 106 (51%) 11 (29%)* 23 (56%) 27 (44%) 23 (58%) 22 (73%)* 0.004

NYHA 0.43

1 20 (10%) 7 (19%) 3 (7%) 5 (8%) 3 (8%) 2 (7%)

2 31 (15%) 7 (19%) 7 (17%) 7 (12%) 5 (13%) 5 (17%)

3 101 (49%) 12 (33%) 19 (46%) 30 (50%) 26 (65%) 14 (47%)

4 55 (27%) 10 (28%) 12 (29%) 18 (30%) 6 (15%) 9 (30%)

Cardiogenic shock 2 (1%) 0 0 0 0 2 (7%)* 0.01

Pre-TAVI cardiac procedures 59 (29%) 6 (16%) 11(27%)* 16 (27%) 14 (34%)* 12 (43%)* 0.17

Porcelain aorta 10 (5%) 0 0 4 (7%) 3 (7%) 3 (10%) 0.14

Atrial fibrillation 81 (38%) 16 (42%) 13 (32%) 22 (36%) 15 (37%) 15 (50%) 0.57

Prior conduction defect 69 (33%) 13 (34%) 9 (23%) 23 (38%) 14 (34%) 10 (35%) 0.61

Number of coronary

arteries narrowed:

0.01

0 54 (26%) 17 (46%) 13 (32%) 11 (18%) 6 (15%) 7 (23%)

1 45 (22%) 9 (24%)* 14 (34%) 11 (18%) 7 (18%) 4 (13%)

2 31 (15%) 4 (11%) 4 (10%) 11 (18%) 6 (15%) 6 (20%)

3 79 (38%) 7 (19%) 10 (24%) 28 (46%)* 21 (53%)* 13 (43%)

Left main 15 (7%) 0 0 5 (8%) 8 (21%)* 2 (7%) 0.002

Proximal LAD 41 (20%) 4 (11%) 3 (7%) 12 (20%) 14 (36%)* 8 (27%) 0.012

STS risk score 5.65

[4.00, 8.73]

4.70

[3.55, 5.44]*

6.00

[3.60, 7.40]

6.20

[4.20, 10.00]

8.10

[5.20, 11.33]*

5.21

[4.20, 10.00]

0.004

KCCQ12_Overall 35.59

[19.40, 58.73]

42.45

[18.10, 74.74]

34.38

[20.83, 47.92]

34.12

[15.23, 63.67]

37.50

[27.1, 45.83]

37.24

[17.71, 57.03]

0.67

Echocardiographic

characteristics

LVEF (%) 55.00

[45.00, 63.00]

63.00

[55.50, 65.00]*

59.00

[55.00, 65.00]*

55.00

[46.00, 63.00]

55.00

[35.00,63.00]

35.00

[20.00,55.00]*

<0.001

RVSP (mmHg) 42.00

[32.00, 55.00]

41.00

[32.50, 45.00]

39.00

[29.25, 54.25]

44.00

[31.25, 55.00]

39.00

[33.00,55.00]

48.00

[39.50, 57.00]

0.36

AV Peak Velocity (cm/s) 4.00

[3.52, 4.47]

4.40

[4.25, 4.95]*

4.05

[3.62, 4.57]

4.00

[3.50, 4.30]

3.85

[3.40, 4.22]*

3.70

[3.18, 4.10]*

<0.001

0.87

(continued)
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Table 1 (Continued)

Variable Overall Phenogroup

(1)

Phenogroup

(2)

Phenogroup

(3)

Phenogroup

(4)

Phenogroup

(5)

P Value

AV Annulus Size

(cm)

24.00

[23.00, 26.00]

24.00

[23.00, 26.00]

24.00

[23.00, 26.00]

24.00

[23.00, 27.00]

26.00

[23.0, 26.00]

24.50

[23.0, 26.00]

AVA (cm2) 0.66

[0.54, 0.79]

0.56

[0.50, 0.70]*

0.70

[0.58, 0.80]

0.69

[0.60, 0.80]

0.61

[0.57, 0.73]

0.68

[0.60, 0.79]

0.03

AV MPG (mmHg) 42.00

[33.00, 53.50]

55.00

[46.00, 61.00]*

42.00

[35.00, 54.25]

42.00

[32.00, 50.00]

37.0

[29.0,49.25]*

38.0

[28.0, 45.00]*

<0.001

AV Peak Gradient

(mmHg)

66.0

[52.00, 80.75]

81.50

[74.00, 98.25]*

70.0

[56.00, 87.00]

65.0

[51.00, 78.00]

58.0

[48.0,73.00]*

55.0

[41.0,66.00]*

<0.001

Post-TAVI LVEF (%) 58.00

[50.00, 63.00]

62.5

[55.75, 65.00]

63.00

[58.00, 65.00]

59.0

[55.00, 63.00]

53.0

[40.0,62.50]

41.00

[23.0, 56.50]

<0.001

Post-TAVI

MPG (mmHg)

10.0

[8.00, 14.00]

10.0

[7.00, 13.00]

10.0

[8.00, 13.50]*

11.0

[8.50, 15.00]

10.0

[8.50,14.00]*

9.0

[8.00,13.50]*

0.88

Post-TAVI

KCCQ12_Overall

78.13

[64.06, 92.71]

76.3

[59.68, 94.27]

81.25

[61.11, 90.10]

76.04

[56.25, 87.50]

89.58*

[66.67,96.62]

78.13

[64.85, 95.05]

0.23

ICD = implantable cardioverter defibrillator; PCI = percutaneous coronary intervention; CABG = coronary artery bypass graft; PAD = peripheral arterial

disease; TIA = transient ischemic attack; ESRD = end stage renal disease; MI = myocardial infarction; CHF = congestive heart failure; TAVI = transcatheter

aortic valve implantation; LAD = left anterior descending artery; STS = short-term risk score; KCCQ =Kansas city cardiomyopathy questionnaire;

CAD = coronary artery disease; LVEF = left ventricular ejection fraction; RVSP = right ventricular systolic pressure; AV = aortic valve; AVA = aortic valve

area; MPG = mean pressure gradient.

* p value − significant.

Table 2

Baseline clinical and echocardiographic characteristics (cohort 2)

Variable Overall Phenogroup

(1)

Phenogroup

(2)

Phenogroup

(3)

Phenogroup

(4)

Phenogroup

(5)

P Value

N = number of patients 143 27 37 44 17 18

Age (years) 79.39

[75.07, 84.36]

79.30

[73.89, 83.09]

79.95

[75.18, 84.89]

80.48

[75.22, 84.40]

75.10

[72.35, 79.66]*

83.50

[79.95, 88.50]*

0.04

Male 71 (50%) 10 (37%) 12 (32%)* 27 (61%) 11 (65%) 11 (61%) 0.02

Prior pacemaker 18 (13%) 3 (11%) 2 (5%) 5 (11%) 4 (24%) 4 (22%) 0.23

Prior ICD 4 (3%) 1 (4%) 0 1 (2%) 2 (12%) 0 0.16

Prior PCI 40 (28%) 3 (11%)* 8 (22%) 18 (41%)* 7 (41%) 4 (22%) 0.03

Prior CABG 32 (22%) 1 (4%)* 0 16 (36%)* 10 (59%)* 5 (28%) <0.001
Prior aortic valve 29 (20%) 6 (22%) 8 (22%) 6 (14%) 6 (35%) 3 (17%) 0.43

Prior stroke 22 (15%) 2 (7%) 7 (19%) 7 (16%) 2 (12%) 4 (22%) 0.64

Prior TIA 16 (11%) 2 (7%) 4 (11%) 5 (11%) 2 (12%) 3 (17%) 0.91

PAD 28 (20%) 3 (11%) 10 (27%) 10 (23%) 5 (29%) 0 0.05

Smoker 17 (12%) 1 (4%) 7 (19%) 6 (14%) 1 (6%) 2 (11%) 0.43

Hypertension 132 (92%) 25 (93%) 36 (97%) 40 (91%) 17 (100%) 14 (78%)* 0.10

Diabetes 61 (43%) 5 (19%)* 19 (51%) 16 (36%) 15 (88%)* 6 (33%) <0.001
ESRD on dialysis 9 (6%) 1 (4%) 0 0 7 (41%)* 1 (6%) <0.001
Pre-TAVI Hb, median (range) 11.85

[9.90, 13.30]

12.20

[11.12, 13.60]

11.00

[9.10, 13.30]

12.20

[10.70, 12.93]

9.90

[9.20, 11.80]

13.15

[12.08, 14.55]

0.004

Pre-TAVI Cr, median (range) 1.13

[0.84, 1.42]

0.98

[0.82, 1.16]

1.03

[0.81, 1.42]

1.10

[0.87, 1.32]

2.12

[1.72, 4.10]

1.18

[0.88, 1.38]

<0.001

Chronic lung disease NS

0 − not present 89 (62%) 24 (89%) 22 (60%) 23 (52%) 8 (47%) 12 (67%)

1- Mild 31 (22%) 0 10 (27%) 12 (27%) 4 (24%) 5 (28%)

2- Moderate 12 (8%) 1 (4%) 3 (8%) 5 (11%) 3 (18%) 0

3- Severe 11 (8%) 2 (7%) 2 (5%) 4 (9%) 2 (12%) 1 (6%)

Home O2 28 (20%) 1 (4%)* 9 (24%) 11 (25%) 6 (35%) 1 (6%) 0.02

Hostile chest 6 (4%) 0 3 (8%) 1 (2%) 1 (6%) 1 (6%) 0.46

Prior MI 41 (29%) 0 11 (30%) 18 (41%)* 9 (53%)* 3 (17%) <0.001
Prior CHF 82 (57%) 10 (37%)* 23 (62%) 20 (46%) 16 (94%)* 13 (72%) 0.001

NYHA NS

1 12 (8%) 3 (11%) 3 (8%) 3 (7%) 0 3 (17%)

2 50 (35%) 12 (44%) 12 (32%) 14 (32%) 6 (35%) 6 (33%)

(continued)
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Table 2 (Continued)

Variable Overall Phenogroup

(1)

Phenogroup

(2)

Phenogroup

(3)

Phenogroup

(4)

Phenogroup

(5)

P Value

3 64 (45%) 12 (44%) 18 (49%) 20 (46%) 8 (47%) 6 (33%)

4 17 (12%) 0 4 (11%) 7 (16%) 3 (18%) 3 (17%)

Cardiogenic shock 3 (2%) 0 0 1 (2%) 0 2 (11%)* 0.11

Pre-TAVI cardiac procedures 10 (7%) 2 (8%) 4 (11%) 1 (2%) 3 (18%) 0 0.14

Porcelain aorta 4 (3%) 0 1 (3%) 1 (2%) 2 (12%) 0 0.22

Atrial fibrillation 59 (41%) 9 (33%) 9 (24%)* 21 (48%) 9 (53%) 11 (61%) 0.04

Prior conduction defect 8 (6%) 2 (7%) 1 (3%) 1 (2%) 3 (18%) 1 (6%) 0.16

Number of coronary

arteries narrowed:

* * * NS

0 55 (39%) 16 (62%) 25 (68%) 4 (10%) 3 (18%) 7 (39%)

1 17 (12%) 3 (12%) 4 (11%) 5 (11%) 2 (12%) 3 (17%)

2 21 (15%) 6 (23%) 4 (11%) 8 (18%) 2 (12%) 1 (6%)

3 49 (35%) 1 (4%) 4 (11%) 27 (61%) 10 (59%) 7 (39%)

Left main 15 (11%) 1 (4%) 0 7 (16%) 5 (29%)* 2 (11%) 0.005

Proximal LAD 33 (23%) 2 (8%)* 7 (19%) 14 (32%) 6 (35%) 4 (22%) 0.11

STS risk score 4.84

[3.30, 7.53]

3.07

[2.05, 5.32]*

4.30

[3.34, 5.76]

4.94

[3.56, 6.91]

11.34

[9.31, 12.51]*

5.08

[4.24, 6.88]

<0.001

KCCQ12_Overall 33.33

[17.19, 58.85]

40.63

[23.44, 66.84]

32.29

[16.67, 54.69]

34.38

[26.04, 56.77]

16.67

[11.46, 29.69]*

43.23

[9.38, 66.67]

0.12

Echocardiographic characteristics

LVEF (%) 55.00

[40.00, 63.00]

65.00

[59.00, 68.00]*

60.00

[55.00, 63.00]*

53.00

[39.50, 61.50]

45.00

[35.00, 55.00]*

27.50

[25.00, 46.75]*

<0.001

RVSP (mmHg) 47.00

[35.00, 58.00]

51.00

[39.25, 56.25]

41.00

[34.38, 50.00]*

50.00

[41.00, 61.00]

47.50

[35.50, 55.95]

49.00

[36.00, 62.00]

0.33

AV peak velocity (cm/s) 4.00

[3.50, 4.30]

4.70

[4.32, 5.00]*

4.10

[3.82, 4.30]

3.85

[3.52, 4.18]

3.40

[3.00, 3.90]*

3.30

[2.73, 3.95]*

<0.001

Annulus size (cm) 25.00

[23.00, 27.00]

23.50

[22.00, 26.75]

24.00

[22.00, 25.00]*

26.00

[24.00, 27.00]*

26.00

[23.00, 26.00]

25.00

[24.00, 27.00]

0.04

AVA (cm2) 0.70

[0.60, 0.90]

0.60

[0.50, 0.79]*

0.78

[0.65, 1.00]

0.70

[0.67, 0.83]

0.70

[0.60, 0.70]

0.80

[0.67, 1.00]

0.04

AV MPG (mmHg) 40.00

[30.00, 50.00]

54.00

[47.00, 64.50]*

43.00

[38.00, 50.00]*

38.50

[29.75, 44.00]

29.00

[24.00, 38.00]*

27.50

[18.50, 38.00]*

<0.001

AV peak gradient (mmHg) 64.50

[50.00, 78.00]

88.00

[73.00,100.00]*

70.00

[64.00, 77.00]*

58.00

[46.00, 69.00]*

49.00

[38.50, 60.75]*

50.50

[33.75, 55.50]*

<0.001

Post-TAVI LVEF (%) 57.00

[49.50, 63.00]

63.00

[56.50, 68.00]*

59.00

[55.00, 67.25]*

55.00

[49.00, 60.00]

53.00

[45.50, 57.50]

40.00

[29.00, 54.50]*

<0.001

Post-TAVI MPG (mmHg) 11.50

[9.00, 15.00]

14.00

[10.00, 18.00]

12.00

[10.00, 15.00]

11.00

[9.00, 13.00]

10.50

[10.00, 17.25]

8.00

[7.25, 11.00]

0.005

Post-TAVI KCCQ12_Overall 80.21

[57.63, 88.89]

83.33

[59.38, 90.63]

78.13

[57.03, 86.98]

80.38

[60.59, 88.28]

71.35

[50.00, 86.85]

84.72

[56.51, 90.28]

0.91

ICD = implantable cardioverter defibrillator; PCI = percutaneous coronary intervention; CABG = coronary artery bypass graft; PAD = peripheral arterial

disease; TIA = transient ischemic attack; ESRD = end stage renal disease; MI = myocardial infarction; CHF = congestive heart failure; TAVI = transcatheter

aortic valve implantation; LAD =left anterior descending artery; STS = short-term risk score; KCCQ =Kansas city cardiomyopathy questionnaire;

CAD = coronary artery disease; LVEF = left ventricular ejection fraction; RVSP = right ventricular systolic pressure; AV = aortic valve; AVA = aortic valve

area; MPG = mean pressure gradient.

* - p value − significant, NS − nonsignificant.
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TAVI (odds ratio [OR] 0.25, 95% confidence interval [CI]
0.09 to 0.7, p = 0.009). In the contrary, Group 5 was associ-
ated with higher rates of in-hospital cardiovascular mortal-
ity (OR 35, 95% CI 4 to 309, p = 0.001), in-hospital all-
cause mortality (OR 9, 95% CI 2 to 33, p = 0.002), 30-day
cardiovascular mortality (OR 18, 95% CI 3 to 94, p
<0.001), and 30-day all-cause mortality (OR 3, 95% CI 1.2
to 9, p = 0.02; Figure 3). For 30-day cardiovascular mortal-
ity, using phenogroups in conjunction with the STS score
improved the overall prediction versus using the STS scores
alone (AUC 0.96 vs AUC 0.8, p = 0.02; Figure 2). For 30-
day all-cause mortality there was no difference between
phenogroups in conjunction with STS score compared with
STS score alone (AUC 0.8 vs 0.77, respectively, p = 0.6).
Discussion

In the current study, we investigated the use of semisu-
pervised AutoML algorithms using patient similarity analy-
sis to characterize AS patient into subgroups to understand
the similarities in clinical presentations and outcomes
related to TAVI. Despite the small sample size, we illustrate
the advantages of using a semisupervised pipeline that
improved performance and prediction of the outcomes in
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Figure 2. Receiver operating characteristics (ROC) with area under the

curve AUC) for comparison of phenogroups with STS versus STS for car-

diovascular mortality.

For 30-day cardiovascular mortality, using phenogroups in conjunction

with the STS score improved the overall prediction versus using the STS

scores alone (AUC 0.96 vs AUC 0.8, p = 0.02).
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different patient groups compared with the traditional surgi-
cal risk score calculator.

Recent interest in using AutoML in healthcare has
received enthusiastic endorsements for cancer phenotyp-
ing,17 cardiac imaging,18,19 and risk prediction.20,21 Simi-
larly, AutoML aims at “learning” from data compared with
well-known and established statistical approaches.20 In the
statistical approach, a probabilistic model is usually built,
which is based on the assumption that the provided data are
a subset of a larger population that can be described by a
model. In contrast, machine-learning emphasizes predic-
tions, and thus its efficiency is evaluated via prediction per-
formance. Moreover, the unbiased view of the available
data by the machine-learning algorithms can lead to the dis-
covery of previously unseen relationships among data,
whereas the classic approaches may overlook these rela-
tionships due to model restrictions.20

A previous study used administrative database of TAVI
patients to develop a supervised machine-learning model to
predict mortality.22 The approach introduced in the present
study is applicable to more contemporary TAVI population
and utilizes state-of-the-art methods that can be applied to
extract meaningful information from smaller sample sizes
with sparse clinical outcome. Firstly, we used TDA as an
initial step to understand the structure of the data. Topology
is a mathematical discipline that studies shape,23 whereas
TDA refers to the adaptation of this discipline to analyzing
highly complex data.23 It draws on the philosophy that all
data have an underlying shape and that shape has meaning.
The platform draws together a broad range of ML, statisti-
cal, and geometric algorithms to create a summary or com-
pressed representation of all the data points in a large
dataset and thus to rapidly uncover critical patterns and
relationships in that dataset. TDA augments supervised
learning algorithms (semisupervised learning) by effec-
tively constructing a collection or ensemble of models
rather than making global assumptions regarding all the
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Figure 3. Forest plot of combined cohorts comparing Group 5.
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underlying data. This eliminates the need to create a single
model that works well on all of the data, which is a difficult
if not impossible mission. This “collection of models”
method generates more accurate results and can incorporate
any supervised algorithm.20,23

A close look at the data from the cohort 1 demonstrated
intermediate risk assigned to all 5 groups as per STS risk cal-
culator. However, we did witness higher in-hospital and 30-
day mortality in Group 5. Additionally, although, the patients
in Group 4 were deemed high risk with a median STS score
of 8, this group was not associated with higher rates of all-
cause and cardiovascular mortality. This is quite interesting
that machine-learning models may improve risk stratification
in ways to mitigate immediate postprocedural complications
and work as an adjunct to complement STS risk calculators.
Although the steps of machine-learning appear complicated,
the final outcome can be an app-based or cloud-based online
model that can function automatically like the common
risk prediction tools. The main advantage of the AutoML
approach is its inherent ability to ingest large sets of variables
to develop patient-specific predictions.

Our study has several limitations. First, this study explored
the potential of applying AutoML approaches using data
from a single center with a relatively small number of
patients. Second, newer algorithms that use optimized deep
learning models or reinforcement learning would need to be
evaluated in the future. Third, the comparator in in the current
study was the STS score which was originally designed to
predict 30 days surgical outcomes rather than in-hospital out-
comes after TAVI. Fourth, the current dataset included
mostly patients with intermediate STS risk scores, and the
applicability of the model on patients with low-risk STS
scores needs to be tested in a larger cohort. Fifth, we evalu-
ated the in hospital and 30 days outcomes, and the value of
the AutoML model to predict long-term functional recovery
and adverse events needs to be addressed. Finally, as the data
was derived from the TVT registry and hence we were not
able to include other important variables like calcium scoring
and computed tomography data as these are not captured by
the registry data.

In the current study, we investigated the use of a semisu-
pervised AutoML algorithm to predict in-hospital and 30-
day outcomes in patients with severe AS treated with
TAVI. Our findings revealed improved performance and
prediction of the outcomes in different patient groups by
using a novel AutoML model compared with the traditional
surgical risk score calculator.
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