
Prediction of 1-Year Mort
ality from Acute Myocardial
aDepartme

National Univ

Cardiology, C

Korea. Manusc

accepted July 1

Funding: T

National Univ

Basic Science

of Korea (N

2017R1D1A1B

design; in the

report; and in t

See page 2

*Correspo

5875.

E-mail add

0002-9149/© 2

https://doi.org/
Infarction Using Machine Learning
Han Cheol Lee, MD, PhDa, Jin Sup Park, MD, PhDa,*, Jeong Cheon Choe, MDa,
Jin Hee Ahn, MD, PhDa, Hye Won Lee, MD, PhDa, Jun-Hyok Oh, MD, PhDa,

Jung Hyun Choi, MD, PhDa, Kwang Soo Cha, MD, PhDa, Taek Jong Hong, MD, PhDa, and
Myung Ho Jeong, MD, PhDb, the Korea Acute Myocardial Infarction Registry (KAMIR) and Korea

Working Group on Myocardial Infarction (KorMI) Investigators
nt o

ersi

hon

ript

3, 2

his w

ersit

Res

RF

030

coll

he d

9 fo

ndin

res

020

10.
Risk stratification at hospital discharge could be instrumental in guiding postdischarge
care. In this study, the risk models for 1-year mortality using machine learning (ML) were
evaluated for guiding management of acute myocardial infarction (AMI) patients. From
the Korea Acute Myocardial Infarction Registry (KAMIR) dataset, 22,182 AMI patients
were selected. The 1-year all-cause mortality was recorded at 12-month follow-up periods.
Anomaly detection was conducted for removing outliers; principal component analysis for
dimensionality reduction, recursive feature elimination algorithm for feature selection.
Model selection and training were conducted with 70% of the dataset after the creation
and cross-validation of hundreds of models with decision trees, ensembles, logistic regres-
sions, and deepnets algorithms. The rest of the dataset (30%) was used for comparison
between the ML and KAMIR score-based models. The mean age of the AMI patients was
64 years, 71.8% were male, and 56.7% were eventually diagnosed with ST-elevation myo-
cardial infarction. There were 1,332 patients suffering from all-cause mortality (6%) dur-
ing a median 338 days of follow-up. The ML models for 1-year mortality were well-
calibrated (Hosmer-Lemeshow p >0.05) and showed good discrimination (area under the
curve for test cohort: 0.918). Compared with the performance of the KAMIR score model,
the ML model had a higher area under the curve, net reclassification improvement, and
integrated discrimination improvement. The ML model for 1-year mortality was well-cali-
brated and had excellent discriminatory ability and higher performance. In a comprehen-
sive clinical evaluation process, this model could support risk stratification and
management in postdischarge AMI patients. © 2020 Elsevier Inc. All rights reserved.
(Am J Cardiol 2020;133:23−31)
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Clinical practice guidelines endorse routine use of acute
myocardial infarction (AMI) mortality risk models to aid
decision-making for ischemic heart disease.1 In this vein,
the Global Registry of Acute Coronary Events (GRACE) 6-
month postdischarge model2 (hereafter, GRACE model)
and the Korean Acute Myocardial Infarction Registry
(KAMIR) score-based risk model3 (hereafter, KAMIR
model) have been developed and validated. However, the
GRACE model uses AMI data obtained before the
development of a new antiplatelet agent that results in a
decreased mortality rate and an increased rate of percutane-
ous coronary intervention (PCI) for AMI patients4; thus, it
might be inadequate for current clinical practice. The
KAMIR model has good discrimination (c-index 0.82) with
more in-hospital predictors such as hyperglycemia and left
ventricular dysfunction; however, it is not externally vali-
dated.3 To overcome the disadvantages of current risk mod-
els, machine learning (ML) could be a good alternative.5

This study utilized a multi-center prospective registry of
AMI patients to develop and validate a 1-year mortality
risk model using ML, and then compared the performance
to an existing risk model.
Methods

This article follows the guidelines in the Transparent
Reporting of a multivariable prediction model for Individ-
ual Prognosis or Diagnosis consensus document.6

We used data from the KAMIR for 2006 to 2007 and
from the Korea Working Group of Myocardial Infarction
registry for 2008 to 2013.7 The 53 participating centers
included university and community hospitals with facilities
for PCI and on-site cardiac surgery. A trained study coordi-
nator collected data using a standardized case report form

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amjcard.2020.07.048&domain=pdf
mailto:dr.jinsup@gmail.com
www.ajconline.org
https://doi.org/10.1016/j.amjcard.2020.07.048


24 The American Journal of Cardiology (www.ajconline.org)
and protocol. The study protocol conformed to the ethical
guidelines of the 1975 Declaration of Helsinki, as reflected
by prior approval from the human research committee of
each participating institution, and the Institutional Review
Board of Pusan National University Hospital approved this
study (IRB number: 2008064). We obtained informed con-
sent for the use of data from each patient.

From the 31,149 patients with AMI registered in the
database, those with clinical events during index hospitali-
zation (n = 999, 3.8%) and follow-up loss at 1-year
(n = 7,968, 25.6%), were excluded. Clinical follow-up was
conducted at 12 months after index hospitalization for
AMI. During follow-up, data from patients, including clini-
cal status, all interventions, outcome events, and adverse
events were recorded. Because our aim was to model risk
for postdischarge mortality, we excluded those who died
during index hospitalization, keeping a final sample of
22,182 participants for analysis (Figure 1).

All clinical, laboratory variables, and clinical events
were prospectively collected. Trained study coordinators
sourced clinical and laboratory characteristics and out-
comes using a standardized case report form and protocol.
All-cause mortality was considered cardiac unless a definite
noncardiac cause could be established. All events were
identified by the patient’s physician and confirmed by the
principal investigator of each hospital.

Continuous variables were compared using the Student’s
t test or Wilcoxon rank sum test, whereas categorical
variables were analyzed using the chi-squared or Fisher’s
exact test.
Figure 1. Study
Missing data were handled in 2 ways: any feature with
>20% of the data missing was eliminated; for <20% miss-
ing data, a random forest (RF) was used to impute the miss-
ing data. The RF was trained with 10 models, 512 node-
threshold, and smart pruning that considered pruning the
nodes with <1% of the instances. RF algorithms did notice-
ably better than the popular k-nearest neighbors imputation
method when there was a high correlation.8

We performed anomaly detection using an optimized
implementation of the Isolation Forest algorithm (sample
size: 1,024, forest size: 128, detection rate: 1%, number of
cases: 220).9 The anomaly detection introduced a metric
that measured the depth of each instance of the tree and
repeated this process hundreds of times to ascertain whether
it had been consistently easy to isolate each instance or
probably anomalous. Anomaly detection represented this
by transforming the average depth into a number between
0 (similar) and 1 (anomalous), considering anomaly scores
>0.60 as highly likely anomalous data points. Finally, the
21,962 participants of the dataset remaining following
removal of the anomalies were used for risk prediction
model development. We split the dataset such that the class
frequencies were equal between the training/validation
(n = 15,373; 70% [n = 12,299 for training; 80%, n = 3,074
for validation; 20%]) and test (n = 6,589; 30%) datasets.

Feature engineering was conducted in 2 ways: principal
component analysis (PCA) and recursive feature elimina-
tion (RFE). PCA was used to transform a training dataset to
yield uncorrelated features and reduce dimensionality,
which reduces supervised model overfitting that leads to
flowchart.
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poor model performance.10 It included 77 variables from
the original training dataset (n = 12,299), and produced 127
principal components after transformation from a different
data type using the factorial analysis of mixed data
algorithm.

RFE is a backward selection method. First, we built a
linear model for 1-year mortality based on all the variables.
After the model calculated variable coefficients and their
importance to 1-year mortality, we removed the lowest
ranking variables until the RFE had an optimal number of
features. Subsequently, 95 features remained for model
selection and training.11

An automated optimization process provided by BigML
was performed for model selection and hyperparametriza-
tion to solve classification and regression problems with the
training dataset. Different promising parameters were itera-
tively found through Bayesian parameter optimization
based on the sequential model-based algorithm configura-
tion optimization technique.12 For model selection and
training, decision trees, ensembles (≤ 256 trees), logistic
regressions (only for classification problems), and deepnets
were applied using 95 selected features with 1-year mortal-
ity as an outcome. For model validation, Monte Carlo
cross-validation was iteratively performed on those models
close to the optimum. Finally, 2 bootstrap decision forest
models and 1 boosted tree model were selected based on
the highest Phi coefficient, and the final ML model was cre-
ated as a combination of these 3 models.

After the predictive probability for 1-year mortality of
the ML model was calculated using batch prediction, dis-
crimination and calibration of the ML model were evalu-
ated in the training and test sets using the c-statistic and
Hosmer-Lemeshow goodness-of-fit statistic, respectively.
Observed and predicted probabilities of the 1-year mortal-
ity were calculated for deciles of risk obtained by apply-
ing the ML model to the test data. The KAMIR score,
which was developed for 12-month post-AMI mortality,
includes the following factors: old age, high Killip class,
elevated initial serum creatinine level, elevated initial
levels of serum glucose, lower left ventricular ejection
fraction, and not undergoing PCI in the hospital.3 The
predictive performance of the ML model and the KAMIR
model was compared in several ways. The difference in
the area under the curve (AUC) for the ML and KAMIR
models (both evaluated in the test dataset) was evaluated
using the methods of DeLong et al.13 We also compared
the specificity, positive predictive value, and negative
predictive value of the ML and KAMIR models evaluated
with the test dataset. Moreover, category-based and cate-
gory-free (continuous) net reclassification improvement
(NRI) indices and integrated discrimination improvement
were calculated and compared between the ML and
KAMIR models.14 Finally, integrated predictiveness
curves from the application of both models to the test
dataset were compared.15 All the methods from the ML
and statistics are summarized in Figure 1.

A p value <0.05 was considered statistically significant.
BigML provided all ML processes, including the supervised
and unsupervised algorithms. R and Analyse-it validation
edition (Analyse-it Software, Ltd., Leeds, United Kingdom)
were used to perform the statistical analyses.
Results

Table 1 shows the baseline characteristics of the training
cohort. The mean age was 63.3 § 12.7 years, 71.6% were
male. One-third (36.8%) of the training cohort was
experiencing preinfarction angina. The most common past
medical conditions were hypertension (50%), current
smoker (43%), diabetes (27.7%), prior history of ischemic
heart disease (15.5%), and dyslipidemia (11.4%). Almost
half of the training cohort was diagnosed with ST-segment
elevation AMI (STEMI) (56.7%), and three-quarters
(71.5%) presented with Killip class I. Initial thrombolysis
therapy was performed on 9.1% of STEMI patients, and the
overall rate of those who had undergone PCI was 86.5%
(92.9% in the STEMI subgroup, and 79.1% in the non-
STEMI subgroup). In patients who underwent invasive cor-
onary procedure, 80.3% received transfemoral approach,
24.6% had 3-vessel disease including left main disease
involved, and 43.9% had left anterior descending artery as
culprit lesion. A drug-eluting stent was implanted in over
90% of patients, and the procedure success rate was 81.3%.

Overall, 1,332 patients (6%) who were discharged from
hospital alive suffered all-cause death during median 338
(25th interquartile, 75th interquartile 50, 400) days of fol-
low-up periods (989 [6.4%] in the training cohort and 343
[5.2%] in the test cohort). The cause of death was adjudi-
cated as cardiovascular in 84.2% of all-cause death, noncar-
diovascular in 15.8%. Patients who suffered all-cause death
were older, more likely to be female, and a similar rate as
diagnosed with STEMI, but less likely to have had lower
Killip class. They had differences in a burden of past medi-
cal conditions, more prior history of ischemic heart disease,
diabetes, and hypertension; however, they had less dyslipi-
demia, fewer current smokers, and less family history of
ischemic heart disease. They had less chance of having
undergone PCI and were less likely to succeed in the proce-
dure. They were more likely to have had in-hospital compli-
cations such as major bleeding, arrhythmic event, new-
onset heart failure, and cardiogenic shock during hospitali-
zation. They were less likely to have had postdischarge
medications including aspirin, P2Y12 inhibitors, beta-
blockers, angiotensin-converting enzyme inhibitors, and
statin.

We applied a classifier-dependent feature selection
method, as described before, to assess the relation between
the models’ performance and the number of variables incor-
porated into them. The model performance plateaued after
including 19 variables more. Seventeen variables according
to their predictive importance for 1-year mortality could be
found, excluding a predictive value for pulse pressure.
Among the top predictors across the top 5 classifiers were
age, left ventricular ejection fraction during hospitalization,
initial Killip class, body mass index (BMI), and initial
serum creatinine (Figure 2).

ML model discrimination was excellent (AUC = 0.924
[training cohort]; 0.918 [test cohort]). Compared with the
KAMIR model (evaluated in the test cohort), discrimina-
tion was improved (AUC [95% CI] = 0.918 [0.902 to
0.935] vs 0.837 [0.817 to 0.857], p <0.001; Figure 3).
The model was also well-calibrated in the test cohort
(Figure 4).



Table 1

Patients characteristics of training cohort

Variables Survival status at 12th month p value

Alive (n = 14,384) Dead (n = 989)

Mean (SD) or number (percentage) Mean (SD) or number (percentage)

Age (years) 63§13 73§11 <0.001
Men 10504 (72.6%) 526 (59.6%) <0.001
Body mass index (kg/m2) 24§3 23§3 <0.001
Coronary heart disease 2181 (15.1%) 191 (21.7%) <0.001
Diabetes mellitus 3913 (27.2%) 340 (38.8%) <0.001
Hypertension 7228 (49.9%) 544 (61.6%) <0.001
Dyslipidemiay 1654 (12.4%) 73 (9.1%) 0.006

Current smoker 6338 (44%) 263 (29.9%) <0.001
Family history of IHD 1199 (9%) 41 (5.3%) <0.001
Preinfarct angina pectoris, n (%) 6080 (42.3%) 369 (42%) 0.873

Systolic blood pressure at presentation (mm Hg) 132§25 126§26 <0.001
Heart rate at presentation (beats/min) 78§19 88§25 <0.001
Killip class <0.001

I 10675 (77.5%) 356 (42%)

II 1830 (13.3%) 160 (18.9%)

III 974 (7.1%) 225 (26.6%)

IV 297 (2.2%) 106 (12.5%)

ST-segment elevation MI 8295 (57.2%) 501 (56.7%) 0.767

Serum glucose (mg/dl) 166§76 200§102 <0.001
Peak Troponin I (ng/ml) 42.36§138.66 64.37§158.37 <0.001
Serum creatinine (mg/dl) 1.13§1.51 1.77§3.18 <0.001
Serum C-reactive protein (mg/dl) 9.49§53.80 18.90§74.21 <0.001
Low-density lipoprotein cholesterol (mg/dl) 117§41 105§44 <0.001
Ejection fraction (%) 52§14 42§14 <0.001
Initial thrombolysis 765 (5.3%) 25 (2.9%) <0.001
Percutaneous coronary intervention 12788 (88.3%) 599 (67.8%) <0.001
3-vessel coronary disease 3486 (26.3%) 311 (45.9%) <0.001
LAD as Culprit lesion 6381 (48.3%) 338 (50.4%) 0.292

Lesion type B2/C 9443 (78.3%) 513 (84.1%) 0.001

Postprocedural TIMI 3 flow grade 11287 (97.5%) 468 (88.6%) <0.001
Successful PCI 12051 (94.9%) 508 (82.2%) <0.001
In-hospital complication

Major bleeding 28 (0.2%) 7 (0.8%) <0.001
Arrhythmia 302 (2.1%) 77 (8.7%) <0.001
Newly-onset heart failure 47 (0.3%) 17 (1.9%) <0.001
Cardiogenic shock 122 (0.8%) 109 (12.3%) <0.001

Medications at discharge

Aspirin 14030 (98.1%) 349 (94.1%) <0.001
P2Y12 inhibitors 13201 (94.5%) 329 (89.2%) <0.001
Beta adrenergic blockers 11103 (78%) 260 (70.3%) <0.001
ACE inhibitors 8935 (63.1%) 210 (56.6%) 0.010

Angiotensin receptor blockers 2971 (21.1%) 85 (23%) 0.380

Spironolactone 1143 (8.2%) 67 (18.2%) <0.001
Statins 1096 (75.8%) 240 (64.5%) <0.001

ACE = angiotensin-converting enzyme; IHD = Ischemic heart disease; LAD = left anterior descending; MI = myocardial infarction; PCI = percutaneous

coronary intervention; TIMI = thrombolysis in myocardial infarction.
yDyslipidemia is defined as prior history of diagnosis with dyslipidemia or treatment with statin.
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Specificity for all-cause death was higher for both the
ML and KAMIR models, but sensitivity was significantly
higher in the ML model. The proportion of false-positives
was similarly low between models, but the proportion of
false-negatives was almost double in the KAMIR model
(Table 2). The average recall and precision rate for the ML
model in the test cohort were 91.35% and 76.57%. Focusing
on the all-cause death only, the recall and precision rates
decreased by 85.19% and 53.64% at the 41% probability
threshold.
Integrated predictiveness curves for the ML and KAMIR
models show that for predicted probabilities below the
observed all-cause death (5.2%), the ML model consistently
yielded lower risk, and for values above the observed all-
cause death, it consistently yielded higher risk, reflecting its
ability to identify patients at either risk level better (Figure 5).

The ML model significantly improved the prediction of
all-cause death when we performed the reclassification
table. The ML and KAMIR models had categorical NRI
0.258 (95% CI 0.190 to 0.326, p <0.001), continuous NRI

www.ajconline.org


Figure 2. Features of importance based on recursive feature elimination before feature transformations in the train cohort.
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0.803 (95% CI 0.699 to 0.907, p <0.001), and integrated
discrimination improvement 0.351 (95% CI 0.310 to 0.391,
p <0.001; Table 3).

We considered the case of a hypothetical AMI patient
with obesity (BMI: 30 kg/m2), aged 80, who had admission
systolic blood pressure of 140 mm Hg, and heart rate of
120 beats/min, Killip class 3, initial serum CK-MB level of
300 mg/dl, troponin I level of 45 pg/L, glucose level of
180 mg/dl, creatinine level of 2.0 mg/dl, some degree of
dyslipidemia (total cholesterol: 180 mg/dl, high-density
lipoprotein-C 52 mg/dl, low-density lipoprotein-C: 120 mg/
dl), and high level of C-reactive protein (8 ug/dl), who
underwent PCI. The patient developed cardiogenic shock
during hospitalization but recovered. Echocardiography
showed a severely reduced ejection fraction of 30%. The
probability of 1-year mortality was calculated using the ML
model, which predicted that patients with these features
will die within 1 year at a 80% probability.
Discussion

Accurate prediction of prognosis is fundamental to
patient-centered care. Using data from a nationwide AMI
registry, we developed alternative statistical methods to
build risk models for 1-year mortality in outpatients with
AMI. An ML model comprising a fusion of decision forest
and boosted tree models presented proper risk stratification
for post-AMI patients with good internal validation and
excellent calibration. Furthermore, its performance was sig-
nificantly better than that of the KAMIR model.3 These
results imply that ML risk models, driven by several impor-
tant features within the dataset, could outperform risk mod-
els developed using conventional statistical methods. Risk
prediction using ML could be easily performed based on
easily accessible electronic medical records, for which the
volume is increasing rapidly.

The GRACE model has been demonstrated to predict
mortality for up to 4 years with good accuracy and exten-
sive external validations.2 However, it has several limita-
tions compared with the KAMIR model. Cohorts enrolled
from the GRACE model had a lower PCI rate and the use
of P2Y12 inhibitors was approximately 30%. The GRACE
model did not include the following risk factors in its devel-
opment: admission hyperglycemia, presence of stroke or
peripheral artery disease, and left ventricular systolic func-
tion, which showed significant associations with mortality



Figure 3. Calibration plot for the KAMIR score-based risk model (A) and machine learning risk model (B) in the test cohort.

Figure 4. Comparison of receiver operating characteristic curve and area

under curve between the KAMIR score-based risk model (dotted line) and

the machine learning risk model (solid line) in the test cohort.

Table 2

Confusion matrix

ML risk model Threshold: 0.41

Death Survival Actual Recall

Death 184 159 343 53.64%

Survival 32 6214 6246 99.49%

Predicted 216 6373 6589

Precision 85.19% 97.51%

KAMIR score model Threshold: 0.5

Death Survival ACTUAL RECALL

Death 16 327 343 4.66%

Survival 31 6214 6246 99.28%

Predicted 47 6542 6589

Precision 34.04% 94.99%

28 The American Journal of Cardiology (www.ajconline.org)
in AMI patients.16,17 Furthermore, the KAMIR model dem-
onstrated significant differences in more predictive accu-
racy than the GRACE model in post-AMI patients.3

Comparison of the performance between the models in the
test cohort showed that the ML model was better in accu-
racy, sensitivity, and reclassification of 1-year mortality.

RF and support vector machine algorithms have typi-
cally outperformed logistic regression, decision tree, and
neural networks in classification problems on large health
datasets.18 This could enable the creation of nonlinear and
conditional relations that might be developed by the logistic
regression and decision tree models. The neural network
exhibited lower performance than the models created by
other algorithms. Massive-sized training data might be
required to train the neural network properly compared
with RF models. In addition to the algorithm, the overall
performance of the ML methods in classification problems
can be improved by dimensionality reduction using feature
engineering.19 PCA is widely used in feature engineering to
recognize the peak disparity characteristics in the applied
dataset, thus reducing it to a smaller number of significant
features.20 The RFE method, which removes the weakest
features until the desired number of features is reached, is
widely used in disease prediction using ML.21 PCA and
RFE were performed in the training cohort, and a fusion of

www.ajconline.org


Figure 5. Comparison of predictiveness curves between the KAMIR

score-based risk model (dotted line) and the machine learning risk model

(solid line) in the test cohort.

Table 3

Reclassification table

KAMIR model ML model

<5% 5−10% >10%

Survival (n = 6,246)

<5% 4521 (72.3%) 86 (1.3%) 58 (0.9%)

5−10% 640 (10.2%) 218 (3.4%) 40 (0.6%)

>10% 154 (2.4%) 330 (5.2%) 199 (3.2%)

Death (n = 343)

<5% 39 (11.4%) 3 (0.8%) 29 (8.4%)

5−10% 20 (5.8%) 15 (4.4%) 57 (16.6%)

>10% 7 (2.0%) 25 (7.3%) 148 (43.1%)

Coronary Artery Disease/Mortality Prediction Using Machine Learning 29
2 decision forest and 1 tree algorithms was used to develop
the ML risk model.

The features of importance provided by the ML algorithm
differed somewhat compared with logistic regression in con-
ventional statistical methods. However, it could provide sug-
gestions that give direction. Older age, higher creatinine
levels, and Killip class, and lower systolic blood pressure
derived from the ML algorithm are all risk factors that could
have a substantially detrimental effect for the prognosis
of post-AMI patients with the statistical method.22 Left ven-
tricular systolic function, which ranked as second grade, is
a significant predictor of long-term mortality after AMI.23

Initial glucose levels were also listed, supporting the associa-
tion between hyperglycemia and early mortality in AMI
patients.24 Renal dysfunction is independently associated
with increased risk of death in post-AMI patients,25 which
reflected the level of serum creatinine as the selected feature
by the algorithm. Additional high-ranking variables, confirm-
ing previous studies, included low-density lipoprotein
levels,26 high-density lipoproteins,27 BMI,28 and C-reactive
protein.29 All variables in the KAMIR model ranked as
important features; this could be reliable and used to identify
critical prognostic factors along with conventional statistical
methods.
This study had several limitations. First, the study cohort
was not derived from random study data, which could lead
to bias in the measurement of outcomes. Approximately
25% of the registered patients were excluded owing to fol-
low-up loss at 1 year. However, the registry data collected
prospectively represented real-world data, hence conveying
more recent clinical practice. The collecting of registry data
began >15 years ago; invariably, there have been changes
in the management of AMI patients since then. However,
KAMIR data have shown a tendency to reduce the mortality
from the start. Second, we focused on 1-year mortality only.
Post-AMI patients experience many complications related
to AMI, such as recurrent myocardial infarction, repeated
coronary artery angiography, decreased quality of life due
to depression, and post-MI heart failure. A future model
should include these outcomes for better prediction and risk
stratification in a post-MI survivor. Third, the current pro-
spective registry differs in aspects such as the low preva-
lence of dyslipidemia, high rate of invasive treatment, and
lower mortality rate compared with the western registries.
It is difficult to generalize and adapt the ML model for pre-
diction of outcome in the rest of the population, and it needs
external validation. Finally, the models have not been exter-
nally validated. However, the use of iterated cross-valida-
tion inside the training cohort, then diagnosis with the test
cohort increases the results’ strength and reduces the risk of
overfitting (i.e., an overoptimistic estimation of the model’s
performance).
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Appendix

*Complete list of the included variables
Age, sex, body mass index, symptom-to-door time, pre-

infarct angina pectoris, systolic blood pressure, diastolic
blood pressure, pulse pressure, heart rate, Killip class, coro-
nary heart disease, hypertension, diabetes, dyslipidemia,
current smoker, family history of heart disease, thromboly-
sis, percutaneous coronary intervention, cath room to bal-
loon time, diseased vessel, culprit lesion, lesion type, pre-
TIMI flow, post-TIMI flow, intervention result, complica-
tion during hospitalization, left ventricular ejection fraction,
serum glucose, serum creatinine, serum CK-MB, serum
TnI, total cholesterol, triglyceride, high-density lipoprotein,
low-density lipoprotein cholesterol, C-reactive protein,
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discharge medications (aspirin, clopidogrel, cilostazol,
ticlopidine, triflusal, calcium channel blocker, beta blocker,
angiotensin-converting enzyme inhibitor, angiotensin
receptor blocker, nitrate, nicorandil, diuretics, spiro0lac-
tone, statin, fibrate, eztrole, vytorin, amiodarone, antide-
pressant, digoxin, insulin, oral anticoagulation, oral
hypoglycemic agent, sedatives, final diagnosis.
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